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We present a determination of the isovector, P -wave ππ scattering phase shift obtained by extrapolating 
recent lattice QCD results from the Hadron Spectrum Collaboration using mπ = 236 MeV. The finite 
volume spectra are described using extensions of Lüscher’s method to determine the infinite volume 
Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence 
of this effective theory to obtain the scattering amplitude at mπ = 140 MeV. The scattering phase 
shift is found to agree with experiment up to center of mass energies of 1.2 GeV. The analytic 
continuation of the scattering amplitude to the complex plane yields a ρ-resonance pole at Eρ =[

755(2)(1)( 20
02 ) − i

2 129(3)(1)( 7
1 )

]
MeV. The techniques presented illustrate a possible pathway towards 

connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible 
quantities.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The spectrum of hadronic resonances has long served as a win-
dow into the non-perturbative nature of Quantum Chromodynam-
ics (QCD), the fundamental theory of the strong force. Hadronic 
resonances are color-singlet combinations of the fundamental de-
grees of freedom of QCD (quarks, anti-quarks, and gluons). They 
are observed as unstable resonant enhancements in the scatter-
ing of QCD stable hadrons, such as the pion. A simple example of 
a hadronic resonance is the ρ that occurs in ππ scattering. The 
non-perturbative nature of QCD makes direct determination of the 
properties of hadronic resonances a challenging task.

Presently, the only means to study properties of low-energy 
hadronic states in a systematically improvable way is to perform a 
non-perturbative numerical evaluation of the QCD path-integral, by 
statistically sampling the gauge fields in a discretized finite volume 
to obtain correlation functions. This program is known as lattice 
QCD. The last decade has witnessed a tremendous advance in the 
ability of the lattice QCD community to connect experimental phe-
nomena directly to the standard model of particle physics. It is not 
unreasonable to expect that in the upcoming decade most “sim-
ple” observables, such as masses, decay constants and elastic form 
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factors of low-lying QCD stable particles, will be computed using 
physical values of the quark masses and QCD+QED gauge configu-
rations (see Refs. [1–3] for recent progress in this direction).

For hadronic resonances, and in general systems involving two 
or more stable hadrons, the challenges are far greater and further 
technological and formal developments are needed (see Refs. [4–7]
for recent reviews on the topic). In order to kinematically sup-
press multiparticle channels, many excited state calculations are 
performed using unphysically massive light quarks. Thus, it is de-
sirable to devise a scheme for performing a controlled extrapola-
tion to the physical mass.

As a step towards developing such a program, we present the 
first extrapolation of a resonant scattering amplitude obtained 
from lattice QCD. Specifically, we analyze isovector, P -wave ππ
spectra in the elastic scattering region that have been deter-
mined by the Hadron Spectrum Collaboration using dynamical quark 
masses corresponding to mπ = 236 MeV [8].

Lattice QCD uses a discrete and finite spacetime. Discretization 
provides a natural high energy regulator for QCD and if a fine 
enough spacing is used this introduces negligibly small effects in 
the spectrum. Working in a finite, periodic volume transforms the 
continuum of infinite volume scattering states into a discrete spec-
trum of states. The non-perturbative mapping between finite and 
infinite volume observables was first derived in Refs. [9,10] and is 
commonly referred to as the “Lüscher method”.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The mappings between finite and infinite volume amplitudes 
cannot be one-to-one due to two important facts. First, the reduc-
tion of rotational symmetry from a continuous group to a discrete 
group (e.g., cubic) assures mixing between different partial waves. 
Second, having lost the notion of asymptotic states, finite vol-
ume states will necessarily be an admixture of different hadronic 
states with the same quantum numbers (e.g., ππ and K K in the 
I = 1 channel). Many theoretical advances have guided the field. 
For example, several references have discussed the feasibility of 
studying coupled-channel scattering in a finite volume [11–14]
(see Refs. [15,16] for the first application of this formalism to the 
study of π K , ηK ) as well as three-body systems [17–20]. These 
methods become increasingly cumbersome when applied to highly 
energetic few-body systems, such as exotic or hybrid resonances 
[21–23], as well as the phenomenologically interesting charm and 
bottom decays (e.g., D → ππ/K K [13,24]), where multiple few-
body channels are open.

