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Linear spaces are investigated using the general theory of “Rings of Geometries 
I.” By detining geometries and ring structures in several different ways, formulae for 
linear spaces embedded in finite projective and affine planes are obtained. Several 
“fundamental theorems” of counting in finite projective planes are proved which 
show why configurations with at least three points per line and at least three lines 
through every point are important. These theorems are illustrated by finding the 
formulae for the number of k-arcs in a projective plane of order q for all k < 8 and 
also by finding a formula for the number of blocking sets. A quick proof that a 
projective plane of order 6 does not exist follows from the formula for the number 
of ?-arcs in such a plane. Ic? 1988 Academic Press, Inc. 

INTRODUCTION 

This paper is a continuation of “Rings of Geometries I” and needs to be 
read with a knowledge of the theory and notation introduced in that paper 
[lo]. Section numbers starting with 1 or 2 refer to that paper. We are 
interested here in the combinatorial theory of finite projective and affine 
planes. This involves setting up various closed sets of “geometries” (see 
Definitions 1.4 and 2.1) and investigating the inclusion numbers associated 
with these. We noted after Theorem 2.6 that the investigation of inclusion 
numbers is equivalent to the investigation of the coefficients of the natural 
ring of the set of geometries. While following this course of action, we shall 
also see that in the case of subconligurations of projective planes there is at 
least one other “geometrically defined” ring which is of use in the 
calculations-the coefficients of this ring are easier to calculate than those 
of the natural ring and are related by formulae to the latter. Closely related 
to the definition of these new rings is the idea of imposing partial orders 
other than the “natural one” (see Notation 1.7). Of course, these new 
partial orders are “geometrically defined.” 

In Section 3 we define the relevant classes of geometries associated with 
the types of subconfigurations of projective planes that we intend to 

* Present address: Department of Mathematics, University of Canterbury, Private Bag, 
Christchurch 1, New Zealand. 

26 
OO97-3165/88 83.00 
Copyright $’ 1988 by Academic Press. Inc. 
All rights of reproductmn in any form reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82017907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


RINGS OF GEOMETRIES II 27 

consider and then we prove the basic theorems about calculating the 
coefficients of the rings. Several of these theorems are given the title 
“fundamental” because they appear to be a fairly substantial advance in the 
understanding of the combinatorics of finite planes. We give two versions 
of the “fundamental theorem” which correspond to two different definitions 
of configuration-one is based on points as elements and the other has 
both points and lines as elements. Section 4 contains explicit calculations 
based on the results of Section 3. 

3. LINEAR SPACES AND GEOMETRIES 

3.1 DEFINITION (Projective planes). A projective plane may be thought 
of as a combinatorial structure (S, a) (see Example 1.8) where S is a set of 
points, and u is a mapping from 2” to (0, 1) such that 

(a) A~S,IAI~2~A*=l;A~B,B”=l~A”=l, 

(b) A~S,B~S,A”=B”=l,~AnB~>21->(AuB)“=l, 

(c) AcS,BcS,A”=B”=l*there exist C&S, D&S, such that 
CzA, DzB, C”=D”=l and jCnD121, and 

(d) there exists a subset Q of 4 points of S such that A” = 0 for all 
Ac_Q with JAI >2. 

If we call a subset of S that is mapped to 1 by ~1 collinear, then it is easy 
to see that the above structure is equivalent to the standard. (See, e.g., 
[4], [ 1 l] or [ 121.) The lines of the projective plane are the maximal 
subsets that are mapped to 1. If S is finite, then it is standard theory that 
there is a unique integer q, called the order of the plane, such that 
1 S 1 = q2 + q + 1, each line has size q + 1, and there are precisely q + 1 lines 
containing each point. Now if we construct the natural geometry (see 
Example 1.8) from (S, c() then in general it has the following: 

(i) One kind of subgeometry of size 1 : L, = (* }. 

(ii) One kind of subgeometry of size 2 : L, = ( * * }. 

(iii) Two kinds of subgeometry of size 3: L, = {. ’ ., -}. 

(iv) Three kinds of subgeometry of size 4: L, = { 11, A, - }. 

The investigation of the above types of subgeometries of projective 
planes leads us to the following class of geometries. 

3.2 DEFINITION (Linear geometries). Let L = Ext(L,), where L, is the 
set of three geometries of size 4 above that can be embedded in projective 
planes. (See Definition 2.7 for the extension process Ext.) L is called the 
class of linear geometries. 
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Note that L can be identified with the class of linear spaces which are 
ordered triples (P, G, I), where P is a set of points, G is a set of lines, and Z 
is an incidence relation between points and lines satisfying two conditions: 

(a) Each line contains at least three points. 

(b) Each subset of two points is incident with at most one line. 

(Sometimes it is more convenient to admit the subsets of 2 non-collinear 
points also as lines. Then axiom (b) above becomes: every subset of 2 
points is incident with a unique line. However, we shall clearly state when 
we assume this.) 

A major part of this paper is directed towards finding formulae for the 
inclusion numbers of linear geometries in finite projective planes. Let the 
number of linear geometries on i points be Zi. Then J. Doyen [S] calculated 
(by hand) that the first 10 terms of the sequence lo, I,, . . . . I,, . . . . are 1, 1, 1, 
2, 3, 5, 10, 24, 69, 384, . . . . -the author has written a computer program 
which verified Doyen’s calculations except for a few minor mistakes in the 
automorphism groups. The sequence for linear geometries with at most 
3 points per line was found to be 1, 1, 1, 2, 2, 3, 5, 11, 32, 163, 1680, . . . . and 
a consideration of the 1680 ten-point linear geometries having 0, 1, 2, . . . . 13 
lines of 3 points each gave the sequence 1, 1, 2, 5, 14, 32, 90, 209, 386, 460, 
332, 119, 28, 2. (13 is the maximum number of 3-point-lines for a IO-point 
linear geometry.) Of the 332 linear geometries with 10 points and 10 
lines of 3 points each, there are precisely 10 which have 3 lines through 
each point. These are called the lo3 configurations-the “Desargues” 
configuration is one of them. There are also three 93, one 83, and one 7, 
configurations. Note that the 10, configurations are associated with regular 
graphs of valence 3 on 10 vertices as follows. Given a 103, define a graph 
with vertices as the points of the configuration and two vertices adjacent if 
the corresponding points of the lo3 are not joined by a 3-point line. Then 
it is interesting that Desargues’ IOX configuration is associated with the 
Petersen graph. Further information on lo3 configurations can be found in 
[3] and [ 133, which are separated by more than a hundred years, but still 
present similar ideas! 

The above paragraph should give the reader some idea of the complexity 
of the problem as the number of points approaches 10. See [6] for a 
discussion of the number of linear geometries on n points and see [ 181 for 
a good book on sequences. Questions involving linear spaces and their 
embeddability in finite projective planes are considered in [7]. 

3.3 DEFINITION (Partial orderings). Apart from the natural partial 
ordering < induced by the subgeometry structure of linear geometries, we 
shall find it useful to also have various “finer” partial orderings 
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defined-these will be denoted by a Greek letter preceding the <. The 
ordering is first defined on models-two geometries are partially ordered if 
there are models for them that are partially ordered. If a and b are two 
linear geometries with models A and B, respectively, define 

(i) A cc< B if the set of elements S of A is a subset of the set of 
elements of B and every line of A is a (complete) line of B, ; 

(ii) A p< B if the set of elements of A is a subset of the set of 
elements of B and every triple of collinear points of A is also collinear in B. 

Note. that if CL and b are linear geometries, then a <b * a a< b =P a j?=$ b. 
A similar relationship holds for models of linear geometries. Thus /l is 
“liner” than c( which is “liner” than the natural partial ordering. 

3.4 DEFINITION (Inclusion and extension numbers for partial orderings). 
If a and b are linear geometries then the inclusion number of a in 6, with 
respect to the partial order y, is 

where N is a fixed model of 6. 
Also, the extension number of a to b, with respect to the partial order y, 

is 

where M is a fixed model of a, on a fixed subset of a fixed set B of size 1 b 1. 
Recall from Definition 1.6 that i@ is the geometry corresponding to the 

model M. Thus x denotes the geometry corresponding to the model N, 
which is induced by the set B of elements. (The present notation of this 
paper has been slightly modified from that of Definition 1.6 to change B to 
a suffix.) 

Of course, when y is the “natural” partial order <, the definitions above 
reduce to those of Definition 1.9. It is also an easy exercise, similar to 
Theorem 1.10, to show that these numbers satisfy 

[a] y(a, b] n! = [a, b)y [b], where n = 1 b ( - I a 1. 

Recall from Notation 1.7 that [a] denotes the size of the group of 
automorphisms of a. Thus it is the number of permutations of the element 
set of u that preserve the geometrical substructure. 

Also, 
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3.5 DEFINITION (Closed sets). A set of linear geometries D is called 
y-closed (where y is a partial order) if, for every pair of geometries a and b 
in D, we have 

3.6 THEOREM (Converting between partial orderings). Let a and b be 
linear geometries in L. If y is a partial order finer than the natural one (e.g., 
a or Ph 

(a) Y(G 61 = Cc Y(G cl(c, 61, where the sum is over all c with 
ay<c<b, and with ICI =/al. 

lb) (a, 61 = C t-1)” ~(a,, a,] ~(a,, a,l...y(a,,-,, a,1 y(c, bl, 
where the sum is over all sequences a = a0 y< a, yc a2 ... y< a,,, = c, and 
IaiI=(a(,foralli. (Thuscsatisfiesay<cy<b, andIcl=lul.) 

