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Evapotranspiration (ET) plays a critical role in linking the water and energy cycles but is difficult to esti-
mate at regional and basin scales. In this study, we present a worldwide evaluation of nine ET products
(three diagnostic products, three land surface model (LSM) simulations and three reanalysis-based prod-
ucts) against reference ET (ETwb) calculated using the water balance method corrected for the water stor-
age change at an annual time scale over the period 1983–2006 for 35 global river basins. The results
indicated that there was no significant intra-category discrepancy in the annual ET estimates for the
35 basins calculated using the different products in 35 basins, but some products performed better than
others, such as the Global Land surface Evaporation estimated using the Amsterdam Methodology
(GLEAM_E) in the diagnostic products, ET obtained from the Global Land Data Assimilation System ver-
sion 1 (GLDAS 1) with the Community Land Model scheme (GCLM_E) in LSM simulations, and ET from the
National Aeronautics and Space Administration (NASA) Modern Era Retrospective-analysis for Research
and Applications reanalysis dataset (MERRA_E) in the reanalysis-based products. Almost all ET products
(except MERRA_E) reasonably estimated the annual means (especially in the dry basins) but systemati-
cally underestimated the inter-annual variability (except for MERRA_E, GCLM_E and ET simulation from
the GLDAS 1 with the MOSAIC scheme – GMOS_E) and could not adequately estimate the trends (e.g.
GCLM_E and MERRA_E) of ETwb (especially in the energy-limited wet basins). The uncertainties in nine
ET products may be primarily attributed to the discrepancies in the forcing datasets and model structural
limitations. The enhancements of global forcing data (meteorological data, solar radiation, soil moisture
stress and water storage changes) and model physics (reasonable consideration of the water and energy
balance and vegetation processes such as canopy interception loss) will undoubtedly improve the estima-
tion of global ET in the future.

� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Land evapotranspiration (ET) is an essential component in glo-
bal water, energy, and carbon cycles, and provides a link between
the atmosphere and the Earth’s surface (Betts et al., 1996; Jiménez
et al., 2011; Tang et al., 2014; Zhang et al., 2012, 2015). It is also an
important indicator of hydrologic and heat variations under a
changing climate and anthropogenic interference (Brutsaert and
Parlange, 1998; Ohmura and Wild, 2002; Wang and Dickinson,
2012). Accurate quantification of ET is thus critical for understand-
ing the hydro-climatologic processes and the interactions of the
Earth system (Rodell and Famiglietti, 2002). However, the estima-
tion of large-scale ET from ground-based measurements alone
remains challenging due to the sparse network of point observa-
tions and the high spatial heterogeneity and temporal variability
of ET (Xu and Singh, 2005; Xue et al., 2013). To address this limita-
tion, a number of global ET products have been derived in recent
years, including remote sensing-based products (Su, 2002; Mu
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et al., 2007, 2011; Zhang et al., 2009, 2010; Miralles et al., 2011b;
Yang et al., 2013), reanalysis outputs (Simmons et al., 2006;
Onogi et al., 2007), land surface model (LSM) simulations (Rodell
et al., 2004a; Dirmeyer et al., 2006) and the estimates based on
empirical upscaling of in situ observations (Jung et al., 2009).The
available ET products have great potential for facilitating estima-
tions of hydrological and energy components and their intrinsic
hydro-climatic variability (Roderick and Farquhar, 2011). However,
large-scale evaluation among different ET products, which is a pre-
requisite for their use in global and regional hydrological and
energy budget studies, is constrained due to the lack of reference
observations (Xu and Chen, 2005).

The global network FLUXNET enables scientists to assess terres-
trial ET at different time scales across numerous sites of diverse
vegetation types (Running, 1998; Wang and Dickinson, 2012;
Tang et al., 2014). However, eddy-covariance (EC) ET measure-
ments need to be treated with caution with respect to regional
ET evaluations due to their relatively short period and sparse spa-
tial coverage (particularly in the Southern Hemisphere and the
tropics) as well as the lack of energy balance closure observed at
some EC sites. An alternative approach is to compare ET products
with the reference ET (ETwb) calculated from the terrestrial water
budget (observed precipitation P minus the sum of runoff Q and
terrestrial water storage change DS at the basin scale) for closed
basins (Swenson and Wahr, 2006; Sheffield et al., 2009). During
the past two decades, a number of studies have focused on ET eval-
uation in the conterminous United States (Rodell et al., 2004a;
Velpuri et al., 2013; Han et al., 2015), West Africa (Andam-
Akorful et al., 2014), Tibetan Plateau (Xue et al., 2013; Li et al.,
2014), and at the global scale (Ramillien et al., 2006; Rodell et al.,
2011; Mueller et al., 2011; Zhang et al., 2010, 2012; Zeng et al.,
2014) using the annual or monthly water balance. At the annual
scale, for example, Zhang et al. (2010) evaluated the multiyear
(1983–2006) averaged satellite-based global ET product
(ZHANG_E) against the ETwb derived from observed discharge and
gauge-based precipitation (GPCC) and found ZHANG_E was gener-
ally in agreement with ETwb in most global basins. Mueller et al.
(2011) showed that the intra-category spreads were similar in
seven global rivers when comparing the multiyear means (1989–
1995) of existing ET products from observation-based datasets,
reanalysis-based products, LSMs and Intergovernmental Panel on
Climate Change (IPCC) Fourth Assessment Report (AR4) simula-
tions. Moreover, Zhang et al. (2012) found the decadal trends
(1983–2006) in ETwb did not match those in evaporation estimated
from three simple diagnostic models, especially in 110 global wet
basins. In the previous studies, the water storage changes were
often neglected in ETwb calculations based on annual-scale water
balance. However, the water balance may not always close at an
annual scale when DS is assumed unchanged in many global river
basins due to the effect of snow thaw-melt (Dai et al., 2009;
Lettenmaier and Milly, 2009) and anthropogenic impacts such as
water diversion, reservoir regulation, agricultural irrigation
(Condon and Maxwell, 2014). Therefore, a more comprehensive
global reevaluation using the ETwb estimates (considering the
inter-annual variability of DS) as benchmark values is still impera-
tive (Wan et al., 2015).