In this work, we investigate one of the most studied low-lying 
resonances, the ρ [8,25–31]. The ρ is an isotriplet with J P C = 1−− , 
and it decays strongly to ππ nearly 100% of the time [32]. Its 
mass, ∼ 770 MeV, lies above the ππ and 4π thresholds, and is 
less than half a width [�ρ ∼ 145 MeV] away from the 6π thresh-
old. The coupling to these channels are experimentally observed to 
be negligible, which would suggest that the finite volume effects 
associated with these thresholds are suppressed. Further work is 
needed to confirm and quantify this suppression.

To circumvent these subtleties, we perform an extrapolation 
to the physical point of the ππ scattering phase shift computed 
at mπ = 236 MeV [8]. At these quark masses, the 4π , 6π and 
K K thresholds lie well above the ρ resonance and can be safely 
ignored. To perform the extrapolation we use Unitarized Chiral Per-
turbation Theory (UχPT) [33–37], which we summarize below. The 
parameters of UχPT at mπ = 236 MeV are chosen in order to re-
produce the lattice QCD spectrum, and once this is done the pion 
mass is set to its experimental value and a postdiction for the 
scattering phase shift is obtained. Although superficially the need 
to extrapolate may seem undesirable, the avoidance of thresholds 
makes this conjunction of a phenomenological effective field the-
ory with the Lüscher method a fruitful alternative to a determina-
tion of the phase shift at the physical point.

UχPT was previously advocated in the literature as a tool to de-
termine physical resonances from lattice QCD [38–46], and it has 
been used in the study of the quark-mass dependence of the ρ
mass [47].1 Instead of focusing on the pole of the resonant ampli-
tude, which has been the main focus of previous chiral extrapo-
lations, we fit the full resonant amplitude. Given the correlation 
between the energy- and quark-mass dependence of these am-
plitudes, we find that this is sufficient to obtain the quark-mass 
dependence of the amplitude and consequently its pole.

In Ref. [8], a total of 22 ππ energy levels are obtained below 
the 4π/K K thresholds. Also determined are energy levels above 
these thresholds, and from them the K K phase shift and ππ, K K
inelasticity are obtained using the formalism first presented in 
[12,13]. In this work, we analyze only the states in the elastic re-
gion. To relate these to an infinite volume scattering amplitude, 
M(P ), we use the generalization of Lüscher’s formalism for two 
degenerate scalar particles in moving frames [9,10,49–51]

det[F −1(P , L) +M(P )] = 0 , (1)

where F (P , L) is a function that depends on the total four-
momentum P and the spatial extent of the cubic volume L, and 

1 It also has been used to determine the low-energy coefficients (LECs) for heavy-
light systems by studying the quark-mass dependence of the scattering phase shifts 
of weakly repulsive channels [48].
the determinant acts on the space of spherical harmonics (for an 
exact definition of these quantities see Ref. [50]). This expression 
is exact up to exponentially suppressed corrections that scale as 
e−mπ L , which we can safely ignore given that mπ L ≈ 4.4 for the 
lattice used [8].2 Because the two particles are degenerate, odd 
and even partial waves do not couple, even when the system is 
in flight. Furthermore, in Ref. [8] it was shown that in the elastic 
region the � ≥ 3 phase shifts are consistent with zero. Therefore, 
Eq. (1) effectively gives a one-to-one relation between the spec-
trum and the elastic (�, I) = (1, 1) ππ scattering amplitude. For 
real values of the relative momentum, q, the inverse of the scat-
tering amplitude is related to the scattering phase shift δ in the 
standard way [50]

q cot δ I
� = 16π E	

ππ Re

[(
MI

�

)−1
]

, (2)

where E	
ππ = 2

√
q2 + m2

π is the total energy in the center of mass 
(c.m.) frame.