Proof (a) Let N be a model of b. Then each model M of ay6N 
corresponds to a subset A of points of N, and there holds M yd N, d N. 
The number of models of a y< N, is y(a, c], where c = N,, and the number 
of models of c < b is (c, b]. Hence the result follows. 

(b) This formula is the inverse of (a) above. It is the “Mobius inver- 
sion formula” of the partial order. For completeness we shall use matrices 
to get the result. Assume that a y< b as otherwise (a, b] = 0 and the right- 
hand side is an empty sum. Let D,,={cELIaydcy<b, Icl=lal}= 

id 1, . . . . d,}, where 1 D, h 1 = n and d, y< dj * i < j. 

Define a matrix C= (c,), n x n over Z, by cii = y(d,, di], for all i, j< n. 
Also define vectors e and f, both n x 1 over Z, by ei= y(d,, b] and fi= 
(di, b], for all 1 Q i< n. Then, applying (a) above, there holds e = Cl: Now, 
C is an upper triangular matrix with its main diagonal consisting of all 1’s. 
Hence (C - I)” = 0. Since f = C-‘e, the inversion formula follows from the 
equation 

n-l 
c-‘= c (Z-C)‘. 

i=O 

3.7 DEFINITION ( (M, N) ). Let M and N be models of linear geometries 
on sets A and B, respectively. Then (M, N) is defined to be the model P of 
a linear geometry on element set A u B, that is minimal with respect to 
/I<, such that A4 /I< P and N/I< P. We call (M, N) the model generated 
by A4 and N. This definition is used to construct a new ring based on the 
set of linear geometries. 

3.8 DEFINITION (The ring D(T)). Let f be a P-closed set of linear 
geometries. Define a ring D(T) in a way similar to that of C(T) in 
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Definition 2.3. That is, let the basis elements of the ring be (g)@, where 
g E Z. Let the addition be the natural one and let the multiplication of basis 
elements be given by 

(g)p (h), = c B3h(4pl 
der- 

wherep,gh=I((M,N)(~=gg,m=h, (M,N)=F}I,andFisalixedmodel 
of d. 

3.9 THEOREM (The structure of D(f)). The rings C(T) and D(T) are 
isomorphic (for r any P-closed set of geometries). 

Proof: First, it is possible to show that D(Z) is in fact a commutative 
ring by showing that for all d,, . . . . d,, E r, 

(d, lb . . . (4& = 1 by. .dn(f)p, 
fer 

where #~“~~=I{(M, ,..., M,)I(M, ,..., M,)=F}j: the number of 
A4 ,, .,., M, that are models of d,, ..,, d,, respectively, and generate a fixed 
model F of$ (The proof is similar to that of Theorem 2.4 and so only this 
outline is given.) 

Now consider the map p: D(Z) -+ C(Z) given by 

d& %(d)fi + c a, 
del- .y.r,;,=,d, B(dyx’(x). 

It is straightforward to show that this is an isomorphism with inverse 
generated by 

where the second sum is as in Theorem 3.6b. 

3.10 NOTE (The identification of C(T) and D(Z)). Since these two 
rings are isomorphic, we can mix the symbols (x) and ( Y)~ using the 
equations (d)p=C.ytr.Ixl=Idl B(dTxl(x) and (a)=C,,r,I,I=I.I CC-l)” 

B(~o,all~~~P(~,~l,~,l(~)~. 
The homomorphism yg of Theorem 2.5, generated by (d) -+ (d, g], is also 

generated by (d), + B(d, g] and so (d), = C fl(d, g] Z,, for all dE r, where 
Z, is the principal idempotent of both the rings corresponding to g E Z. 

3.11 EXAMPLE (Small linear geometries-their rings and multiplication 
tables). Let Z be the set of 8 linear geometries on 64 points. (See 

582a/49/1-3 
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Definition 3.2.) Thus the geometries are a= @, b = a single point, 
c = 2 points, d= 3 non-collinear points, e = 3 collinear points, f= 4 non- 
collinear points, g= 3 points on a line plus a point off that line, h = 4 
collinear points. As a check that the previous theory has been correctly 
understood, we present the multiplication tables for the rings C(T) and 
D(T). In these two tables a, . . . . h are short-hand for (a), . . . . (h), and A, . . . . H 
stand for (u)~, . . . . (h),. 

b c d 

bt2c 2c+3d+3e 3d+ 4f+ 3g 
2c+3d+3e cttidt6e+6ft6gt6h 3d+ 12ft 9g 

3d t 4f+ 3g 3dt12Jt9g df 12f+6g 

3e+gt4h 3et3gf12h % 

4s 6f 4s 
4g 6g 3g 
4h 6h 0 

B c D E 

fgh 
3etit4h 4f 4g 4h 

3e+3g+12h 6f 6g 6h 

3g 4s % 0 
e+ 12h 0 g 4h 

0 .f 0 0 

4fih 0 0 g 0 0 h 

F G H 

B C 
Bt2C 2C+3D 

2C+ 30 C+6D+6F 
3Dt4F 30 t 12F 

3E+G 3E+ 3G 

4F 6F 

4G 6G 

4H 6H 

D 

3D+4F 
3Df 12F 

Dt12F 
E+3G 

4F 
4G 

4H 

E 
3E+G 

3Ef3G 
E+3G 

E-k 12H 

G 

Gf 12H 
4H 

F G H 

4F 4G 4H 

6F 6G 6H 

4F 4G 4H 
G Gt12H 4H 

F G H 

G Gtl2H 4H 

H 4H H 

The isomorphism between C(T) and D(T) is given by 

A=a;B=b;C=c;D=d+e;E=e;F=f+g+h;G=g+4h;H=h. 

The principal idempotents of the rings are: 

l Z,=a-b+c-d-e+f+g+h=A-B+C-D+F 

9 I,=b-2c+3d+3e-4f-4g-4h=B-2C+30-4F 

l I,.=c-3d-3e+6f+tig+6h=C-30+6F 

l I,=d-4f-3g=D-E-4F+G 

l Ie=e-g-4h=E-G 

l I,=f=F-G+3H 

l I,=g=G-4H 

9 I,, = h= H. 

Note that the multiplicative coefficients for D(T) are often somewhat 
simpler and more easily calculated than for C(T). 
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3.12 DEFINITION (The projective plane ring 17(q)). The projective plane 
ring n(q), (q E Z, q B 2), is defined to be the ring C(L)/Id(q), where Id(q) is 
the set of all identities of C(L) that are satisfied for all linear subgeometries 
of projective planes of order q. 

Thus Id(q) is the ideal of all identities 

c S,(a)=% 
OEL 

where 6, is a polynomial in q over the rationals, such that for all projective 
planes rr of order q, 

1 6,(a, n] = 0. 
ldEL 

The problem of combinatorics in finite projective planes is to find the 
above identities. For example, in 17(q) the following hold: 

. (point) = (line of q + 1 points)= (q2 + q+ 1) Z, where I is the 
identity ring element. 

l (k points, no three collinear)p = (“‘+;+ ‘) I. 

Sometimes we present identities holding in n(c), where c is an integer. 
This just means that we take the special case of identities holding for all 
projective planes of order c. 

3.13 DEFINITION (Preliminaries before a proof of the fundamental 
theorem). If M is a model of a linear geometry g on point set A, then 
every extension of M to a model of a linear geometry having one more 
point can be defined as follows. Let S be a set of disjoint lines and/or sub- 
sets of size 2 in A not on a line. Let P be an element not in A. Now define 
the model M(P, S) to be the model having the same lines as M not in S, 
and also having the lines in {lu (P}IIES}. 

g(S) is defined to be the linear geometry M(P, S). From now on, unless 
otherwise stated, a “line” of a linear geometry denotes an “ordinary” line of 
23 points or else a set of two points not on an ordinary line. 

3.14 LEMMA (Preliminaries before a proof of the fundamental 
theorem). Let g be a finite linear geometry. Let 1 be a line of g. Let m be a 
line of g skew to 1 (if m exists). Then in IT(q) the following hold: 

(a) (g(4))a=k,g(d)lp1 (q2+4+ 1 -I gl)k)B, 
(b) (g((~j))l,=(g,g((~))l-‘C I,~~~,I,~=I~I IL (q+ l- Ik’I)(hh 

where the second sum is over all lines k of models G of g fi< a fixed model H 
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of h, such that g( {I} ) = G(P, {k} ) and k < a line k’ of H, where P is a fixed 
point not in H, 

where the second sum is over all sets of two skew lines (u, v> of models G of 
g B< H (a fixed model of h), such thatg({l,m})=G(P, {u,v}), Pisafixed 
point not in H, and where 

lfu and v are not on the same line in H 

ifu and v are on the same line k in H. 

Proof: (a) In the ring D(L), 

Since ( .)a = (q’ + q + 1) Z in 17(q), the result follows. 

(b) Let P be a model of a projective plane n of order q. Let 
n=I((G,Wl c= g, X=g({l}), G<XBGP)l. Then n=(g,g({l))lx 
PMW, xl- N ow, given G a< P with G=g, G induces a unique model H 
of a subgeometry h < n. (Thus G /3< H < P, and 1 g( = 1 h ( .) Given such a 
model H, the number of ways of extending G p< H to a model X of g( { Z} ) 
/?< P is given by the second sum. Hence 

n= nD>p;,=,g, I$ (q+ l- Ik’I)(h, xl 
/ 1 

Dividing the two values for n above by (g, g( { Z))] gives the result. 