With the launch of the Gravity Recovery and Climate Experi-
ment (GRACE) satellites in March 2002, the terrestrial water mass
variations (which contribute significantly to the observed water
storage change) could be reasonably inferred over sufficiently large
regions (Wahr et al., 2004; Landerer and Swenson, 2012). More-
over, the influences of natural processes (e.g. glaciers, snow and
frozen soil moisture) and anthropogenic interferences such as
reservoir operations and inter-basin water transfers could also be
reflected in GRACE-retrieved total water storage anomalies
(TWSA). However, the temporal coverage of GRACE data is rela-
tively short (2002 onward) for the validation of historical ET prod-
ucts. Recently, several attempts have been made to extend the
TWSA or basin-scale ETwb (considering the water storage change)
series to the period before 2002 using empirical or statistical meth-
ods (Zeng et al., 2014; Li et al., 2014; Long et al., 2014). Although
some uncertainties still exist in these methods (Sun, 2013), the cal-
culated ETwbis expected to be more accurate by considering the
inter-annual variability of DS for the evaluations of global ET prod-
ucts. The objectives of this study are to (1) evaluate nine ET prod-
ucts including three diagnostic products, three LSM simulations
and three reanalysis-based products against the reference ET
(ETwb) calculated from the bias-corrected water balance method
(considering the DS) at the annual scale for 35 global river basins,
and (2) discuss the potential influences of the forcing data on the
different ET products. The paper is organized as follows: data col-
lection and the methodology used in this study are described in
Section 2. In Section 3, the evaluation results of the nine ET prod-
ucts are presented for wet and dry basins located in different cli-
mate zones. The potential impacts of the forcing data on the ET
products are also discussed in this section. In the final section,
we summarize the results and provide several recommendations
for the improvements of the ET products.
2. Data and methods

2.1. Global ET products

Nine published global ET products (three diagnostic products,
three LSMs simulations and three reanalysis-based products) were
evaluated against ETwb in this study (Table 1). The diagnostic prod-
ucts include (1) ZHANG_E (1983–2006) derived from the Numeri-
cal Terradynamic Simulation Group (http://www.ntsg.umt.edu/
project/et), which was calculated using the modified Penman–
Monteith method driven by MODIS data, meteorological observa-
tions and satellite-based vegetation parameters (Zhang et al.,
2010); (2) JUNG_E (1981–2011), which integrated the point-wise
ET observations at FLUXNET sites with geospatial information
retrieved from the remote sensing and surface meteorological
observations in a machine-learning algorithm (Jung et al., 2010)
(https://www.bgc-jena.mpg.de/geodb/projects/Home.phs); and
(3) GLEAM_E (Global Land surface Evaporation: the Amsterdam
Methodology), which estimated three sources of land evaporation
separately through different land surface types, namely, (1) bare
soil, (2) short vegetation, and (3) vegetation with a tall canopy,
using a set of algorithms (e.g. the Priestley-Taylor approach was
applied for the calculation of potential evaporation) (Miralles
et al., 2011a, 2011b). Moreover, the ice and snow sublimation in
the pixels covered with snow was also estimated based on a sepa-
rate routine (Miralles et al., 2011a). Three LSM simulations:
GNOAH_E (from 1948 until present) was obtained from the Global
Land Data Assimilation System version 2 (GLDAS-2) with the
Catchment Noah scheme, and GCLM_E and GMOS_E, obtained from
GLDAS-1with the Community Land Model and the MOSAIC
schemes, respectively (Rodell et al., 2004b) (http://disc.sci.gsfc.na-
sa.gov/hydrology/data-holdings). Additionally, the reanalysis-
based products included (1) JRA55_E (1958 onward) from the
recently released Japanese 55-year reanalysis (JRA55) product
(Kobayashi et al., 2015) (http://jra.kishou.go.jp/JRA-55/index_en.
html); (2) ERAI_E (1979 onward) from the ERA-Interim global
atmospheric reanalysis dataset (Berrisford et al., 2011) (http://
apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/), and
(3) MERRA_E (1979 to present, Lucchesi, 2012) from the National
Aeronautics and Space Administration (NASA) Modern Era
Retrospective-analysis for Research and Applications (MERRA)
reanalysis dataset (http://disc.sci.gsfc.nasa.gov/mdisc/).
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Table 1
Overview of the ET datasets used in this study. The datasets were grouped into three categories based on Mueller et al. (2013), i.e. the diagnostic products, land surface model
(LSM) simulations and the reanalysis-based products.

Category ET products Scheme description Spatial resolution Temporal resolution Reference

Diagnostic ZHANG_E Modified Penman–Monteith 8 km Monthly Zhang et al. (2010, 2015)
JUNG_E Empirical (Model tree ensemble) 0.5� � 0.5� Monthly Jung et al. (2010)
GLEAM_E Priestley-Taylor 0.25� � 0.25� Daily Miralles et al. (2011a, 2011b)

Reanalysis JRA55_E SiB TL319L60 (�60 km) 3 hourly Kobayashi et al. (2015)
MERRA_E GEOS-5 Catchment LSM 1.0� � 1.0� Hourly/monthly Lucchesi (2012)
ERAI_E TESSEL 0.5� � 0.5� 3 hourly/daily Berrisford et al. (2011)

LSM GNOAH_E Penman–Monteith 1.0� � 1.0� 3 hourly Rui (2011)
GCLM_E Monin–Obukhov similarity theory 1.0� � 1.0� 3 hourly Rodell et al. (2004b)
GMOS_E Penman–Monteith 1.0� � 1.0� 3 hourly Rodell et al. (2004b)
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2.2. Global precipitation, streamflow and GRACE data