We use SU(2) UχPT to obtain the ππ amplitude. Just like 
standard χPT [53–58], UχPT allows one to evaluate observables 
analytically in a perturbative expansion defined by (mπ/4π fπ )2, 
where fπ = 92.2 MeV [32] is the decay constant of the π . At 
each order in the expansion, one can write the scattering ampli-
tude as a function of a finite number of LECs. At leading-order 
(LO) in the expansion only two LECs appear (m0 and f0). At next-
to-leading order (NLO) four other LECs emerge (�r

i=1–4). See Ap-
pendix A for the Lagrangian as well as perturbative expressions for 
the pion mass, decay constant, and the pion–pion scattering ampli-
tude. When performing the fit to the lattice spectrum, we fix m0
such that mπ = 236 MeV. Given that the decay constant has not 
been determined, f0 is fixed to reproduce the experimental value 
of fπ .3 The �r

i cannot be directly obtained from the physical val-
ues of the mass and decay constant, but can be accessed from the 
scattering amplitude. For the � = 1 partial wave, only two linear 
combinations of these are needed to describe the scattering phase 
shift (α1 ≡ −2�r

1 + �r
2 and α2 ≡ �r

4). As discussed below, we fix 
these parameters by performing a fit to the lattice spectrum. Al-
though the �r

i are quark-mass independent in principle, by ignoring 
higher-order corrections the LECs will absorb a mild quark-mass 
dependence. See Ref. [60] for a recent review and discussion in 
the context of standard χPT.4

The distinguishing feature of UχPT is its use of a procedure 
commonly referred to in the literature as the Inverse Amplitude 
Method [33,35,36] to ensure that the scattering amplitude satis-
fies unitarity. Effectively, in UχPT s-channel diagrams are summed 
in a geometric series using perturbation theory to all orders, while 
t- and u-channel diagrams are treated perturbatively to a finite or-
der in the expansion described above.5 This procedure empirically 
extends the range of applicability of standard χPT to c.m. energies 
on the order of 1.2 GeV. Furthermore, unlike standard χPT, UχPT 
has been shown to accurately describe low-lying resonances with a 
finite number of LECs [33,35,36], making it a desirable tool for the 
study of resonances from lattice QCD. By truncating the chiral ex-

2 A subset of these exponential corrections has been determined for the ππ
states with � = 0 [52] and � = 1 [38] partial waves.

3 For progress towards determining the decay constant of the ground state and 
excited states of the π using these lattices, we point the reader to Ref. [59].

4 In Ref. [47] it is argued that these effects might be large for UχPT and higher 
order corrections might be needed. In this work we ignored higher order correc-
tions, and these will be incorporated in future studies.

5 We point the reader to Ref. [61,47] for a rigorous derivation using dispersive 
techniques [62–64]. The authors are not aware of such a derivation for inelastic 
processes, e.g., π K → ηK [15,16].
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Fig. 1. Shown is the values of atm� previously determined for four different val-
ues of quark masses (black circles) [65,8]. The green band depicts the fit to these 
masses using Eq. (4). The physical point is denoted by the dashed line. By fixing the 
resulting value of atm� to atmphys.

� we obtain a[2]
t = 0.1630(14) GeV−1. (For inter-

pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

pansion to NLO, one can write the unitarized scattering amplitude 
(see Appendix B for the derivation),

MUχPT = MLO
1

MLO −MNLO
MLO, (3)

where MLO and MNLO are the LO and NLO χ P T amplitudes de-
tailed in Appendix A.

To perform a chiral extrapolation we must determine the lattice 
spacing. We use two definitions of the lattice spacing. First, we use 
the � baryon mass, which has been determined to be atmlatt.

� =
0.2789(16) at these quark masses [8]. By setting this equal to 
atm

phys.
� , where mphys.

� = 1672.45(29) MeV is the mass of physical 
� baryon, we obtain the lattice spacing a[1]

t = 0.1668(10) GeV−1. 
Second, as shown in Fig. 1, we perform an extrapolation to the 
physical point of the lattice � baryon mass using

m�(mπ ) = m�,0 + α
m2

π

m2
�

+ β
m4

π

m4
�

(4)

determined for four different values of atmπ
atm�

∈ [0.14–0.33] [65,8]. 
We find a[2]

t = 0.1630(14) GeV−1 with a χ2/d.o.f. = 0.52. Assum-
ing that a[1]

t should coincide with a[2]
t , we perform all fits using 

both of these lattice spacings and any deviation of the result is in-
corporated into the systematic error. All central values below are 
obtained using the mean value of a[1]

t . As shown below, this 2%
error is the largest source of uncertainty in our final result. It is 
important to recognize that this systematic error is improvable.