(c) Let P be a model of a projective plane n of order q. Let 
r=J{(G, Y)lG=g, ~=g({1,m}),G<Y~bP}).Thenr=(g,g({1,m})]x 
B(gW m)), 4. N ow g iven G /?< P with G = g, there is a unique H with G 
/3<H<P and JGI=jHI, and there are c~t,.,~ extensions from G to a 
model Y of g( {Z, m}). Thus 

r= c C piti, u&h, nl. 
~B2&Yl~l=lgl iU%Ul 

Dividing the two values of r obtained above by (g, g( {I, m})] gives us 
the required result. 

3.15 DEFINITION (Variables of II(q)). A variable of L!(q) is an element 
(c), where CE L is a linear geometry, such that c has at least three lines 
of at least three points each through every point, and c is connected. 
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(“Connected” means that if M is a model of c, it is not the union of two 
disjoint models A # @ and B # Q, such that M = (A, B).) 

3.16 THEOREM (The fundamental theorem). Let g be a finite linear 
geometry. Then there is a formula for (g) in II(q) which is a polynomial in 
the variables (v) of IT(q) with 1 v 1 d 1 g 1, and also in q (with coefficients over 
the rational numbers). For I g I < 6, the formula has no variables, whereas for 
1 g ) d 13, the formula is linear in the variables. 

Proof We now describe an algorithm which will calculate the formulae 
for all finite linear geometries. Let L, be the set of linear geometries on <n 
points. Suppose we have already calculated the formulae for (g), for all 
gE L,. Note that this is equivalent to the calculation of the formulae for 
(g)B by using the equation (and its inverse) from Theorem 3.6: 

(s)a = c P(g, cl(c) in n(q), where g/Kc, and 1 cl = n. 

We calculate the formula for (h), h E L, + I\L,, as follows. If h is a variable 
then the formula is the trivial (h) = (h), and so we assume that h is 
generated by a collection of m disjoint variables vi, . . . . u,,,, or there is a 
point P of h on only 0, I, or 2 lines of > 3 points each. 

In the former case we have the equation 

(v,)/l.. tvm)B = k(h), + c L,(d),, for some k, ld~ Z. 
JEL” 

From this we have a formula for (h)@. 
In the latter case we use Lemma 3.14 to obtain a formula for (h)p in 

terms of geometries which are /?>/ h\P and have n points. Using the inver- 
sion formula of Theorem 3.6, as applied to /I and n(q), gives us the result. 

The smallest variable linear geometry is the projective plane of order 2, 
which has 7 points. (See Theorem 3.18.) Hence the formula for a geometry 
on 66 points is a “constant’‘-that is, it is a polynomial in q, the order of 
the projective plane. The only way to get non-linear terms in the variables 
in the formulae for n-point geometries is for disjoint variables on <n 
points to exist. Thus we see that the smallest pair of disjoint variables is 
made up of two disjoint projective planes of order 2, which have a union of 
14 points. Hence, the formula for geometries on < 13 points is linear in the 
variables. 

3.17 CONJECTURE (About the fundamental theorem). If g is a finite non- 
variable linear geometry with p points, m lines and ffi’ags (point/line inciden- 
ces), we conjecture that the constant term for (g) in L!(q), (i.e., a polynomial 
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in q over the rationals), is of degree 2(p + m) -fin q. Also, the coefficient of 

9 2(p+m’P/ is l/[g], and the constant term multiplied by [g] is a polynomial 
in q over the integers. ([g] is the size of the group of automorphisms of g.) 

3.18 THEOREM (The variable linear geometries on 9 points or 
less). Here we present a list of all the variable linear geometries vi on 
<9points and the sizes [vi] of their groups of automorphisms. The list 
of J. Doyen [ 51 can be consulted for this. It has been checked by computer 
with a program written by the author using the techniques summarized in 
Example 1.17. There is one variable on 7 points, one on 8 points, and ten on 
9points. Of the 500 linear geometries on 69 points, only 12 are variables: 

1. [v,] = 168, = 7, 

2. [vJ = 48, L@z3 = 8, 

3. [v,] = 108, zx = “Pappus” 

4. [V‘J =9, 
A 

5. [VJ = 12, 

6. [v,J = 12, 
A 

7. Co,1 =6, 
A 

_- 

8. [us] = 36, 

9. [vg] = 36, 

10. [v,J=432, = AG(2, 3) 
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11. [u,r] =4, 
A 

37 

12. [U,J = 12, 
A 

Note that the above configurations give the amount of “variability” in 
the linear subgeometries of finite projective planes with ~9 points. 

3.19 DEFINITION (Point/line geometries). The previous “linear geome- 
tries” were based on element sets that were possible subsets of points of 
projective planes. Now we consider element sets based on subsets of the 
union of the points and the lines. Thus we define the set of point/line 
geometries (P/L-geometries) to be the set of those geometries g in 
Ext(f(O- 1)) (see Example 2.15), such that the 2x 2 matrix of all l’s is 
not a subgeometry of g. In terms of generators, P/L = Ext(P/L,), where 
P/L, is the set of 16 (0 - 1 )-geometries: 

l the 4 x 0 matrix consisting of just 4 rows, 

l the four 3 x 1 matrices with zero, one, two and three l’s, 
l the zero 2 x 2 matrix, 

l the 2 x 2 matrix with a single 1, 

l the 2 x 2 identity matrix, 

l the 2 x 2 matrix with two l’s in a row and two O’s in the other, 

l the 2 x 2 matrix with two l’s in a column and two O’s in the other, 

l the 2 x 2 matrix with three l’s, 

l the four 1 x 3 matrices with zero, one, two, and three l’s, 

. the 0 x 4 matrix consisting of just 4 columns. 

(We saw in Example 2.15 that Ext(T(0 - 1)) is essentially the class of 
geometries induced by the matrices containing only O’s and 1’s. An element 
set of such a geometry is the union of the sets of rows and columns of the 
matrix. Two geometries are considered to be equivalent if there is a bijec- 
tion from rows to rows and columns to columns preserving the matrix 
structure.) 

Note that we consider the rows to be points and the columns to be lines. 
In a P/L-geometry, a point is “incident” with a line if the corresponding 
P/L-subgeometry on 2 elements corresponding to the point and line is the 
1 x 1 identity matrix. Then we see that the P/L-geometry of a projective 
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plane of order q is the geometry of the q2 + q + 1 x q2 + q + 1 incidence 
matrix of the plane-it has 2 (q2 + q + 1) elements. 

3.20 OBSERVATION (The relationship between P/L and linear geometries). 
We observe that an n x q2 + q -t 1 P/L-subgeometry of the P/L-geometry of 
a projective plane of order q is equivalent to an n point subgeometry of the 
linear geometry of the projective plane, and a q* + q + 1 x n P/L- 
subgeometry is equivalent to an n element subgeometry of the linear 
geometry of the dual projective plane. This shows how a knowledge of one 
type of geometry can be used to get information about the other. However, 
in some sense it is clear that the P/L-geometries involve “finer” substruc- 
tures than do the linear geometries. 

Perhaps a more important observation is that the partial order c1 is 
closely associated with the concept of P/L-geometry. Thus, if g and h are 
linear geometries, g having i points and j lines, h having k points and m 
lines, then g and h correspond to (i xj) and (k x m) P/L-geometries g’ and 
h’, respectively. (Note that these P/L-geometries do not have lines incident 
with less than 3 points.) Then a(g, h] = (g’, h’], and so, from Theorem 3.6 
we have that 

WY h’l = 1 (g’, X’XX, hl 
1.x = I gl 

and conversely 

(g, h] =c (- l)‘.‘,‘-‘“‘1 (g’, x’](x’, II’], 

where the second sum is over P/L-geometries x’ with the same number of 
points as g’ but having possibly more lines (of necessarily > 3 points each). 

Thus a simplification of Theorem 3.6b (in the case of the partial order a) 
is possible, because of the geometrical nature of the coefficients u(g, h]. 

3.21 THEOREM (A more powerful version of the fundamental 
theorem). For any finite m x n P/L-geometry g, there is a formula for the 
number (g, n] of subgeometries g in a projective plane 71 of order q. This 
formula has variables of the following type: these have at least 3 points on 
each line, at least 3 lines through each point, at most m points and at most n 
lines, (cf. Dejinition 3.15 and Theorem 3.16).) 

ProojI The proof is very similar to that of Theorem 3.16 which uses 
Lemma 3.14. The main part of the proof is to find formulae for the 
P/L-geometries having an element on only 0, 1, or 2 elements of the 
opposite type, and having at most an equal number of points and lines. 

Let x be a P/L-geometry. If S is a set of skew lines of x (which may be 
incident with only 0, 1, or 2 points in x), then define x(S) to be the 
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P/L-geometry obtained by adding a point to x on the intersection of the 
lines of S. Suppose x is of type i xj. That is, it has i points and j lines. Also 
suppose that m is a line of x and that n is a line of x skew to m (if it exists). 
Let n be a general projective plane of order q. Then 

where the first sum is over ail P/L-geometries y which have one more point 
than x and contain x, the second sum is over all points P of y with 
x = y\P, and p$ is equal to the number of lines r of x on P such that 
x({r})=x({m}). Im( is the number of points on m in X; and 

(~1 (4 nlCx, x({m, n>))=C, (.v, ~1 CQ ~6, 
where the first sum is over all P/L-geometries y such that y has one more 
point than x and contains x, the second sum is over all points Q of y with 
x =y\Q, and v; is equal to the number of pairs of lines (u, u) of x on Q 
such that x({u,u))=x({m,n}). 