Global monthly precipitation used for the water balance calcu-
lation was obtained from the most recent Global Precipitation Cli-
matology Centre (GPCC version 6, 1901 through near present)
dataset from the Earth System Research Laboratory of the National
Oceanic and Atmospheric Administration (NOAA) (http://www.es-
rl.noaa.gov/psd/data/gridded/data.gpcc.html), which comprises
gridded datasets (spatial resolution: 0.5�) interpolated based on
quality-controlled data from 67,200 stations around the world
(Beck et al., 2005). Moreover, the CPC Unified gauge-based daily
precipitation at 0.5� resolution (Chen et al., 2008, 1979–2005,
https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-
based-analysis-global-daily-precipitation) and the Climate Research
Unit (CRU) TS v3.23 precipitation at 0.5� resolution (Harris et al.,
2014, 1901–2014, https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23/)
were also obtained for quantifying the uncertainties in the ETwb

calculation induced by different observation-based precipitation
products. Monthly streamflow datasets and the drainage basin
polygons were mainly collected from the Global Runoff Data
Centre (GRDC, http://grdc.bafg.de/), which archives data from
almost 9000 gauging stations around the world (Harding et al.,
2014). A total of 35 river basins with drainage areas exceeding
40,000 km2 (to minimize the uncertainties in the GRACE data for
relatively smaller basins) and with the best available data during
1983–2006 were adopted in this study (Fig. 1 and Table 2).
Moreover, the streamflow series for the Songhua River, Yellow
River, Yangtze River and Pearl River were obtained from the
National Hydrology Almanac of China, and the total observed
system inflows to the Murray and Lower Darling system
(Murray–Darling basin) were collected from the Murray–Darling
Basin Authority of Australia. The basins were categorized into
energy-limited (wet) and water-limited (dry) basins (Fig. 1) using
the aridity index (AI ¼ Ep=P, where Ep and P are annual basin-
averaged potential ET and precipitation, respectively) (Ukkola
and Prentice, 2013). The annual Ep and P for the 35 basins during
the period 1983–2006 were extracted from the CRU TS v3.23 and
GPCC datasets, respectively. Basins with AI > 1:5 were classified
as ‘‘dry” and those with AI 6 1:5 were classified as ‘‘wet” (Zhang
et al., 2012).

The GRACE observations are currently the unique dataset for
retrieving the terrestrial water storage change and its usefulness
has been widely demonstrated in hydrological applications
(Rodell and Famiglietti, 2002; Landerer and Swenson, 2012; Long
et al., 2014) although its spatial resolution is relatively coarse
(around a few hundred kilometers). The three latest global terres-
trial water storage anomaly (TWSA and RL05) and water storage
change datasets (all available on the GRACE Tellus website
http://grace.jpl.nasa.gov/) are processed at the Center for Space
Research at the University of Texas (CSR), the Jet Propulsion Labo-
ratory (JPL) and the GeoForschungsZentrum (GFZ). To minimize
the uncertainties of the DS estimates, the GRACE products from
the three processing centers were initially averaged and the global
DS series were then extracted for the period 2003–2013. Moreover,
a glacial isostatic adjustment correction and a destriping filter
were also applied to the data to reduce errors (Wahr et al., 2004).

2.3. Temperature, precipitation and radiation forcing datasets

To investigate the influences of the forcing data on the ET prod-
ucts, the temperature, precipitation and radiation forcing data
were directly extracted from the inputs or outputs of the three land
surface models and three reanalysis datasets (Table 3). For the
diagnostic products, the temperature and radiation forcing data-
sets of ZHANG_E were downloaded from the National Centers for
Environmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR, 1948 onward, 2.5� � 2.5�, http://www.cdc.
noaa.gov/cdc/reanalysis/) (Kistler et al., 2001) and NASAWorld Cli-
mate Research Program/Global Energy and Water-Cycle Experi-
ment (WCRP/GEWEX) Surface Radiation Budget (SRB) Release 3.0
dataset (1.0� � 1.0�, 1983–2007) (Sheffield et al., 2006). The tem-
perature and precipitation forcing data of JUNG_E were obtained
from the gauge-based CUR-PIK dataset (0.5� � 0.5�, 1901–2002,
Mitchell and Jones, 2005) and GPCC. Moreover, the temperature,
precipitation and radiation forcing data of GLEAM_E were
extracted from the ISCCP + AIRS dataset (Rossow and Dueñas,
2004), CPC Unified precipitation and ERA Interim, respectively.

All gridded datasets (including ET, precipitation products,
GRACE data and other forcing datasets) were uniformly aggregated
to a common spatial (0.5� � 0.5�) and temporal resolution
(monthly) in this study, to make inter-comparison possible. The
annual evaluation of ET products was limited to 1983–2006 while
the comparisons of forcing temperature, precipitation and radia-
tion were limited to 1983–2002, 1983–2005 and 1983–2006,
respectively, in order to ensure the evaluations were conducted
over a comparable period for all corresponding datasets with var-
ious time lengths. The datasets were finally extracted for the 35
river basins using the basin boundaries obtained from the GRDC.

2.4. Methods

The hydrological water balance method was applied to estimate
the reference ET (ETwb) at the basin scale:

ETwb ¼ P � R� DS; ð1Þ
where P and R are the basin-wide totals of precipitation (mm) and
the net stream flow at the basin outlet (mm), respectively, DS is the
change in terrestrial water storage including the surface, subsur-
face, and ground water changes (mm) at a monthly or annual scale.
The method is simple and sound in theory, and warrants accurate
ET estimates provided the other water components can be
reasonably measured (Wan et al., 2015).
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Fig. 1. Global distribution of the 35 river basins used in this study. The aridity index (AI) and the Köppen climate classes for each basin are shown in the upper and lower
panel, respectively.

Table 2
Descriptions for the 35 global river basins used in this study.

