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Abstract

Let F be a compact surface and let I be the unit interval. This paper gives a standard form for all 2-sided
incompressible surfaces in the 3-manifold F]I. It also supplies a simple su$cient condition for when 2-sided
surfaces in this form are incompressible. Since F]I is a handlebody when F has boundary, the paper applies
to incompressible surfaces in handlebodies. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction and notation

Let M be a 3-dimensional manifold and let XLM be a properly embedded surface. A compres-
sion disk for XLM is an embedded disk DLM such that LDLX, int(D)L(MCX), and LD is an
essential loop in X. The surface XLM is incompressible if there are no compression disks for
XLM and no component of X is a sphere that bounds a ball. If XLM is connected and 2-sided,
then X is incompressible if and only if the induced map n

1
(X)Pn

1
(M) is injective and X is not

a sphere that bounds a ball. See, for example, [2, Chapter 6].
Let F be a compact surface and let I be the unit interval [0, 1]. The manifold F]I is foliated by

copies of I, which can be thought of as vertical #ow lines.
This paper shows that every properly embedded, 2-sided, incompressible surface in F]I can be

isotoped to a standard form, called &&near-horizontal position''. A surface in near-horizontal
position is transverse to the #ow on F]I in the I direction, except at isolated intervals, where it
coincides with #ow lines. Near each of these intervals, the projection of the surface to F looks like
a bow-tie, where the center point of the bow-tie is the projection of the interval. A surface in
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near-horizontal position can be described combinatorially by listing its boundary curves and the
number of times it crosses each line in a certain "nite collection of #ow lines.

Not every 2-sided surface in near-horizontal position is incompressible. This paper gives a simple
su$cient condition that insures that a 2-sided surface in near-horizontal position is incompressible.
To deal with surfaces that do not meet this condition, the paper outlines an easy algorithm for
deciding when a 2-sided surface in near-horizontal position is incompressible. The su$cient
condition and the algorithm are based on an analysis of graphs immersed in surfaces.

When F is a compact surface with boundary, then F]I is a handlebody. So the paper applies, in
particular, to incompressible surfaces in handlebodies.

Throughout this paper, all maps are continuous unless otherwise stated. If E is a topological
space, then DED denotes the number of components of E. The symbol I denotes the unit interval
[0, 1]. If M is a manifold, then LM refers to the boundary of M and int(M) refers to its interior. The
symbol F refers to a compact surface, and p denotes the projection map F]IPF.

The surface XLM is a proper embedding if int(X)Lint(M), LXLLM, and the intersection of
X with a compact subset of M is a compact subset of X. The map G : X]IPM is a proper isotopy
between GD

X]0
and GD

X]1
if for all t3I, GD

X]t
is a proper embedding. In this paper, all surfaces in

3-manifolds are intended to be properly embedded and all isotopies are intended to be proper
isotopies.

If i :S1PF is a map of a loop into a surface, the image i (S1) is essential in F if the induced map
i
*

: n
1
(S1)Pn

1
(F) is injective.

A connected surface XLM is boundary parallel if X separates M and there is a component K of
MCX such that (closure(K), X) is homeomorphic to (X]I, X]0).

Call a map g :M
1
PM

2
between topological spaces an immersion if g is locally injective; that is,

for each point x3M
1
, there is a neighborhood ; of x such that g takes distinct points of ; to

distinct points of M
2
.

2. De5nition of near-horizontal position

Let X be a surface in F]I. Let CLF be the union of loops and arcs p (XW (F]1)), let
C @"p(XW(F]0)), and let B"XW(LF]I).

X is in near-horizontal position if

1. C and C@ intersect transversely,
2. each component of B is an arc with one endpoint on LF]1 and one endpoint on LF]0,
3. pD

B
: BPLF is injective,

4. pD
XCp~Ç(CVC{)

is a local homeomorphism, and
5. for each point z3CWC@, there is a neighborhood ;LF of z such that p~1(;)WX either

looks (in X) like the region

682 L.E. Green / Topology 39 (2000) 681}710



or else looks (in X) like a union of regions of the form

Here, thick lines are used to draw p~1(C)WX and thin lines are used to draw p~1(C @ )WX. Dotted
lines are used for boundary arcs of p~1(;)WX that are not part of p~1(C)WX or p~1(C@ )WX. Call
the dashed vertical line of p~1(CWC@) in the "rst picture a vertical twist line.