Using (a), (b), and (c) above, if there is a point X of a P/L-geometry y of 
type (i+ 1) xj on 0, 1, or 2 lines of y, then there is a formula for (y, n] 
in terms of y\X and geometries with more flags than y but also of 
type (i+ 1) xj. Hence, continually using the three equations above (and 
their duals) we obtain a formula for y in terms of “variables” with at 
least 3 points on each line and at least 3 lines through each point. These 
P/L-geometries also have at most the same number of points and lines 
as y. 

Coupled with Observation 3.20, this theorem can be used to obtain an 
alternative proof of Theorem 3.16. Since it also deals with finer sub- 
geometries we consider it to be a “more powerful” version of the fundamen- 
tal theorem. 

3.22 THEOREM (The variables for the point/line geometries). Here we 
present a list of all the variable P/L-geometries on < 18 elements, because 
these represent, by Theorem 3.21, the amount of “variability” for small 
P/L-geometries in finite projective planes: 

(i) 14 elements: the projective plane of order 2, which is 7 x 7 (see 
3.18, ur). 

(ii) 16 elements: the affine plane of order 3 minus a point, which is 
8 x 8 (see 3.18, u2). 

(iii) 18 elements : five 9 x 9 P/L-geometries corresponding to the linear 
geometries of Theorem 3.18 which have 9 points and 9 lines (see 3.18, v3, v4, 
us, VII? and v12). 
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Note that all the above P/L-geometries are self-dual: the smallest non-self- 
dual variables are of size 9 x 10 and 10 x 9. 

3.23 DEFINITION (The complete-line geometries). Now we define a new 
class of geometry that is useful for various problems concerning finite pro- 
jective and afline planes. It is called the class of complete line geometries of 
order q, C/L(q), where q E 2, and q 2 2. The idea comes from taking linear 
subgeometries of a projective plane of order q, but only considering the 
“complete” lines to be important-these are the lines with the full q + 1 
points. Thus there is a unique geometry in C/L(q) of size n, for all 
0 < n d q. If q + 1 d m 6 2q, there are two C/L(q)-geometries on m points- 
those containing a complete line and those not. For 2q -I- 1 <p Q 3q - 1, 
there are three types of C/L(q)-geometry-those containing 0, 1, or 2 
complete lines of q + 1 points. Clearly, it is the dual configuration of 
complete lines contained in the linear geometry that is important. Hence, 
every C/L(q)-geometry can be written as h = k. g, where g is a linear 
geometry representing the dual linear geometry of complete lines, and k 
is a non-negative integer giving the number of “free” points of h not on 
any of the complete lines of 2. Naturally, the total number of points of h is 
cg + k, where cg is the number of points on the lines of 2. By counting the 
number fp of (point, line of 22 points) flags of g in two ways we can 
calculate that cg = (q + l)] g 1 -f, + the number of lines of 32 points of g. 
Naturally, in an investigation of C/L(q), only those linear geometries g 
having cg < q* + q + 1 are important, as otherwise k. g cannot be embedded 
in a projective plane of order q. 

3.24 THEOREM (Formulae for the C/L-geometries in finite projective 
planes). Let x be a projective plane of order q, considered to be both a dual 
linear geometry ii and a complete line geometry. “DuaP’ denotes the treating 
of the lines instead of the points as the elements of geometries. Then there are 
the following relationships between the inclusion numbers of the respective 
types of geometry. Let g be a finite linear geometry and let k be an integer 
satisfying k > c, . Then 

(4 ( q2+$fJr-c~)(g, ?i] =Chss(g, h](k-c,.h, ~1; 

(b) (k-c,.g,It]=~,,,(-l)‘h’-‘g’ (g,h](y2+9-CLfh-CI)(C;)ji]. 

Proof (a) This formula comes from counting in two ways the number 
of ordered pairs (M, S) of a model A4 of 2 as a submodel of a fixed model 
of E which is contained in a subset S of size k which is contained in the 
point set of 7~. 

(b) This is just the inverse of the formula in (at-one can use the 
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properties of the idempotents of the natural ring of linear geometries (see 
Theorem 2.5). Thus the inverse of the matrix with (i,j)th element (g,, gj] is 
the matrix with (i,j)th element (- l)lfil-‘gll (g,, g,]. 

4. CONSEQUENCES OF THE FUNDAMENTAL THEOREM 

We shall now illustrate the theory of the previous chapter by giving 
various concrete calculations of the numbers of k-arcs and blocking sets in 
finite projective (and also affine planes). Note that a k-arc is a set of k 
points of a projective plane, no 3 collinear. A blocking set of a finite projec- 
tive or afhne plane is a set of points that contains no line and intersects 
every line of the plane. Both types of substructure have been investigated in 
depth before-see, for example, [ 1 I]. However, the methods we use and 
many of the results that we obtain here are quite new (except for the 
“elementary” theorem which follows). 

4.1 THEOREM (Formulae for k-arcs in n(q), k<6). Ler A, denote the 
linear geometry consisting of k points, no 3 collinear. Then the number 
of k-arcs (k < 6) in a general projective plane of order q is given by the 
following formulae, which hold in n(q): 

(i) (A,)=(q’+q+l)I. 

(ii) (A?)=i(q’+q+ l)(q’+q)Z. 

(iii) (A,)=&(q2+q+l)(q2+q)qzZ. 

(iv) (A,)=$(q’+q+l)(q2+q)q2(q--1)‘I. 

(v) (Aj)=+,(q2+q+l)(q2+q)q2(q-1)2(qZ-5q+6)~. 

(vi) (&)=~(q2+q+l)(cz2+q) 

xq*(q-I)*(q’-5q+6)(q2-9q+21)1. 

ProoJ: Since the smallest variable for Z7(q) is the Fano plane, which has 
7 points, from the “fundamental” Theorem 3.16 the value of any con- 
figuration with ~6 points is a constant in n(q). The above formulae follow 
from the fact that the number b, of (n + l)-arcs containing a fixed n-arc in 
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any projective plane of order q is an easily calculated constant for all n < 6. 
In fact, b, = q2 + q + 1, h, = q2 + q, b2 = q*, b, = (q - 1)2, b4 = q* - 5q + 6, 
and b, = q* - 9q + 21. (See [ 111 for a proof of this well-known fact.) 

4.2 THEOREM (Formula for 7-arcs in I!(q)). In 17(q): 

x (q4 - 20q3 + 148q2 - 468q + 498) I- (73). 

Proof: From Theorems 3.16 and 3.18 we know that there is a formula 
for the number (A,) of 7-arcs in a projective plane of order q, which is 
equal to a constant + a linear term in the number of Fano subplanes (73). 
We could use the algorithm of the proof of Theorem 3.16 to obtain this 
formula. Instead, we present here a somewhat shorter method which 
uses fewer configurations to obtain the result. This method uses the fact 
that the constants associated with the partial order CI, introduced in 
Definition 3.3(i), are easier to calculate. (Note also the important connec- 
tion with the P/L-geometries considered in Observation 3.20.) Once these 
constants are calculated, it is quite straightforward to convert to the 
natural partial order. Of course, in II(q), (g),, where g is a linear 
geometry, represents the value of a(g, n], for all projective planes 7t of 
order q. 

Consider a 6-arc K of a projective plane or of order q. It has 15 chords 
(lines intersecting it in 2 points). Let there be Ni points of n\K on i chords 
of K. Then the following hold (see [ 111 for example): 

l No+N, +N,+N3=q2+q-5, 

l N,+2N2+3N3=15(q-l), and 

l N2+3N3=45. 

These equations imply that N, = q2 - 14q + 55 -N,. Let there be 
k, 6-arcs of 7c such that N, = i, (where 0 < i < 15 holds). Then, counting 
ordered pairs of 6-arcs contained in 7-arcs gives in 17(q): 

7(A,) = f ki(q2 - 14q + 55 -i) I. 
iso 

But 

(&)= 5 kJ, 
i=O 

and 

(CT,)= f  ik;Z, 
i= I 
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where cr is the linear geometry on 7 points with 3 lines of 3 points each 
through one of its points. 

Thus, we have shown that in II(q): 

7(A,) = (q2 - 14q + 55)(&j) - (c,). 

Since (A 6) is known from Theorem 4.1 (vi), we still have to calculate (c,). 
We do this using the following complete list of 6 linear geometries g such 
that gcc>,c, and 1 g( =7. 

The values of (c,), are very easily calculated. We do it for c, and leave 
the proofs of the rest to the reader. There are (4: ‘) ways of choosing three 
lines of rc through each of the q2 + q + 1 points of 11. On each of these lines 
one can choose ($) pairs of points. Hence 

Letn=(q2+q+l)(q+1)q3(q-1)2.Then 

l (cl),=(nq(q--1)*/48)Z, 

l (c2)1= (49 - 1)*/6) A 

l (C3)a = Mq- 2W) 4 

l (dsr=Mq-l)/fJ)t 

l (c,), = (n/24) Z, and 

l (c,), = (73) I. 