No. River name Station Drainage area (km2) No. River name Station Drainage area (km2)

01 Mississippi Vicksburg, MS 2,964,255 19 Amazonas Sao Paulo De Olivenca 990,781
02 Mackenzie Arctic Red River 1,660,000 20 Rio Paraguay Porto Murtinho (Fb/dnos) 474,500
03 Columbia The Dalles, OR 613,830 21 Xingu Altamira 446,203
04 Congo Kinshasa 3,475,000 22 Rio Tapajos Fortaleza 363,000
05 Colorado (Pacific Ocean) Lees Ferry, Ariz 289,562 23 Rio Purus Aruma-Jusante 359,853
06 Winnipeg Slave Falls 126,000 24 Japura Vila Bittencourt 197,136
07 Ob Salekhard 2,949,998 25 Rio_Jurua Gaviao 162,000
08 Yenisey Igarka 2,440,000 26 Rio_Aripuana Prainha Velha 131,000
09 Lena Kyusyur (Kusur) 2,430,000 27 Rio_Branco Caracarai 124,980
10 Volga Volgograd Power Plant 1,360,000 28 Red_River (South) Index 124,398
11 Rhine Lobith 160,800 29 Red_River (of the North) Grand Forks, N.D. 77,959
12 Elbe Neu-Darchau 131,950 30 Susquehanna Harrisburg, PA. 62,419
13 Danube Bratislava 131,331 31 Yellow River Huayuankou 730,036
14 Nemunas-Neman Smalininkai 81,200 32 Yangtze River Hankou 1,488,036
15 Vuoski Tainionkoski 61,061 33 Songhua River Harbin 391,000
16 Kemijoki Isolaara 50,686 34 Murray-Darling Goolwa 1,059,003
17 Glama Langnes 40,540 35 Pearl River Wuzhou 327,006
18 Rio Madeira Manicore 150,000
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At the annual scale, DS is usually deemed negligible in many
studies when one calculates the water balance ET (observed P
minus Q at the basin scale) in unregulated basins, which assumes
no water is gained or lost via deep groundwater or through
inter-basin transfers, and precipitation (evaporation) is the only
source (loss) of water in the basin (Hobbins et al., 2001; Zhang
et al., 2012). However, the annual water balance may not close
when DS is neglected under changing climate and anthropogenic
interferences such as water diversion, reservoir regulation, and
agricultural irrigation. In this study, we defined P � R as the biased
ET (ETbiased) relative to the reference ET (ETwb).The ETbiased can be
corrected based on ETwb measured during the same period at the
monthly scale through a two-step bias correction method (BCM,
Li et al., 2014). Firstly, at each basin, the monthly ETwb and



Table 3
List of the temperature, precipitation and radiation forcing datasets in different ET
products.

ET products Temperature Precipitation Radiation

Zhang_E NCEP/NCAR — WCRP GEWEX SRB v3.0
Jung_E CRU-PIK GPCC —
GLEAM_E ISCCP + AIRS CPC-Unified ERA Interim
GNOAH_E Princeton forcing
GCLM_E GLDAS-1 forcing (e.g. ADAS, GEOS,GDAS, ECMWF)
GMOS_E GLDAS-1 forcing (e.g. ADAS, GEOS,GDAS, ECMWF)
JRA55_E JRA forcing (e.g. ERA-40, JMA dataset, SYNOP and GMS,

MTSAT data)
ERAI_E WATCH forcing data
MERRA_E MERRA-Land forcing data
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ETbiased series over the period 2003–2012 were fitted separately
using a gamma distribution (Thom, 1958). This has been shown
as an effective method for modeling the probability distribution
of evapotranspiration (Bouraoui et al., 1999).

f ðxja; bÞ ¼ xa�1 1
baCðaÞ e

�x
b; x P 0; a; b > 0 ð2Þ

Here, a and b are the shape and scale parameters, respectively,
of gamma distribution. The value of the monthly ETbiased series
(2003–2012) can be corrected based on the inverse function F�1

of the gamma cumulative distribution function (CDF) F for the ref-
erence ET by matching the cumulative probabilities between two
CDFs (Fig. 2). This procedure can be mathematically expressed as,

ETcorrectedðmÞ ¼ F�1 FðETbiasedðmÞjabiased; bbiasedÞjareference;breferenceð Þ
ð3Þ

ETcorrectedðmÞ and ETbiasedðmÞ represent the monthly corrected
and biased ET, respectively. abiased; bbiased and areference, breference are
the parameters of the two gamma distributions for the monthly
ETbiased and ETwb, respectively. The second step in the bias correc-
tion is to eliminate the annual bias using the ratio of the annual
ETwb to the annual ETcorrected obtained in the first step using the fol-
lowing equation:

ET finalðmÞ ¼ ETbiasedðaÞ
ETcorrectedðaÞ � ETcorrectedðmÞ ð4Þ

where ET finalðmÞ is the final monthly ET after bias correction,
ETcorrectedðaÞ and ETcorrectedðmÞ represent the annual and monthly
Fig. 2. Schematic diagram for the first step of the bias correction. The monthly
reference ET (P � R� DS), biased ET (P � R) and their fittings are exhibited in red
and blue colors, respectively. x0 and x00 showed the monthly ET values before and
after the bias correction.
corrected ET, respectively, obtained from the first step, and
ETbiasedðaÞ is the annual biased ET (P � R). This method was easily
applied to correct the monthly ETbiased series for each basin during
the period 1983–2006 when the GRACE data were not available.
The ET finalðmÞ series were calculated for all selected basins over
the period 1983–2006 and were summed to the annual scale as
the reference ET (ETwb) for the global ET evaluation.