We determine the two unknown LECs by fitting the 22 energy 
levels obtained at a single quark mass and spatial volume. In prac-
tice, we input the UχPT amplitude into Eq. (1) and compute the 
spectra for a given set of LECs, EUχPT({αi}). By varying these LECs 
we minimize the χ2({αi}), defined as

χ2({αi}) =
∑

j,k

δE j({αi})C−1
j,k δEk({αi}) (5)

where δE j({αi}) =
[

E lat
j − EUχPT

j ({αi})
]

, and { j,k} run over all 22 
energy levels. As with the energy levels themselves, the elements 
of the covariance C matrix were provided by the Hadron Spec-
trum Collaboration [8]. The fit results in χ2/Nd.o.f. = 1.26 for SU(2) 
UχPT and is shown in Fig. 2 compared to the lattice determined 
phase shifts. The LECs and correlations are found to be

α1(770 MeV) = 14.7(4)(2)(1) × 10−3

α2(770 MeV) = −28(6)(3)
( 01

11

) × 10−3

[
1 −0.98

1

]
(6)

The first uncertainty is statistical, the second is the systematic 
due to the determination of the π mass and the anisotropy of 
Fig. 2. Shown is the I = 1 ππ phase shift obtained from the lattice QCD spectrum 
determined at mπ = 236 MeV as a function of the c.m. energy. The band corre-
sponds to the SU(2) UχPT fit. The dashed line shows the 4π threshold. We do not 
show two noisy energy levels.

Fig. 3. I = 1 ππ phase shifts at three pion masses. In red we show the lattice-
determined phase shifts, along with the SU(2) UχPT fit to the spectrum at mπ =
236 MeV. The green band shows the extrapolation to the experimental pion mass. In 
blue we show the discrete points from the lattice calculation at mπ = 391 MeV [26]
and the extrapolation from the parameters determined from this 236 MeV fit. The 
extrapolated bands include both statistical and systematic errors discussed in the 
text. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

the lattice,6 and the third is an estimate of the systematic due 
to the determination of the lattice spacing. The symmetric matrix 
on the right of the coefficients denotes the statistical correlation 
between the two. By analytically continuing the scattering am-
plitude to complex values of s = (E	

ππ )2 we obtain a resonance 
pole on the unphysical sheet, corresponding to taking the nega-
tive root when computing the c.m. momentum q	 . At these quark 
masses, we find a ρ pole at Eρ = 782(2) − i

2 85(2) MeV with a 
width, �ρ ≡ −2 Im(Eρ) = 85(2) MeV. We observe good agreement 
with the result from the Hadron Spectrum Collaboration where the 
poles were determined using other parameterizations of the scat-
tering amplitude. This emphasizes the fact that the lattice QCD 
spectrum properly constrains the scattering phase shift indepen-
dently of the parameterization chosen.

The power of the UχPT amplitude is that it allows one to ex-
trapolate these quantities as a function of pion mass. In Fig. 3
we show the result of this exercise using the mean values of the 
coefficients in Eq. (6) and propagating both statistical and sys-
tematic uncertainties. We show the postdiction for mπ = 140 MeV
and mπ = 391 MeV, where an earlier calculation also extracted 
the ππ scattering amplitude containing the ρ resonance [26]. We 
emphasize that in Ref. [47] it is clearly explained that UχPT is 
not expected to reliably describe lattice QCD results above mπ ∼
300–350 MeV. Despite this formal constraint and the slight devi-
ation at mπ = 391 MeV from the lattice results, UχPT produces 

6 The π mass was determined in lattice units to be atmπ = 0.03928(18). The 
anisotropy of that lattice is defined as ξ = as/at where as and at are the lattice 
spacings in the spatial and temporal extents. The anisotropy has been determined 
to be ξ = 3.4534(61).
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Fig. 4. Extrapolations of the phase shift determined at mπ ≈ 236 MeV (green) to 
the physical point done using SU(2) and SU(3) in blue and red respectively. The ex-
trapolated bands include only statistical error. For an estimate of systematics and 
a comparison with experimental data, see Fig. 5. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

phase shifts that resemble both experimental and lattice determi-
nations as a function of mπ .