To convert the above formulae to the natural ring, we must first 
calculate the coefficients xii= a(~,, c,], for all 1 < (i,j) < 6. As this is 
straightforward, we merely give the matrix X= (xii): 

X= 

/l 1 1 2 4 7’ 
0 1 2 4 12 28 
0010 0 0 
0 0 0 1 6 21 
0000 17 
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Then the inverse of X gives the coefficients needed to transfer the values 
of (ci)% to those of (ci). (Note Theorem 3.6b and Observation 3.20.) 

X-' 

5-l 1 2-4 7’ 
0 1 -2 -4 12 -28 
0 0 1 0 0 0 
0 0 0 1 -6 21 
0 0 0 0 1 -7 
0 0 0 0 0 1, 

We can use the first row of X-’ above to calculate (cr). Thus 

(c,) = (~0, - k2h + (c,), + 2(ck4(~~), + 7(~)~ 
=n((q(q- 1)2/48)- (q- 1)2/6+ (q-2)/12+2(q- 1)/8-(4/24))1+7(7,) 

= (n/48)(q - 3)2 (q - 4) + 7(7,). 

And so, 

(A,) = f(q2 - 14q + 55)(X4,) - f(c,,. 

This is the formula that we wanted to show, when we substitute the 
value of (Ah), given in Theorem 4.l(vi), and the value of (cr) above. 

4.3 COROLLARY (Non-Existence of n(6)). It has been well known for a 
long time that there is no projective plane of order 6. For example, this result 
follows from the non-existence of two orthogonal Latin squares of order 6, or 
from the Bruck-Ryser Theorem [2], that no projective plane of order q 
exists, if q E 1 or 2 (mod 4) and q is not the sum of two integral squares. 

However, we can attain a very short proof of this fact by noting that the 
value of q4 - 20q3 + 148q’ - 468q + 498 is - 6 when q equals 6. Hence the 
number of 7-arcs plus the number of Fano subplanes in a possible plane of 
order 6 is negative. This is a contradiction to the fact that the number of 
subgeometries of a particular type in a geometry is always non-negative. 

Note that it has been shown by computer-aided methods that there is no 
12-arc in a putative plane of order 10 [14]. However, this result has not 
been used to obtain the non-existence of such a plane as yet. 

4.4 THEOREM (Formula for 8-arcs in n(q)). In ZZ(q): 

(a,)=~(q2+q+l)(q+1)q3(q-1)2(q-5)(q7-43q6+788q5-7937q4 

+ 47097q3 - 1 62834q2 + 29928Oq - 222960) I+ (83) 

- (q2 - 20q + 78)(73). 
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Proof. From Theorems 3.16 and 3.18 we know that there is a formula 
for the number (As) of 8-arcs in a projective plane of order q, which is 
equal to a constant + a linear term in the number (73) of Fano sub- 
planes + a linear term in the number (8,) of affine planes of order 3 minus 
a point. We shall use a method very similar to that of the previous theorem 
to obtain the result. 

Consider a 7-arc L of a projective plane 71 of order q. It has 21 chords. 
Let there be M, points of n\L on i chords of L. The following hold: 

l Mo+M,+M,+M,=q2+q-6, 

. M,+2M2+3M,=21(q-l),and 

l M, + 3M, = 105. 

These equations imply that &I,,= q2 - 20q + 120- M3. Let there be 
pi 7-arcs of z such that M3 = i (where 0 < id 35 holds). Then, counting 
ordered pairs of 7-arcs contained in &arcs gives in 17(q): 

8(/l,)= .f pi(q2-2Oq+ 120-i)I. 
i=o 

But 

(A,)= F PiA 
i=O 

and 

where d, is the linear geometry on 8 points with 3 lines of 3 points each 
through one of its points. 

Thus we have shown that in n(q) there holds 

8(A,) = (q2 - 20q + 120)(x4,) - (d,). 

Since (A,) is known from Theorem 4.2, we still have to calculate (d,). 
Let k, and cj be defined as in the proof of Theorem 4.2. Let 
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Then we have 

(d,) = F i(q’- 14q + 55 - i) k;Z 
1=0 

= (q2 - 14q + 55) z ik,Z- f i2kiZ 
i=o i=O 

=(q*-14q+54) z ikiZ-2 F i kiZ 
i=O i=o 0 

= (42 - 14q + 54)(c,) - 2(d,) - 2(d,). 

(By counting 6-arcs extended by two points, each on three chords, there 
holds C:Ho (i) kiZ= (d,) + (d,).) 

Hence in ZZ(q) we have: (d,) = (q* - 14q + 54)(c,) - 2(d,) - 2(d,). Since 
(ci) was calculated in the proof of Theorem 4.2, all we need is to calculate 
(d2) and (4). 

The complete list of linear geometries e with 1 e ( = 8 and e c@ d2 is 

If we define the 4 x 4 matrix Y = (.y,-) by yii = a(e,, e,], then it is easily 
calculated that 

As in the proof of Theorem 4.2, the first row of Y-’ above gives the 
formula: 

(4) = tell, - (e2h + (e,), + 3(4, 
=(q2+q+1)(~:1)(q)2(~;l)z-(q2+q+1)(~:1)(~)22(q-2)z 

+ ck?+q+ ~w~)2z-21(7,)1+3c7(q-2)(7,)1 

=gq*+q+ l)(“:‘)(# [(q- l)(q-2)-4(q-2)+2] 1+21(q-3)(7,) 

=(n/16)(q-3)(q-4)1+2l(q-3)(7,), 

where n is as in the proof of Theorem 4.2. 
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The complete list of linear geometries f with ) f ) = 8 and j-0 d, is 

If we define the 3 x 3 matrix Z= (zii) by zii= c~(A.,f,], then it is easily 
calculated that 

Z=(i b i), and Z-‘=[i -d -i). 

As above the first row of Z-’ gives the formula: 

(4) = (f,)z - (.fA + 4(f3)1 

= “~~~~~)(~)‘6Z-$(q~+q+l)(q~+q)q(q-l)(q-2)(q~-q)Z+4(8~) ( 

=(n/12)(q-2)(q-4)1+4(8,). 

Putting all the above calculations together we have 

(&)=+(q*-2oq+ 120)(x4,)-i(d,) 

= $(q* - 2oq + 120)(A,) - +[(q* - 14q + 54)(c,) - 2(d,) - 2(d,)] 

= $(q2 - 209 + 120)[(n/7!)(q - 3)(q - 5)(q4- 2oq3 

+ 148q* - 468q + 498) I- (73)] 

-$(q*- 14q+54)[@/48)(q-3)* (q-4) Z+W’,)l 

+a[(~/16)(q-3)(q-4)z+21(q-3)(7,)1 

+ +C(W)(q - 2)(q- 4) I+ 4(83)1 

=(n/8!)[(q2-20q+ 12O)(q-3)(q-5) 

x (cl4 - 20q3 + 148q* - 468q + 498) 

- 105(q2 - 14q + 54)(q - 3)* (q - 4) 

+ 63O(q - 3)(q - 4) + 84O(q - 2)(q - 4)] I+ i[ - (q* - 209 + 120) 

- 7(q2 - 14q + 54) + 42(q - 3)1(7,) + (83). 

It can be checked that this formula simplifies to that of the theorem. 

An idea of the complexity of arcs in finite Desarguesian planes can be 
gauged from the difficulty of the problem of (q + 2)-arcs (or “ovals”) in 
PG(2, q), q even. (See [8]. Also see [9] for a generalization to higher- 
dimensional space.) However, it was shown by B. Segre [ 161, using a 
simple algebraic coordinate technique, that every (q + 1 )-arc of PG(2, q) 

582a/49!1-4 
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(q odd) is a conic, and so the number of (q+ 1)-arcs in such a projective 
plane is q5 - q2. 

4.5 THEOREM (Counting configurations in Desarguesian planes). A 
finite Desarguesian projective plane is one coordinatized by a finite field 
GF(q), where q is a prime power. (q is the order of the plane. See, for 
example, [ 111.) The plane is denoted by PG(2, q). 

Here we give the formulae for the number of variables of size <g--this 
gives the reader the possibility of calculating the number of times any 
configuration with less than 9 points occurs in PG(2, q). 

The following hold for 7~ = PG(2, q). Note that n = (q2 +q+ 1) x 
(q + 1) q3(q - 1)’ as before: 

0) (7,, nl= O 
tf q is odd, 

n/168 tfq is even. 

1 
n/48 if q z 0 (mod 3), 

(ii) (8,, z]= n/24 if q= 1 (mod 3), 

0 zf qz2 (mod 3). 

Proof (i) It is standard theory of PG(2, q) that every 4-arc is contained 
in a unique subplane of order p, where p is the characteristic of the plane 
(that is, q =ph, p prime, h a positive integer). When q is odd, it is also well 
known that PG(2, q) contains no subplane of order 2. (In fact, PG(2, q) 
contains precisely the subplanes PG(2, r), where r =pS and s divides h. See 
[ill,) Suppose q is even (that is, p = 2 above). The number m of ordered 
pairs (A 4, f), where A, is a model of a 4-arc contained in a model f of a 7, 
contained in rr, is 

m = n/24 = 7(7,, 7r]. 

This gives the stated value of (73, rc]. 

(ii) Let the points of PG(2, q) be represented by homogeneous triples 
(x, y, z) over GF(q). A general 4-arc A, may be assumed to have coor- 
dinates (l,O,O), (0, LO), (O,O, l), and (1, 1, 1). 