3. Examples of surfaces in near-horizontal position

Suppose that X is a surface in near-horizontal position and let C, C@, and p (B) be the unions of
loops and arcs of F described above. By de"nition of near-horizontal position, C, C@, and p (B) have
the following properties:

1. C and C@ intersect transversely.
2. Each arc of p (B) has one endpoint in LC and one endpoint in LC@.
3. L(p(B))"LCXLC@.

Furthermore, a surface X in near-horizontal position determines a function

N : components of FC(CXC@)"non-negative integers

de"ned as follows. For each component r of FC(CXC@) and each point y3int(r), N(r) counts the
number of times X intersects y]I. It is easy to check that N has the following properties:

4. If r is a component of FC(CXC@) with an edge in p(B), then N (r)"1.
5. If r is a component of FC(CXC@) with an edge in LFCp(B), then N (r)"0.
6. If r

1
and r

2
are two components which meet along an arc of C or an arc of C@, then

DN(r
1
)!N (r

2
)D"1.

7. If r
1
, r

2
, r

3
, and r

4
meet at a common vertex, then either

MN(r
1
), N(r

2
), N (r

3
), N(r

4
)N"M0, 1N

or the set MN (r
1
), N (r

2
), N(r

3
), N(r

4
)N contains 3 distinct numbers.

The "rst possibility occurs if and only if the common vertex is the projection of a vertical twist
line.

Conversely, suppose that C and C@ are two unions of disjoint arcs and loops in F, that p(B) is
a union of disjoint arcs of LF, and that

N : components of FC(CXC@)"non-negative integers

is a numbering scheme satisfying conditions (1)} (7) above. Then the information (C, C@, p (B), N)
determines a unique surface in near-horizontal position.

L.E. Green / Topology 39 (2000) 681}710 683



Fig. 1. An example of a surface in near-horizontal position.

Fig. 1 depicts a genus 1 surface with 4 boundary loops, in near-horizontal position in R2]I. The
projection of the surface to R2 is drawn at left. Vertical twist lines, which project to points, are
marked with dots. Loops of C are drawn with thick lines, and loops of C@ are drawn with thin lines.
The shading re#ects the fact that the surface is 2-sided, with stripes on one side and solid color on
the other. The corresponding combinatorial description is given at right.

4. Putting incompressible surfaces in near-horizontal position

The "rst major result of this paper is the following theorem.

Theorem 4.1. ¸et F be a compact surface. Suppose that XLF]I is a properly embedded, 2-sided,
incompressible surface. ¹hen X is isotopic to a surface in near-horizontal position.

Remark. In general, it is not possible to isotope a 2-sided incompressible surface XLF]I to
avoid all vertical tangencies. For example, it is not hard to see that if XLF]I is a connected,
separating surface that is not homeomorphic to a subsurface of F, then X must have vertical
tangencies.

Since the proof of Theorem 4.1 is long and detailed, it is postponed until the end. See Section 11.

5. A su7cient condition

It is not true that every surface in near-horizontal position is incompressible. For example, the
surface in Fig. 1 compresses in R2]I. The rest of this paper addresses the problem of when
a 2-sided surface in near-horizontal position is incompressible. The analysis begins with the notion
of cross-over curves.
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Fig. 2. Z lies entirely to one side of i(a)Xi (b) near i(e).

Suppose that XLF]I is a surface in near-horizontal position. Let C"p (LXW(F]1)) and
C@"p (LXW (F]0)).

Let Z be the quotient of X obtained by collapsing each vertical twist line to a point. The quotient
Z is a surface with a set of singular points p (<), where < is the union of twist lines of X. The
projection p : XPF induces a natural immersion of Z in F.

Let Y be the abstract union of the closures of components of CCp(<), and let Y@ be the abstract
union of the closures of components of C@Cp(<). For each curve cLYXY@, let i (c) be the image of
c in F.

Form a quotient Q of YXY@ by identifying the endpoint e3La and f3Lb, for arcs aLY and
bLY@, if i(e)"i ( f ) and Z lies entirely to one side of i(a)X i(b) near i(e). See Fig. 2.

The map i :YXY@PF induces a map QPF which will also be denoted by i. For each
component cLQ, the arc or loop i(c) is a cross-over curve of X. See Fig. 3.

Each cross-over curve of X is a 1-manifold which is immersed in F away from points of p (<).
Each cross-over curve has no triple points and has double points contained in the set CWC@. Each
arc of CCp(<) and C@Cp(<) is traversed exactly once by a cross-over curve.