The Köppen climate classification system (Köppen, 1936),
developed using an empirical relationship between climate and
natural vegetation and which provides an efficient means for
describing the climatic conditions defined only by temperature
and precipitation, was adopted for grouping the basins into differ-
ent climatic zones in this study. This classification system was
recently updated by Chen and Chen (2013) using the newly global
gridded monthly temperature and precipitation datasets and the
classification results are freely available on the following website:
http://hanschen.org/koppen/#home. In order to simplify the num-
ber of climates, only four major climate types, namely, tropical cli-
mates, mild temperate climates, dry climates and snowy climates,
were used in this study. The map of the Köppen classification
(long-term average climates from 1901 to 2010) was downloaded
and overlapped on the selected global basins (Fig. 1). The climate
type for a certain basin was then determined if one type was dom-
inant in the basin (approximately more than half of the basin area
was covered by this climate type). In addition, three evaluation cri-
teria: root mean square error (RMSE), Pearson correlation coeffi-
cient (CORR) and the Taylor skill score (TaylorS) (Taylor, 2001)
were used to evaluate the ET products against the reference ET
(ETwb). They are defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

ðAi � BiÞ2=N
vuut ð5Þ

CORR ¼
PN

i¼1ðAi � AÞðBi � BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðAi � AÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðBi � BÞ2

q ð6Þ

TaylorS ¼ 4� ð1þ CORRÞ
ðr̂þ 1=r̂Þ2 � ð1þ CORR0Þ

ð7Þ

where N indicates the total number of years, and Ai and Bi represent
the ET product and ETwb, respectively. Moreover, CORR0 represents
the maximum theoretical correlation (CORR0 ¼ 1:0 in this study),
and r̂ is the standard deviation (re) of a certain ET product normal-
ized by the standard deviation (rr) of the ETwb (re=rr). The higher
the Taylor skill score is (�1), the better the ET product performed
(Taylor, 2001).
3. Results and discussion

3.1. Estimation of annual ETwb during 1983–2006 using bias-corrected
P � R

We first show the 10-year (2003–2012) means of the basin-
averaged water storage change (DS) in the 35 global basins
(Fig. 3). The multi-year mean values are close to 0 in almost all
basins, which confirms the assumption that the DS can be
neglected over a long period. However, the standard deviations
of annual DS in 22 out of 35 basins exceed 50 mm/yr. This means
that the information contained in the inter-annual variability of
DS, caused by both climate change and anthropogenic interfer-
ences, can also be neglected when the annual ET is calculated using
the annual P minus Q at the basin scale. By virtue of the two-step
bias correction method, the annual changes in DS could be consid-
ered indirectly and thus the ETwb estimations are expected to be

http://hanschen.org/koppen/#home


Fig. 3. Mean annual water storage changes (DS, bold line) over the period 2003–2012 for the 35 global basins. The error bar showed the standard deviation of annual DS for
each basin.
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Fig. 4. Comparison of the original P � R (ETbiased) and the bias-corrected P � R (ETwb) for the four basins located in different Köppen climates. The multiyear mean and
standard deviation (SDs) are also shown for each basin.
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improved (Zeng and Cai, 2016). In Fig. 4, the original P � R (ETbiased)
and bias-correct P � R (ETwb) in four basins located in different
Köppen climate zones are compared. Relatively higher biases were
corrected in Rio Madeira compared with Mackenzie River, Pearl
River and Murray-Darling River. Similar results were obtained for
basins in each climate zone (not shown). For example, relatively
larger ETbiased errors were corrected in the tropical rivers (e.g. Ama-
zonas, Xingu and Rio_Jurua), while in the rivers in dry climates (e.g.
Colorado River, Columbia River and Yellow River), the annual
ETbiased series remained almost uncorrected.
3.2. Evaluation of ET products in 35 global river basins

After calculating the annual reference ET (ETwb) through the
bias-corrected P � R for all 35 basins, the ET products (three diag-
nostic products, three LSMs simulations and three reanalysis-based
products) were then be evaluated against ETwb during the period
1983–2006. The results are first shown based on the Taylor skill
scores (TaylorS) in Fig. 5. The performances exhibit large overall
spread between the different products and basins, for example,
the TaylorS ranges from 0.2 to 1 for the Murray-Darling River



Fig. 5. The Taylor skill scores for different ET products in the 35 global river basins. The letter before the name of certain ET product shows the ET category (A-Diagnostic,
B-LSMs and C-Reanalysis).
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and from 0 to 0.8 for Congo River, which reveals considerable
uncertainties between them (Dirmeyer et al., 2006). Similar to
the results from Mueller et al. (2011) and Jiménez et al. (2011),
based on a global analysis using satellite-based products, reanaly-
sis, offline models and IPCC AR4 simulations, no obvious discrepan-
cies were found between the three dataset categories. However,
some individual ET products were found to perform relatively bet-
ter than others in different categories and river basins (Fig. 5). For
example, GLEAM_E showed relatively higher multi-basin mean for
TaylorS (0.35 ± 0.23) in the diagnostic products compared with
ZHANG_E (0.22 ± 0.10) and JUNG_E (0.08 ± 0.09) relative to the
ETwb during the period 1983–2006. Moreover, GCLM_E
(0.52 ± 0.17) performed better than GNOAH_E (0.30 ± 0.22) and
GMOS_E (0.46 ± 0.17) in the three LSM simulations while in the
reanalysis-based products, the mean TaylorS in MERRA_E
(0.49 ± 0.19) was higher than that in ERAI_E (0.30 ± 0.22) and
JRA55_E (0.21 ± 0.18) in most global river basins such as the Congo
River, Murray-Darling River and Ob River.