We find the number of configurations 8, that contain A, and also a 
general point ( 1,&O) on the line z = 0, such that (0, 0, 1) and ( 1, 1, 1) are 
not on a line of gj. First, one of two possibilities holds: (1,1, 1)~ 8, or 
(0, 1 - 1, 1) E 8,. These are symmetrical cases, so assume that the former 
holds. Then it is clear that (0, 1, 1) and (1, 0, 1 - 2) are also in 8,. Since 
( 1, 1, 1 ), (1, 0, 1 - A), and (1, /2,0) are collinear, the corresponding 3 x 3 
determinant is zero. This gives 

11*-;1+1=0 

,(-A)3=1 and i#-1. 
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This last equation has 0, 1, or 2 solutions for q = 2, 0 or 1 (mod 3) 
respectively. 

The number of configurations, an A, with another point on one of its 
lines contained in an g3, is 24. Hence, by counting these configurations 
contained in 8,‘s contained in rc in two ways we obtain 

24.(8,, rr] = (A4, n]. (no. of lines of A,).2.(0, 1 or 2). 

Thus, 

(8,, n] = (n/24).6.2.(0, 1 or 2)/24. 

This is the value stated by the Theorem. 

The reader is referred to [l] for a calculation of the number of 
Pappus 9, configurations in AG(2, q), and to [lS] for the number of 
Desargues 10, configurations in PG(2, q), for q of characteristic 2 or 3. 

4.6 DEFINITION (Blocking sets in projective or afline planes). An uffine 
plane is the structure of points and lines obtained by deleting a line and all 
its points off a projective plane. Its order is just the order of the projective 
plane and so is the number of points on each line. A blocking set of a finite 
projective or afline plane is a set of points that contains no line and is skew 
to no line. (See for example, [ 111, for some of the theory of blocking sets.) 

4.7 THEOREM (Formula for blocking sets). The number of blocking sets 
of size k in a projective plane of order q is given by the formula 

$+y+ I 

c ii( 

q*+q+ 1 --x 
1; k-x > ( 

+ 

.x = 0 
q:;;;;:;:r)]-(q2+;+ ‘) 

where A,Z=Cc,=r (-l)lR’(g) in n(q). 

Note that c, is the number of points of a projective plane of order q on 
the lines of g-see 3.23. Also, (S) in II(q) essentially means the number of 
dual configurations S in a plane of order q, 

Proof A blocking set of a projective plane is a set of points which is of 
type k.8, such that its complementary set of points is of type 
q2 + q + 1 - k.8. (See 3.23 for the definition of k.g.) There are three 
possible types of sets of points of size k of a projective plane: 

(a) a blocking set, 

(b) a k.6, whose complement is not a q2 + q + 1 - k.6, and 

(cl a set of k points containing a line. 
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Since the number of sets of type (a), (b), and (c) above satisfy in II(q): 

a+b=(kAQ,a+c=(q2+q+l-k.CQa+b+c= 

The formula now follows directly from Theorem 3.24b. 

4.8 TABLE (The number of points covered by small dual linear 
geometries). Here we list all the 47 linear geometries g with ( gl < 7, 
together with 

l the number of points 1 g 1, 

l the size of the group of automorphisms [g], 

l d, = the number of flags of g - the number of lines of at least 2 
points of g, and 

l c, = (q + 1 )I g ) - d, = the number of points on the lines of g, for 
q = 2, 3, 4, and 5. 

Note that “-” denotes that the configuration is not a subgeometry of the 
projective plane of that order. 

i g=gi lgl Cgl dg 2 3 4 5 

9 

10 

cp 
l 

. . 
. 

. . 

- 
. . 
. . 

. 
- 

- 

. 
. . 
. . 

. . 
- 

0 1 0 0 0 0 0 

1 1 0 3 4 5 6 

2 2 1 5 7 9 11 

3 6 3 6 9 12 15 

3 6 2 7 10 13 16 

4 24 6 6 10 14 18 

4 6 5 7 11 15 19 

4 24 3 - 13 17 21 

5 120 10 - - 15 20 

5 12 9 - 11 16 21 
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i g=gi I gl Cgl 4 2 3 4 5 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

V . - 
- . . . . . . . . . - 

. V 
- - 
A 
v 
. . - 

l- 
. - 

. l .  

.  
.  .’ 

.  .  

.  .  

-  

. V . 
- . - 

5 8 

5 24 

5 120 

6 720 

6 36 

6 8 

6 72 

6 6 

6 24 

6 48 

6 12 

6 120 

6 720 

7! 

144 

16 

36 

8 7 

7 - 

4 - 

15 - 

14 - 

13 - 

13 - 

12 - 

11 7 

12 - 

11 - 

9 - 

5 - 

21 - 

20 - 

19 - 

19 - 

12 

13 

- 

- 

11 

12 

13 

- 

13 

- 

- 

- 

- 

- 

- 

17 22 

18 

21 

15 

23 

26 

21 

22 

17 23 

17 23 

18 24 

19 

18 

19 

21 

- 

- 

- 

- 

25 

24 

25 

27 

31 

- 

23 

- 
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i g=gi lgl kl d, 2 3 4 5 

28 

29 

30 

31 

32 

33. 

34 

35 

36 

37 

38 

39 

40 

41 

u 
uf 
A . 
A 
A 
. kf 

A 
A 
A 
A 
. . . - 
- - 
I- . 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

8 18 

48 18 

6 18 

6 17 

4 17 

24 17 

12 16 

8 16 

24 15 

168 

144 

144 

12 

14, 7 

18 - 

17 - 

17 - 

- 

- 

- 

- 

- 

- 

- 

4 16 - 

- 

- 

- 

- 

- 

12 

- 

13 

- 

- 

- 

- 

24 

17 24 

- 

25 

18 25 

2.5 

19 26 

26 

27 

21 - 

- 

18 25 

- 

19 

25 

26 
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i g=gi I gl Cgl 4 2 3 4 5 

42 4!L 7 6 15 - 13 20 27 

43 v 7 72 15 - 13 20 27 

44 ess-8 7 240 15 - - - 27 

45 L 7 48 14 - - 21 28 

. 
46 - 7 720 11 - - - 31 

47 7 7! 6 - - - _ 

4.9 EXAMPLE (Blocking sets in small projective planes). Here we use the 
previous table and the formula of Theorem 4.7 to find the number of block- 
ing sets of size k in the projective planes of orders < 5. The percentage in 
parentheses given after the number of blocking sets bk below, refers to the 
percentage of blocking sets of size k out of the total number, (“‘+z+ I), of 
subsets of size k in the plane. This gives a measure of how common these 
blocking sets are. 

Note that all the projective planes of small orders (q < 9) are self-dual 
and isomorphic to PG(2, q). Hence (g) = (g) in U(q), for these small q. 
Also, as a short-hand notation we usually leave out the I in the constants 
below. We shall not give all the details of calculating (g,), as this is quite 
easy given the small sizes of the configurations. Also, various terms are not 
necessary because there are no blocking sets of size k for k <q + & + 1 
(see, for example, [ll]), and also (“+X’.~--~)+(q2(1::~:l;l\-x) is zero for 
all x > max(k, q* + q + 1 -k). Thus it is only necessary know the values of 
I,Y for x < max(k, q* + q + 1 -k) in order to calculate the value of b,. 

(i) q = 2. In this case it can be checked that the number 6, of block- 
ing sets of size k in PG(2,2) is 

It follows then that b, =O, for all O< k 6 7. This is a verification of the 
well-known fact that there are no blocking sets in PG(2, 2). 
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(ii) q=3. We first calculate A.rZ=CCC=,r (-l)lgi (g) in 17(3), for all 
x from 0 to 11. From the table: 

1, = (g,) = (CD) = 1. 

I, =o. 

1,=0. 

&=O. 

A,$= -(g,)= -13. 

As = 0. 

/I6 = 0. 

d,=(g3)= 13.12/2=78. 

Rg=O. 

,I9 = -(gJ = - 13.12.9/3! = -234. 

Alo = -(g5) + (8,) = - 13.4+ 13.12.9.4/4! = 182. 

Al1 = (g,) - (glo) + (g,,) = 13.4.9 - 13.4.3.3 + 13.6 = 78. 

The only non-zero value of bk in fact is for k = 6 or 7. Then 
b6=b,=[(~)+(163)]-13[(92)+(96)]$78(~)-(~)=234(13.6%). 

In fact, one can check that every blocking set of PG(2,3) is a sub- 
geometry g,,, which has a complementary g,,. Thus, (g,9) = (g& = 234 in 
D(3) (see [ll], Theorem 13.4.3). 

(iii) q = 4. We k now that a blocking set of size k of PG(2,4) 
satisfies 7 < k < 14, (because 7 = 4 f ,/4 + 1). Hence, to calculate bk for all 
k we need to know the values of (g) for cg < 14. Thus 

&=(g,)=(@)= 1. 

~,=~2=&=1,=o. 

II,= -(g*)= -21. 

1, = 2, = llg = 0. 

2, = (g3) = 21.20/2 = 210. 

&=A,, =o. 

LIZ= -(g4)= -21.20.16/3!= -1120. 

A,3= -(gs)= -21.10= -210. 