In Fig. 4 we show a comparison of the results of the ex-
trapolation using SU(2) and SU(3) versions of UχPT. Given that 
SU(3)-breaking effects are large, SU(3) χ P T has a poorer conver-
gence than that the SU(2) counterpart. Therefore, we expect the 
SU(3) extrapolation to have a significantly larger systematic uncer-
tainty. Assessing such systematic lies outside of the scope of the 
present work.

In Fig. 5 we present our final result for the chiral extrapolation 
of the ππ phase shift using SU(2) UχPT. The result includes a 
propagation of statistical and systematic uncertainties. The largest 
uncertainty is due to the determination of the lattice spacing, 
where we aim to be conservative. Overall, we find good agree-
ment with the experimental phase shift [66,67] up to center of 
mass energies of 1.2 GeV, well above the 4π , 6π , K K and 8π
thresholds. By analytically continuing the amplitude into the com-
plex plane, we find a postdiction of the ρ pole at the physical 
point Eρ =

[
755(2)(1)( 20

02 ) − i
2 129(3)(1)( 7

1 )
]

MeV.

In order to compare with experimental determinations of the 
mass and width of the ρ , we must restrict out attention to those 
determinations which have used the model-independent defini-
tions mρ = Re(Eρ) and �ρ = −2 Im(Eρ). We contrast this with 
the standard procedure of quoting the mass and width parameters 
appearing in the Breit–Wigner parametrization of the scattering 
amplitude (as is done in the Particle Data Group book [32]). Only 
in the very narrow width limit do these two definitions coincide.

In Fig. 6 we show our determination of the ρ pole. For compar-
ison we show those obtained in Refs. [68,62,54,69–71] by solving 
the Roy equation [72] and using experimental data as input. Since 
these results cover a large area, we highlight a dark point which 
Fig. 6. We compare our determination of the ρ pole [red square] with previous 
lattice calculations [blue circles] performed using unphysically heavy quark masses 
where the ρ is stable [65] as well as unstable [26,8]. This is compared with pole 
determinations obtained from solutions to the Roy equation [72] constrained from 
experimental data [gray diamonds] [68,62,54,69–71]. Using these we highlight a 
black diamond whose uncertainty is defined to include all determinations from 
these references up to one standard deviation. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)

encompasses all pole positions. Identifying this as an estimate of 
the overall systematic and statistical uncertainty, we find good 
agreement with our determination. We also show the pole position 
obtained in previous lattice QCD calculations [65,26,8], including 
those where the ρ is stable. This plot serves as a nice illustration 
of the trajectory being taken by the ρ pole as a function of mπ . 
For heavy quark masses, the ρ is stable and its pole lies on the 
real axis. As the quark mass decreases, the ρ becomes unstable 
and acquires a non-zero width, sending the pole off the real axis.

We compare the LECs determined here with those deter-
mined in Refs. [46,47,37]: α1(770 MeV) × 103 ∈ [9, 13] and 
α2(770 MeV) × 103 ∈ [1, 12]. We observe a qualitative discrep-
ancy between our determination of α2 and those determined in 
these references. This can be explained by two facts. First, as dis-
cussed in Ref. [34], the (�, I) = (1, 1) amplitude primarily depends 
on α1. Second, as mentioned above, the definition and value of 
these parameters depend on higher order corrections in the chiral 
expansion [47]. We suspect that by performing simultaneous fits of 
various channels while including higher order corrections one will 
see a convergence of these results. Implementing these techniques 
for channels including scalar resonances like the f0(500) would 
require using the modified Inverse Amplitude Method to have the 
correct analytic structure below threshold [61,47]. The implemen-
tation of this awaits the lattice QCD calculation of these channels 
using mπ = 236 MeV.

Final remarks: We present the first extrapolation of a resonant 
amplitude from lattice QCD. To perform the extrapolation we used 
Fig. 5. Shown is the extrapolation to the physical quark masses of the (�, I) = (1, 1) ππ scattering phase shift. This is plotted as a function of the c.m. energy (E	
ππ ). The 

darker blue inner band includes only statistical uncertainty, while the lighter outer band also includes systematic uncertainties explained in the text. We see good agreement 
with the experimental phase shift shown as black circles [66] and green squares [67]. The dashed lines denote the 4π , 6π , K K and 8π thresholds, which appear to play a 
negligible role. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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UχPT, an effective field theory that at low-energies coincides with 
χPT and at high-energies generates resonances dynamically. In 
this framework, resonances are manifested naturally as singulari-
ties in amplitudes. We observe that this effective field theory does 
a remarkable job in describing the recent results of the Hadron 
Spectrum Collaboration. Using the lattice QCD spectrum to con-
strain the LECs of the theory, we find good agreement with the 
experimentally measured ππ scattering phase shift up to energies 
above the 8π and K K thresholds illustrating the significance of 
this result. We observe the extrapolated amplitude to have a pole, 
corresponding to the ρ meson, which agrees with previous deter-
minations using dispersive analysis of experimental ππ scattering 
data.