Figs. 6 and 7 display the annual means and the standard devia-
tions (SDs) of the nine ET products against ETwb during the period
1983–2006 for the wet and dry basins, respectively. Overall, almost
all ET products reasonably estimated the annual means of ETwb

except for MERRA_E with relatively higher RMSEs. The results are
consistent with some previous comparison studies (Zhang et al.,
2010; Mueller et al., 2011; Jiménez et al., 2011). Moreover, the
performances of the ET products with respect to the annual mean
values of ETwb were better (especially in JUNG_E), with higher
multi-basin averaged CORR and lower RMSE in the dry rather than
the wet basins (Figs. 6 and 8). However, all ET products underesti-
mated the SDs except for GCLM_E, GMOS_E and MERRA_E, espe-
cially in the energy-limited wet basins. Comparing the three
categories, the diagnostic products obviously underestimated the
SDs of ETwb in all basins, especially for JUNG_E and ZHANG_E. The
inter-annual variability of ET is strongly controlled by the water
and energy balance components such as precipitation, solar radia-
tion, air temperature, wind speed, water storage changes as well
as land surface variables (Ukkola and Prentice, 2013). The underes-
timation of inter-annual variations in ZHANG_E and JUNG_Emay to
some extent be attributed to the neglect of precipitation (which
explains 66–88% of ET variability in wet basins compared with
96% in dry basins, Ukkola and Prentice, 2013) and solar radiation
(e.g. the impact of the abrupt decrease in solar radiation from
1991–1992 due to the eruption of the Pinatubo volcano on the
inter-annual variability of ET cannot be reflected) in their estima-
tions (Mueller et al., 2011; Zhang et al., 2012; Zeng et al., 2014).
Moreover, Zeng and Cai (2016) indicated that ET estimation with-
out DS could not capture the ET variance at all for 25 arid basins
and would underestimate ET inter-annual variance in humid cli-
mates. This may be another reason for the underestimation of the
SDs in the three diagnostic products. The performances of the
LSM simulations and reanalysis-based products in estimating the
SDs of ET related mainly to whether the water and energy balances
were reasonable considered, together with model structural limita-
tions as well as the accuracy of the forcing datasets. In the
reanalysis-based products, MERRA_E performed relatively well
although it had substantial problems in describing the long-term
change in ET (Su et al., 2015). The relatively better estimates (and
further the TaylorS) of the inter-annual variability in GCLM_E and
GMOS_E may be an illusion because of the obviously abnormal
small values during the period 1996–1997 (Fig. 10; similar results
were found in Mueller et al., 2013), which originated from changes
in the GLDAS 1 forcing data (Matt Rodell, personal communication).



Fig. 6. Comparison of mean annual ET estimated from different products and those from ETwb for the wet and dry basins. The multi-basin averaged RMSE is also shown for
each ET product.

Fig. 7. Comparison of mean annual standard deviations (SDs) estimated from different ET products and those from ETwb for the wet and dry basins. The multi-basin mean SD
and Taylor skill score (TaylorS) are also exhibited for each ET product.
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The linear trends of annual ET from the different products and
basins were also evaluated against those from ETwb in the wet
and dry basins during the period 1983–2006 (Fig. 9). Overall, the
ET products did not adequately explain the trends in annual ETwb

in the wet basins (especially GCLM_E and MERRA_E), which pro-
vides significant challenges for the diagnostic products, LSM simu-
lations and the reanalysis-based products under the wet
conditions. The performances of the ET products were relatively
better in the dry basins compared with wet basins (especially for
JRA55_E and ERAI_E) with respect to estimating the trends of
annual ETwb. The results are in line with the estimates given by
Zhang et al. (2012) based on ET calculated from three satellite-
based energy balance methods.
3.3. Evaluation of ET products in river basins located in different
climate zones

The ET products were also compared in basins located in differ-
ent Köppen climatic zones (Fig. 10).The RMSEs were generally
higher in the tropical basins for all ET products (Mean AI = 0.62,
e.g. Amazonas) relative to the dry (Mean AI = 2.85), snowy (Mean
AI = 1.11) and mild temperate (Mean AI = 1.06) climates. This can
be attributed to the sparseness of in-situ measurements (Wang
and Dickinson, 2012) and the complexity of ET variation in tropical
basins (e.g. the irregular seasonal cycles of ET under complicated
vegetation–atmosphere interactions and the transitions between
water and energy limitations in different seasons) (Hasler and



Fig. 8. Box plots for the correlation coefficients between different ET products and ETwb for the wet and dry basins.

Fig. 9. Comparison of the annual trends in different ET products and those in ETwb for the wet and dry basins.
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Avissar, 2007; da Rocha et al., 2009; Rodell et al., 2011; Sahoo et al.,
2011). The RMSEs of the annual ET were relatively larger (mainly
overestimations) in the reanalysis-based products (especially for
MERRA_E in the tropical and snowy basins), although many dis-
crepancies remain among the individual ET products. In the LSM
simulations, GMOS_E overestimated the annual mean ET in the
dry, mild temperate and snowy basins, while GCLM_E underesti-
mated the mean ET in all climate zones (data not shown). The diag-
nostic products performed relatively better than the other
categories in the dry and mild temperate basins but underesti-
mated the mean ET in the tropical basins. In term of the standard
deviation, underestimations were found in GNOAH_E, JRA55_E,
ERAI_E and the three diagnostic ET products in all four climate
zones. Both GCLM_E and GMOS_E overestimated the SDs in the
dry, mild temperate and snowy basins (Fig. 10). In addition, MER-
RA_E underestimated the SDs in the mild temperate and snowy
basins but overestimated SDs in the tropical and dry basins. For
example, the inter-annual variability of ET were reasonably esti-
mated in the Murray-Darling River (dry climate) but were underes-
timated by most ET products in the Mackenzie River, Rio Madeira
and Pearl River (Fig. 11).