,l,4 = (g6) = 21.20.16.9/4! = 2520. 
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Hence, for 7 d k < 14, 

Thus, 

l b, = b14 = 360 (0.3%). Every blocking set of size 7 is a 7,. 

l b, = b,3 = 15,120 (7.4%). There are two types of blocking sets 
with 8 points: 

i 
(504Oh 

l b9 = b12 = 60,760 (20.7%). 

l b,, = b,, = 109,200 (31.0%). 

(iv) q = 5. It is known that a blocking set of size k of PG(2, 5) 
satisfies 9 <k <22. Hence, to calculate b, for all k, we need to know 
the values of (g) for c, d 22. We shall also calculate the value of the 
configurations with cg = 23 in order to check that b, = 0. Thus 

&=(g,)=(@)= 1. 

1, = 2.2 = 2, = /I4 = A5 = 0. 

/I,= -(gz)= -31. 

II, = A, = 1, = AlO = 0. 

A,, = (g3) = 31.30/2 = 465. 

A,, = A,, = A,, = 0. 

A,,= -(g4)= -31.30.25/3! = -3875. 

tl,6= -(gs)= -31.6.5.4/3! = -620. 

1,,=0. 
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A,, = (g6)= 31.30.25.16/4! = 15,500. 

II,,=(g,)=31.20.25= 15,500. 

A,,= -(gg)= -31.30.25.16.6/5!= -18,600. 

I,, = (gg) - (g,,) + (g,,) = 465 - 93,000 + 3100 = - 89,435. 

&= -(g,,)+(g,,)= -46,500+62,000= 15,500. 

43 = -kn) + (gd + k17) - k26) 

= -31.15.25+31.15.100+31.30.25.16.6.10.3/5!/2-3100.15 

= - 11,625 + 46,500 + 279,000 - 46,500 

= 267,375. 

Hence, for 8 6 k Q 23, 

Thus, 
6, = bz3 = 0 (0%). 

6, = bz2 = 15,500 (.077%). 

b,,= bzl = 809,100 (1.8%). 

b,, = b,, = 6,551,850 (7.7%). 

b,, = b,, = 25,888,875 (18.3%). 

b,3 = b,, = 64,057,625 (31.1%). 

b14 = b,, = 111,553,500 (42.1%). 

b,, = b,, = 145,272,200 (48.3%). 

4.10 EXAMPLE (Blocking sets in small afine planes). Here we show how 
the previous table is used to find the number B, of blocking sets of size k in 
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all the afline planes of orders < 5. The problem of blocking sets in affrne 
planes is complicated by the fact that two lines may be parallel in such a 
plane. However, this is compensated by the fact that there are less points to 
consider than in the corresponding projective plane. 

Every afine plane of order q < 5 is isomorphic to AG(2, q), which is 
obtained from PG(2, q) by deleting a line and all of its points. The method 
we use is first to calculate the number rk of sets of size k in the affrne plane 
which intersect each line. That is, the complement of one of these sets in the 
projective plane is of type q* - k.g,, where g, is the linear geometry with 
just a single point-see Table 4.8. Then we subtract the number sk of sets of 
size k containing at least one line of AG(2, q) and intersecting each line. 
Thus Bk = rk - sk. Since every line of PG(2, q) is equivalent to any other 
line, we may use the following formula for rk. We are using the fact that 
PG(2, q) is self-dual and applying Theorem 3.24b. Thus (g) = (g) in 17(q), 
for these small q. 

rk = (q2 + q + I)-’ (q2 - k.g,) 

=(q2+q+ 1)r’ c (-l)‘“l’-‘I g,l q*+qL’ -‘i (gj), 
g,a.g2,‘i<q*+q+ 1 -k > 

Hence we first calculate [,= (q2+q+ 1))’ CYg=.x+y+l (- l)lg’-’ 1 gJ(g) 
in ZZ(q), for all x from 0 to a large enough srze : the size of the largest 
possible blocking set. We really need to calculate Only one of B, and Byzpk 
as they are equal. We then use the formula 

We shall not give all the details for calculating (g,), as it is quite easy, 
given the small sizes of the contigurations. Sk will be calculated directly by 
simple standard methods. Note that it is easier to calculate sk for smaller 
values of k, but it is easier to calculate rk for larger values. Hence we may 
choose k or q* -k as is convenient. 

(i) q = 2. This case is so small that we note only that there are no 
blocking sets of AG(2,2). 

(ii) q = 3. From Table 4.8: 

co= 133’(g,)= 1. 

(, =o. 

<* = 0. 
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C3= -13V1(g,).2= -133’.13.6.2= -12. 
(4=0. 

&=13-‘(g,).3= 133’.13.12.9/3!.3=54. 

Hence 

r~=(~)--l2(~)+54(~), for 4gkg9. 

Thus r9 = 1, r8 = 9, r, = 36, r6 = 72, rs = 54, r4 = 0. 
In each case, it is easy to check that r& = sk. Hence there are no blocking 

sets in AG(2, 3). 

(iii) q = 4. From Table 4.8: 

&=21-‘(g,)=l. 

(, = 0. 

[* = 0. 

[,=O. 

c4= -21-l (g,).2= -21-‘.21.10.2= -20. 

[s=O. 

(-6 = 0. 

[,=21-‘(g4).3=21-‘.21.20.16/3!.3= 160. 

is = 21 -‘(g,).3 = 21-i.21.10.3 = 30. 

c9= -2ll’(g,).4= -2ll’.21.20.16.9/4!.4= -480. 

[i0=21-‘[-(g,).4+(g,)S-(g,,).6]= -640+240-48= -448. 

Hence 

r,=(F)-20(~)+160(~)+30(~) 

-480(:)-448(i), for 6<k<16. 

Thus ri6= 1, r15 = 16, r8 =4440, r,= 1120, r,=O. 
Since r6 2 sg, then sg = 0 and B, = r6 - se = 0. We do not have to con- 

sider any k < 5 because from Table 4.8, 1 g ( < 5 and cg > 20 *g = g,,. This 
line of 5 points certainly does not correspond to a blocking set of AG(2,4). 
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Consider the sets of 7 points of AG(2,4) which contain a fine and inter- 
sect every line. There are then two possibilities, containing either 1 or 2 
lines: let a be the number of sets of type 3.g,, and let b be the number of 
sets of type 0.2,. We then have b = 16.10 = 160, and a + 26 = 20.43 = 1280. 
Hence s,=a+b= 1120. Thus B,=r,-s,=O. 

Consider the sets of 8 points of AG(2,4) that contain a line and intersect 
every line. There are then two possibilities, containing either 1 or 2 lines: 
let a be the number of sets of type 4.g,, and let b be the number of sets of 
type 1.2,. We now have b = 16.10.9 = 1440, and a + 2b = 20.3.6.4.4 = 5760. 
Hence sg = a + b = 5760 - 1440 = 4320. Thus B, = r8 - sg = 4440 - 4320 = 120. 
It is quite easy to check that each of these blocking sets is a configuration 
8,, which must therefore have a complementary configuration of the same 
We. 

There is no need to consider the sets of size 9 because they are com- 
plementary to subsets of size 7. Hence we have just shown that there are 
exactly 120 blocking sets of AG(2,4), and these all give an S3 subgeometry. 

(iv) q = 5. From Table 4.8: 

[()=31-‘(g,)= 1. 

(, =o. 

(* = 0. 

c3=o. 

1‘) = 0. 

is= -3lP(g,).2= -3lV’.31.15.2= -30. 

l6 = 0. 

1, = 0. 
is = 0. 

& = 31 -‘(g4).3 = 31-‘.31.30.25/3!.3 = 375. 

~,0=31P(g,).3=31-‘.31.20.3=60. 

t-1, = 0. 
[,2= -31-‘(g,).4= -31~‘.31.30.25.16/4!.4= -2000. 

113= -31-‘(g,).4= -31-‘.31.20.25.4= -2000. 
cl4 = 31 -‘(g9).5 = 31- *.31.30.25.16.6/5!.5 = 3000. 

1,5=31-1[-(gg).4+(g10).5-(g14).6]= -60+15,000-600=14,340. 
[,6 = 31 -‘[(g,,).5 - (g15).6] = 7500- 12,000= -4500. 

11, = 31 -‘C -&,,I.5 + (g&j - knl.6 + (gxJ.71 
= 1875 - 54,000 - 9000 + 10,500 = - 50,625. 
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Hence for 8 ,< k Q 25, 

Thus. 

r25 = 1, 

r24 = 25, 

r23 = 300, 

r22 = 2300, 

r21 = 12,650, 

rzo = 53,100, 

r ,9 = 176,500, 

r 18 = 475,000, 

r17 = 1,047,375, 

rj6 = 1,898,000, 

r15 = 2,809,700, 

r14 = 3,340,500, 

r 13 = 3,089,000, 

r12 = 2,103,000, 

r ,l = 961,500, 

rlo = 252,600, 

r9 = 28,375. 

r8 - - 0. 

We do not have to consider any k ,< 7 because, from Table 4.8, there is 
no linear geometry g with ) g] < 7 and cg = 30. 

Since r8 = 0 we have B, = 0. 
Consider the sets of 9 points of AG(2,5) that contain a line and intersect 

every line. There are then two possibilities, containing either 1 or 2 lines: 
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let a be the number of sets of type 4.g,, and let b be the number of sets of 
type O.g, (see the following diagram). 

We have b= 25.15 = 375, and a+2b = 30S4. Hence sg =a + b = 
53(150-3) = 125.147 = 18,375. Thus B, = r9--sg = 28,375-18,375 = 
10,000. (This is 0.49% of the total number of subsets of size 9 of AG(2,5).) 