It is desirable to study more complex systems such as highly 
energetic exotic hadrons (e.g., the π1(1400) resonance) or heavy 
meson weak decays (e.g., D → ππ/K K [13,24]), however it is not 
yet clear when a finite volume formalism rigorously accommodat-
ing all open multiparticle channels will be available. We demon-
strate that by properly constraining the scattering amplitude at a 
value of the pion mass where fewer channels are kinematically 
open, one can perform an extrapolation to the physical point.

These methods may be applied to obtain a wide range of 
hadron scattering amplitudes that are presently being extracted 
from lattice QCD, in both the light and heavy quark sectors [26,
73,74,15,16,28,75,76]. It is hoped that these concepts could be ex-
tended and applied to scattering processes containing highly ex-
cited and exotic resonances to gain deeper understanding of QCD 
and the excited spectrum of hadrons.
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Appendix A. Chiral Lagrangian and scattering amplitude

Here we present the key results of SU(2) χPT as derived in 
Ref. [58]. The relevant terms of the leading order (LO) and next-to-
leading order (NLO) terms of the chiral Lagrangian (in the isospin 
limit mu = md),

LLO = f 2
0

4
Tr

(
∂μU∂μU †

)
+ m2

0 f 2
0

4
Tr

(
U † + U

)

LNLO = �1

4

[
Tr

(
∂μU∂μU †

)]2

+ �2

4

[
Tr

(
∂μU∂νU †

)][
Tr

(
∂μU∂νU †

)]

+ m4
0 �3

16

[
Tr

(
U † + U

)]2

+ m2
0 �4

Tr
(
∂2U † − ∂2U

)
+ . . . , (A.1)
4

are written in terms of the parameters f0 (related to the pion de-
cay constant) and m0 (related to the pion mass), and the matrix of 
pion fields,

U = exp

{
i

f0

(
π0

√
2π+√

2π− −π0

)}
. (A.2)

Divergences associated with loops with LO vertices are removed by 
renormalizing the �i LECs from the NLO Lagrangian and physical 
quantities depend on the renormalized LECs �r

i (μ). We use μ =
770 MeV in this work. At this order in the chiral expansion, it is 
convenient to introduce μ-independent expressions for the LECs, 
�̄i(m0), that depend on the value of m0,

�r
i = γi

32π2

[
�̄i + ln

(
m2

0/μ
2
)]

, (A.3)

where γ1 = 1

3
, γ2 = 2

3
, γ3 = −1

2
, and γ4 = 2.

We use the standard NLO expressions [56–58] for the physical 
pion mass and decay constant,

m2
π = m2

0

[
1 − 1

32π2

m2
0

f 2
0

�̄3(m0) + . . .

]
, (A.4)

fπ = f0

[
1 + 1

16π2

m2
0

f 2
0

�̄4(m0) + . . .

]
, (A.5)

to solve for m0 and f0 perturbatively. To fix m0 we use the value 
of mπ that has been determined on the lattice, mlatt.

π . Since fπ has 
not been determined for these lattices, we resort to fixing fπ using 
the experimental value, f exp.

π . This approximation forces us to use 
two different values of mπ in our fits. More explicitly, for m0 we 
use,

m2
0 ≈ (mlatt.

π )2

[
1 + 1

32π2

(mlatt.
π )2

f 2
0

�̄3(m
latt.
π ) + . . .

]
(A.6)

≈ (mlatt.
π )2

[
1 + 1

32π2

(mlatt.
π )2

( f exp.
π )2

�̄3(m
latt.
π ) + . . .