3.4. Potential influences of the forcing data and other factors on the ET
products

Annual ET estimations from different products might be influ-
enced by various sources, for example, the input meteorological
data, land cover, as well as model physics (Xue et al., 2013). Here,
we mainly discuss the impacts of different meteorological forcing
data on the ET products used in the 35 global river basins
(Fig. 12) in terms of precipitation, temperature, and net radiation
flux. Three datasets, namely, CRU-PIK temperature, GPCC



Fig. 10. Comparison of the nine ET products with respect to simulating the RMSEs and SDs for basins located in different Köppen climates.
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Fig. 11. Annual performances of the nine ET products for four basins located in different Köppen climate zones.
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precipitation and WCRP/GEWEX SRB 3.0 radiation, which are the
commonly adopted datasets for global evaluations of remote sens-
ing retrievals and LSM simulations (Dee et al., 2011; Xia et al.,
2015), were used in this study as baseline data to make the com-
parison of multiple forcing datasets feasible. The temperature data
in Princeton forcing (GNOAH_E), GLDAS-1 forcing (GCLM_E and
GMOS_E), JRA forcing (JRA55_E), WATCH forcing (ERAI_E) and
MERRA-Land forcing data (MERRA_E) closely approximated those
in CRU-PIK (JUNG_E) (Fig. 12 and Table 3).The NCEP/NCAR temper-
ature (ZHANG_E) was slightly negatively biased (especially in
warm regions) while ISCCP + AIRS temperature (GLEAM_E) was
positively biased (especially in cold regions) compared to CRU-
PIK. Relative to GPCC, the precipitation inputs for GLEAM_E (CPC
Unified), the three LSM simulations and the three reanalysis-
based products (precipitation in JRA55_E and ERAI_E was overesti-
mated compared with GPCC precipitation in the dry basins) were



Fig. 12. Comparison of the basin-averaged forcing data (annual mean temperature, annual precipitation and net radiation) for different ET products. The linear slope and R2

for each product are also exhibited after the name of ET product in the legend.
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all underestimated, especially for basins under wet conditions. The
net radiation forcing in the bias-corrected WCRP/GEWEX SRB
(Sheffield et al., 2006) in GLDAS (GCLM_E and GMOS_E), Princeton
forcing (GNOAH_E) and WATCH forcing (GLEAM_E and ERAI_E)
was close to that in WCRP/GEWEX SRB 3.0, except for slightly
underestimations in some basins. Additionally, some overestima-
tions of net radiation were found in JRA forcing (JRA55_E) and
MERRA-Land forcing (MERRA_E) compared to WCRP/GEWEX SRB
net radiation.

The relatively better performances of JUNG_E and GNOAH_E
with respect to estimating the annual mean ET were closely related
to their higher quality forcing datasets (Fig. 12). In the tropical
basins, the overestimated net radiation could be the main reason
for the overestimation of JRA55_E (although the precipitation forc-
ing was underestimated) while the underestimation of tempera-
ture (NCEP/NCAR) may have partly contributed to the negative-
biases in annual ZHANG_E with respect to ETwb. Moreover, the
slight overestimations of mean annual ET in JRA55_E and ERAI_E
may be attributed to the positively biased precipitation and net
radiation in most basins under the dry, mild temperate and snow
climates (Xue et al., 2013; Li et al., 2014). The uncertainties in pre-
cipitation forcing could also influence the inter-annual variability
and trend estimates of different ET products (Ukkola and
Prentice, 2013). The remotely sensed radiation datasets, which
are a key inputs in most ET products (except for JUNG_E), also have
large differences (especially in energy-limited basins) and may
hinder the attribution of ET (e.g. global and regional ET trends over
the past several decades) to solar radiation changes (Zhang et al.,
2012; Ukkola and Prentice, 2013). Besides the meteorological
inputs, other forcing data such as the limited EC data (JUNG_E)
and vegetation parameters (Normalized Difference Vegetation
Index, NDVI and the Fraction of Photosynthetically Active Radia-
tion, FPAR) may also influence the ET means, inter-annual variabil-
ity and trends estimated using different products. For example, the
Model Tree Ensemble (MTE) method in JUNG_E was trained using
only data from EC sites with an average duration of 2 years (Jung
et al., 2010; Zeng et al., 2014), and it thus significantly underesti-
mated the standard deviations (and further the TaylorS) relative
to other ET products. The energy imbalance of some EC measure-
ments as training samples in JUNG_E and ZHANG_E is another
source of uncertainty for ET estimation (Jung et al., 2010; Zhang
et al., 2010). In addition, the Advanced Very High Resolution
Radiometer (AVHRR) Global Inventory Modeling and Mapping
Studies (GIMMS) NDVI applied for constructing the harmonized
long-term global FPAR records in JUNG_E and for determining
the bio-specific canopy conductance in ZHANG, is also linked to
corresponding uncertainties in ET estimations (Jung et al., 2010;
Ferguson et al., 2010). For instance, the spatial resolution (8 km)
of AVHRR GIMMS NDVI is much larger than the tower measure-
ment footprint (typically 1 km in size) which may not adequately
capture the sub-grid scale vegetation signals in areas of heteroge-
neous land cover and complex topography (Zhang et al., 2010).

Model structural and physical limitations (i.e., how the impor-
tant components were described/linked in the water and energy
balance, such as water storage changes, soil moisture stress, and
radiations) may also be responsible for the discrepancies (means,
inter-annual variability and trends) in different ET products. The
simple diagnostic products can provide ET means that are similar
to estimates from more complex LSM simulations and reanalysis-
based datasets (Mueller et al., 2011), although the water budget
is not considered. However, neglecting the water storage changes
(in diagnostic ET products) and solar radiation (in JUNG_E)
would deteriorate the estimated inter-annual variability of ET
(Jung et al., 2010; Zeng and Cai, 2016). Another great challenge
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in satellite-based ET over dry areas is the parameterization of soil
moisture stress, which has been considered in Mu et al. (2011)
through the use of air humidity as a proxy for soil wetness, but this
has not been included in ZHANG_E. Moreover, vegetation pro-
cesses, such as foliage cover (Miralles et al., 2010), stomatal con-
ductance variations with varied atmospheric CO2 concentrations
(Betts et al., 2007), as well as forest rainfall interception loss, are
also found to influence the ET estimations (Ukkola and Prentice,
2013). Higher evaporation rates from wet canopies would be
induced, given the conditions of sufficient water supply and low
aerodynamic resistance unrestrained by stomatal control
(Miralles et al., 2011b). In the diagnostic products, the process of
canopy interception loss is considered in GLEAM_E while not
included in the algorithm of ZHANG_E, although the process is par-
ticularly important for the tropical basins (Zeng et al., 2014). The
comparisons and evaluations regarding the influences of model
physics on ET estimation between different land surface models
and reanalysis systems are difficult and currently beyond the scope
of this study.
3.5. Uncertainties