Consider the sets of 10 points of AG(2,5) that contain a line and intersect 
every line. There are then two possibilities, containing either 1 or 2 lines: let 
a be the number of sets of type 5.g,, and let b be the number of sets of type 
1.2, (see the following diagram). 

We have that b = 25.15.16 = 6000, and a + 26 = 30.4.10.53 = 150,000. Hence 
s 10 = a + b = 150,000 - 6000 = 144,000. Thus B,, = Y,,, - slo = 252,600 - 
144,000= 108,600. (This is 3.32% of the total number of subsets of size 10 
of AG(2, 5)) 

Consider the sets of 11 points of AG(2,5) that contain a line and intersect 
every line. There are then three possibilities, containing either 1 or 2 lines: 
let a be the number of sets of type 6.g,, and let b be the number of sets of 
type 2.2, (see the following diagram). 

We have b=25.15.16.15/2=45,000, and a+2b= 30.4.10S3+ 30.6.102.52= 
600,000. Hence s,, = a + b = 600,000 - 45,000 = 555,000. Thus B,, = 
r11-311 = 961,500 - 555,000 = 406,500. (This is 9.12% of the total number 
of subsets of size 11 of AG(2,5).) 

Consider the sets of 12 points of AG(2,5) that contain a line and intersect 
every line. There are then five possibilities, containing 1, 2, or 3 lines: let a 
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be the number of sets of type 7.g2, let b be the number of sets of type 3.g,, 
and let c be the number of sets of type O.g, (see the following diagram). 

We have c = 2055.4 = 2000, and b + 3c = 25.15.16.15.14/3! = 210,000, and 
a+26+3c = 30(4.5.53+4.10.3.10.5.5+4.103.5) = 30(2500+30,000+20,000) 
= 1,575,OOO. Hence sIz = a + b + c = 1,575,OOO - 210,000 + 2000 = 
1,367,OOO. Thus B,, = r12 -s,* = 2,103,000 - 1,367,OOO = 736,000. (This is 
14.16% of the total number of subsets of size 12 of AG(2,5).) 

Consider the sets of 13 points of AG(2,5) that contain a line and intersect 
every line. There are then nine possibilities, containing 1, 2, or 3 lines: let a 
be the number of sets containing 1 line, let b be the number of sets contain- 
ing 2 lines, and let c be the number containing 3 lines (see the following 
diagram). 

We have c = 2000.13 -t 25.20 + 6.10.25 = 26,000 + 500 + 1500 = 28,000. Also 
b+3c=6.10.53+25.15.16.15.14.13/4!=7500+682,500=690,000. And a+ 
2b+3c = 30(4.53+4.3.5.10.5.5+6.102.52+4.3.103.5+104) = 30(500+ 
15,000+ 15,000+60,ooO+ 10,000)=3,015,000. Hence s,,=a+b+c= 
3,015,OOO - 690,000 + 28,000 = 2,353,OOO. Thus B,3 = r13 - s13 = 3,089,OOO - 
2,353,OOO = 736,000. (This checks with the value of B,, attained above.) 
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Summarizing, we have found the number Bk of blocking sets of AG(2,5) 
to be 

&=B,=...=B,=0, 

B, = B,, = 10,000 (0.49%), 

B,, = B,, = 108,600 (3.32%), 

B,, = B,,=406,500 (9.12%) 

B,, = B,3 = 736,000 (14.16%). 

4.11 EXAMPLE (Blocking sets in n( 10)). Suppose we wish to calculate 
the number b,, of blocking sets of size 55 in a projective plane of order 10. 
Using the formula of Theorem 4.7, we have 

where LrI=CCg=.x (-l)lgl (2) in Z7(10). 
Since the coefficient with 1, above is zero when x > 56, we need to 

calculate only the value of 1, for 0 < x < 56. That is, we need only to know 
the number of configurations in a plane of order 10 having cg 6 56. We 
have shown how to calculate the formula for any configuration with 
<6 points-it is a constant. For the configurations g with Z 7 points it is 
easy to show that cg is < 56 if and only if g is a 7-arc A, of the plane. (The 
k-arcs in general have the least “covering” numbers.) From Theorem 3.16, 
A, is an easily calculated constant for x < 56 and for x = 56 it is equal to a 
constant - (A,) in I7( 10). From Theorem 4.2, it follows that L,, is equal to 
a constant + the number (7,) of Fano subplanes of the plane. (Note that 
these calculations are actually for the dual plane, but this does not matter 
since the 7, is self-dual. In fact, since 8, is also self-dual, the number 
of linear subgeometries of a certain type with < 8 points in any finite 
projective plane is equal to the number in its dual.) 

From the above formula it follows that 6,s is equal to a constant K + the 
number (73) of subplanes of order 2 in the plane of order 10. We leave it to 
the interested reader to calculate the constant K. 

4.12 THEOREM (An indirect construction of blocking sets). Here we 
present an indirect construction of blocking sets in finite projective planes. 
Let M be a set of q + 1 lines of a projective plane 7~ of order q. Let S be the 
set of points of 7t on at least 2 lines of M. Then S is “usually” a blocking set. 
(This result is in the spirit of “asymptotic” geometry as expounded in the 
introduction to the paper by B. Segre [17].) 
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Proof: First it is clear that S contains no complete line--each line in M 
contains at most q points of S, and each line not in h4 contains at most 
i(q + 1) points of S. There remains to show that every line of IC contains at 
least one point of S-that is, no line intersects the q + 1 lines of it4 such 
that each of its q + 1 points is on a unique line of M. The number of the 
latter diagrams in 7~ is d = (q* + q + 1) qy + ‘. If we can show that d is less 
than the number e of sets of lines of size q + 1 in rc, it follows that there are 
sets of lines giving blocking sets. In particular, if we can show that d 4 e, 
for q large enough, then it follows that “most” sets of q + 1 lines of a 
projective plane of order q give a blocking set. 

We must show that d=(qZ+q+1)qY+‘<e=(~2:~:1), for q large 
enough. Now 

e=((q*+q+ 1)/(4+ 1)).((q2+q)/q)...((9*+3)/3).((q2+2)/2).(q2+ 1). 

Thus e>q+“. (q2/3).(q2/2).q2=e>qY+4/6. 
Hence d/e < 6. (q* + q + 1 )/q3. 

This holds if q 2 7; in fact the ratio d/e -+ 0 as q + 00. We can also check 
that if q=5 or 6 then d<e. 

CONCLUSIONS 

In “Rings of Geometries I,” the reader was shown a way of creating well- 
defined “geometrical structures” on different kinds of combinatorial objects. 
The reason was to create a kind of “black box” that could be used to solve 
various kinds of combinatorial problems involving substructures of these 
objects. This paper shows how to use the black box to solve problems in 
finite plane theory. However, as with any new technique, ad hoc methods 
still have to be used to achieve results with sufficient simplicity. 

The main emphasis of the paper is to count configurations in finite pro- 
jective planes, but behind this superficiality is the hope that a better 
understanding of these methods will lead to powerful proofs for the 
existence or non-existence of various kinds of geometrical structures. One 
way to show the non-existence would be to find collections of sub- 
geometries and positive coefficients for each of them such that the number 
of times they occur in the putative geometry is negative. The example given 
in this paper is that the projective plane of order 6 does not exist because 
the sum of the 7-arcs plus the Fano subplanes is negative in the ring of 
such a plane. A problem with this approach is the following. The investi- 
gation of larger planes (for example, of order 10) must deal with larger 
configurations. It is proposed to deal with this problem by considering 
more expansive definitions of subgeometry. This is why the general theory 
of “Rings of Geometries I” is useful-it is possible to vary the definition of 
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subgeometry to suit the precise problem, but also to remain within the 
same general framework. This allows the development of formulae that 
relate the numbers involving the different definitions and allows us to 
produce results unattainable by other means. 

The example in this paper of counting blocking sets is of significance. 
The logic of the author in attacking this problem was as follows. First, the 
methods to date were either to construct blocking sets directly using well- 
known configurations or to calculate them directly in the small planes. 
Second, since the number of configurations increases exponentially with 
size, the “direct” methods soon run into difficulty. The main idea was to 
use a definition of subgeometries in projective planes that “brought out” 
the numbers involved with blocking sets. Since complete lines are impor- 
tant for blocking sets, the type of geometry to define was obviously the 
“complete-line geometry” (see Definition 3.23). This led directly to the for- 
mulae (3.24) that convert them to the standard linear geometries. Then it 
was straightforward to derive the formula for blocking sets, which is 
obviously a much more efficient way to calculate the numbers of larger- 
sized blocking sets than the direct method. Once the number of blocking 
sets of a certain size is known, it makes the direct classification of the 
actual blocking sets much easier. 

Finally, it is observed that the connection between a projective plane and 
its dual has still not been fully exploited. Perhaps there are deeper formulae 
relating the plane and its dual and perhaps these will lead to improvements 
on the “fundamental theorems” of 3.16 and 3.21. (Obviously Theorem 3.21 
deals with both points and lines simultaneously, but we have still not used 
this connection to obtain some substantial results. Also, the formulae of 
3.24 relate the plane and its dual.) It is clear that there are many more 
basic results to be found. Also of interest would be an extension of these 
methods to types of combinatorial structures other than finite projective 
and affrne planes. 
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