]
, (A.7)

were the ellipses denote corrections that appear at higher orders 
in the chiral expansion. Similarly, for f0,

f0 ≈ f exp.
π

[
1 − 1

16π2

(mexp.
π )2

( f exp.
π )2

�̄4(m
exp.
π ) + . . .

]
. (A.8)

The amplitudes depend on 1/ f 2
0 , which we write here perturba-

tively

1

f 2
0

≈ 1

( f exp.
π )2

[
1 + 2

16π2

(mexp.
π )2

( f exp.
π )2

�̄4(m
exp.
π ) + . . .

]
. (A.9)

The scattering amplitude prior to partial-wave projection, 
A(s, t, u), can be written as

ALO(s, t, u) = s − m2
π

f 2
π

ANLO(s, t, u) = s − m2
π

f π2

(mexp.
π )2

8π2 f 2
π

�̄4(m
exp.
π ) − m4

π

32π2 f 4
π

�̄3(mπ )

+ 1

6 f 4
π

{
3(s2 − m4

π ) J̄ (s)

+
[
t(t − u) − 2m2

π t + 4m2
π u − 2m4

π

]
J̄ (t)

+
[

u(u − t) − 2m2
π u + 4m2

π t − 2m4
π

]
J̄ (u)

}
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+ 1

96π2 f 4
π

{
2(�̄1(mπ ) − 4/3)(s − 2m2

π )2

+ (�̄2(mπ ) − 5/6)
[

s2 + (t − u)2
]

− 12m2
π s + 15m4

π

}
, (A.10)

where

J̄ (s) = 1

16π2

{√
1 − 4m2

π/s ln

[√
1 − 4m2

π/s − 1√
1 − 4m2

π/s + 1

]
+ 2

}
.

(A.11)

Note that in Eq. (A.10) we have implemented the perturbative 

expressions for m2
0 and 

1

f 2
0

described above. In Eq. (A.10) and 

Eq. (A.11) we use the notation mπ = mlatt.
π and fπ = f exp.

π . The 
amplitude A(s, t, u) can then be projected into a partial wave �
using,

M� = 1

2

1∫
−1

dz P�(z) A(s, t(s, z), u(s, z)) (A.12)

where z = cos θ and θ is the s-channel c.m. frame scattering angle. 
In this work, we also project onto the I = 1 channel,

M1(s, t, u) = M(t, s, u) −M(u, t, s). (A.13)

One can show that the only linear combinations of LECs contribut-
ing to the isotriplet scattering amplitude are α1 ≡ −2�r

1 + �r
2 and 

α2 ≡ �r
4, which are the ones determined in this work.

Appendix B. The inverse amplitude method

Although UχPT has been extensively discussed in the literature, 
here we sketch the derivation of Eq. (3) presented in Ref. [36] in 
an effort to make this article more self-contained. The basic idea, 
as already mentioned above, is to assure that unitarity is satisfied 
exactly at each order in the chiral expansion. We begin by giving 
the standard relation between the S-matrix and the partial-wave 
projected scattering amplitude, M,

S = 1 + 2iσM, (B.1)

where σ = q/16π E	
ππ . Unitarity enforces

Im(M) = σ |M|2, (B.2)

which is the familiar Optical Theorem. This condition can be 
rewritten as

Im(M−1) = −σ , (B.3)

which leads us to

M = (Re(M−1) − iσ)−1. (B.4)

If M is evaluated perturbatively as detailed in Appendix A, 
M =MLO +MNLO + . . . , we can expand its inverse to find,

M−1 = M−1
LO

1

1 +M−1
LO MNLO + . . .

= M−1
LO

(
1 −M−1

LO MNLO + . . .
)

. (B.5)

Since MLO is real,

Re(M−1) = M−1
LO

(
1 −M−1

LO Re(MNLO) + . . .
)

, (B.6)

which we insert into Eq. (B.4) to find,
M = 1

M−1
LO

(
1 −M−1

LO Re(MNLO) + . . .
)

− iσ

≈ MLO
1

MLO − Re(MNLO) − iσM2
LO

MLO. (B.7)

Finally, let us return to Eq. (B.2) and enumerate the unitarity 
constraints order by order,

LO : Im(MLO) = 0

NLO : Im(MNLO) = σ |MLO|2 = σM2
LO. (B.8)

Thus, putting Eq. (B.8) into Eq. (B.7), we reproduce Eq. (3).
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