The main source of uncertainties in calculating ETwb from the
water balance method is the quality of the precipitation data.
Errors in precipitation can be very large in regions (e.g. tropical
regions) where the network of rain gauges is sparse (Oki and
Kanae, 2006). We calculated the bias-corrected P minus Q based
on three observation-based precipitation datasets (Fig. 13), namely
GPCC, CPC Unified and CRU precipitation, and found there are par-
ticular uncertainties in different basins. The uncertainties in ETwb

estimates due to different precipitation inputs are obviously lower
than those among different ET products except for the basins under
tropical and wet conditions such as Ria_Jurua and Japura. More-
over, the quality of the GPCC precipitation over those sparsely
gauged areas (e.g. tropical regions) may vary with a change in rain
gauge density, and precipitation in snowy regions may be underes-
timated due to the effects of snow under-catch (Kauffeldt et al.,
2013). The uncertainties in precipitation input may thus challenge
the ET estimations and evaluations when using the water balance
method in tropical and snowy basins (Fekete et al., 2004; Jiménez
et al., 2011). It is found that the multiyear averaged ETwb calculated
from GPCC was relatively closer to the ET products than that calcu-
lated from CPC Unified and CRU precipitation (Fig. 13). Further,
GPCC is currently considered a homogeneous observation-based
precipitation dataset for the global analysis of precipitation vari-
ability and trends as well as the verification of satellite-based prod-
ucts, LSM simulations and reanalysis-based products (Becker et al.,
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Fig. 13. Uncertainty of the bias-corrected P � Q forced by different observation-based pre
shade shows the uncertainty (minimum–maximum) among different ET products.
2013), and has widely been applied in related water balance stud-
ies (Ramillien et al., 2006; Jung et al., 2010; Sahoo et al., 2011; Pan
et al., 2012; Zhang et al., 2010; Ukkola and Prentice, 2013; Mueller
et al., 2013). Moreover, the streamflow data are measured directly
and are thus considered the most reliable input. However, the
observed streamflow in global large rivers may be affected due to
certain human activities such as inter-basin water diversion, reser-
voir regulation, and agricultural irrigation. By including the GRACE
water storage changes in the water balance calculation at the
annual scale, the influences of human activities on streamflow
can be reasonably considered. A two-step bias correction method,
based on probability distribution mapping, has been adopted to
close the annual water budget by empirically considering the
impacts of water storage changes. This method may also inherit
some uncertainties, for example, generally only the systematic
errors induced by the inter-annual variability of water storage
changes can be corrected. However, the correction was assumed
not only effective to remove the biases of P minus Q (especially
in the tropical basins), but also gave us more confidence for further
analysis of the temporal variations and trends of reference ET
(ETwb) under the changing climate and anthropogenic interferences
(Li et al., 2014).
4. Summary and recommendations

This study presents a worldwide evaluation of nine ET products
(three diagnostic products, three LSM simulations and three
reanalysis-based products) in 35 global river basins during the per-
iod from 1983–2006. The study was conducted by comparing these
products against the annual reference ET (ETwb) calculated using a
bias-corrected water balance method, which incorporates
observed hydrological cycle components as inputs. The results
show that overall, there was no obvious intra-category differences
in the TaylorS of annual ET estimated from the nine products
between different basins, but some individual products performed
relatively better than others such as GLEAM_E in the diagnostic
products, GCLM_E in the LSM simulations, and MERRA_E in the
reanalysis-based products. Almost all ET products (except for MER-
RA_E) reasonably estimated the annual means (especially in the
dry basins) but underestimated the inter-annual variability (except
for GCLM_E, GMOS_E and MERRA_E) and could not adequately
explain the trends (e.g. GCLM_E and MERRA_E) of ETwb (especially
in the energy-limited wet basins). Although many discrepancies
remain among the nine ET products, the RMSEs of the ET estimates
were generally larger in the tropical basins due to the sparse obser-
vations and complicated ET variations in tropical regions and in the
reanalysis-based products (especially for MERRA_E in the tropical
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and snowy basins) compared with the other climate zones and ET
products. The different performances (means, inter-annual vari-
ability and trends) among the ET products in the 35 basins may
to some extent be attributed to the discrepancies in the forcing
datasets (e.g. temperature, precipitation, radiation, flux data and
NDVI) . Moreover, the well-performing standard deviation esti-
mates in GCLM_E and GMOS_E may be illusive due to the changes
in the GLDAS 1 forcing dataset (Mueller et al., 2013).

Regarding the superiorities and shortcomings among the differ-
ent ET products, it is thus recommended that the optimal product
should be adopted based on the requirements of specific applica-
tions (e.g. trend analysis and inter-annual variability) for any given
basin. Improvements are needed in global forcing datasets, e.g.
with respect to meteorological forcing, streamflow, solar radiation,
soil moisture stress, water storage changes and NDVI data, to
enhance the accuracy of ET estimations (Zhang et al., 2012). Addi-
tionally, ‘‘ground truth” observations should be collected to con-
strain the model estimates of ET and to validate the
performances of different ET products using direct (eddy covari-
ance) or indirect (water balance) methods (Mueller et al., 2011).
Moreover, reasonable considerations of the components of water
and energy balance (e.g. precipitation, soil moisture stress, and
DS) and the vegetation processes (forest rainfall interception loss
and stomatal conductance variations) in the model structures will
undoubtedly improve the estimation of global ET in the future
(Miralles et al., 2011b; Zhang et al., 2012; Zeng and Cai, 2016).
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