The following technical lemma about cross-over curves will be used in Section 7.

Lemma 5.1. ¸et XLF]I be a 2-sided surface in near-horizontal position. ¸et < be the union of the
vertical twist lines and let i(c) be a cross-over curve. ¹hen i(c) passes through each point of p (<) at most
once. Furthermore, if i (c) is an arc, then the endpoints of i(c) lie in distinct components of
p(LXW (LF]I)).

Proof. Suppose that X is colored red on one side and blue on the other. Call a component A of
XCp~1(CXC@) red-side-up if the #ow lines from F]0 to F]1 that pass through A cross from the
blue side of A to the red side. Call the component blue-side-up if the #ow lines cross from the red
side to the blue side, instead. Since A is transverse to the #ow lines by condition 4 in the de"nition
of near-horizontal position, the notion of red-side-up and blue-side-up is well-de"ned.

The curve c can be written as the union of arcs

a
1
Xb

1
Xa

2
X2Xa

n
Xb

n
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Fig. 3. A cross-over loop.

or as

a
1
Xb

1
Xa

2
X2Xa

n

or as

b
1
Xa

2
X2Xa

n
Xb

n

where each a
i
is an arc of CCp(<) and each b

i
is an arc of C@Cp(<). Notice that at each vertical twist

line, one piece of XCp~1(CXC@) that is red-side-up meets another piece of XCp~1(CXC@) that is
blue-side-up. By de"nition of cross-over curves, each a

i
meets b

i
at a point of p(<) and each b

i
meets

a
i`1

at a point of p(<). It follows that for any i, if a
i
]1 is part of the boundary of a blue-side-up

component of XCp~1(CXC@), then b
i
]0 is part of the boundary of a red-side-up component of

XCp~1(CXC@), and a
i`1

]1 is part of the boundary of a blue-side-up component, and so on. Thus,
either every a

i
]1 is part of the boundary of a blue-side-up component of XCp~1(CXC@) and every

b
i
]0 is part of the boundary of a red-side-up component, or vice versa.
From this analysis, it is possible to conclude that i(c) passes through each point of p(<) at most

once. Otherwise c would contain two arcs a
i
and a

j
on opposite sides of a twist line such that a

i
]1

is part of the boundary of a red-side-up component of XCp~1(CXC@) and a
j
]1 is part of the

boundary of a blue-side-up component.
If i(c) is an arc, it is possible to conclude that the endpoints of i (c) lie in distinct components of

p(LXW (LF]I)). Suppose, instead, that the two endpoints bound the same arc p(q), where q is
a component of LXW(LF]I). Assume without loss of generality that q is part of the boundary of
a piece of XCp~1(CXC@) that is red-side-up. By condition 2 in the de"nition of near-horizontal
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position, one endpoint of q lies on LF]1 and the other lies on LF]0. Therefore, c must have the
form

a
1
Xb

1
Xa

2
X2Xa

n
Xb

n
.

That is, its "rst arc lies in C and its last arc lies in C@. But since q bounds a piece of XCp~1(CXC@)
that is red-side-up, so do both a

1
]1 and b

n
]0, contradicting the discussion above. K

The following theorem gives a su$cient condition for a 2-sided surface in near-horizontal
position to be incompressible.

Theorem 5.2. Suppose that XLF]I is a 2-sided surface in near-horizontal position. Suppose that for
each cross-over curve i (c) of X,

1. i
*
: n

1
(c)Pn

1
(F) is injective, and

2. i (c) lifts to an embedded curve in the covering space of F corresponding to i
*
n
1
(c).

¹hen X is incompressible in F]I.

In particular, if XLF]I is a 2-sided surface in near-horizontal position with no twist lines, and
if all loops in C and C@ are essential in F, then X is incompressible.

Remark. If X has no disk components, then condition (1) is a necessary condition. To see this,
notice that it is possible to embed each cross-over loop c in X so that p (c) is isotopic to i (c) by
a small isotopy. In this embedding, cLX is either parallel to a loop of LX or else passes through
a vertical twist line in exactly one point. In the "rst case, cLX is essential in X unless X has disk
components. In the second case, cLX is essential in X. Therefore, if XLF]I is incompressible
and has no disk components, c must be essential in F]I, and therefore, p(c)Ki(c) must be essential
in F.

6. Immersions of surfaces

The proof of Theorem 5.2 uses facts about immersions of surfaces in surfaces, which are
interesting in their own right.

Suppose that h : bPF is an immersion of a loop b into a surface F. F has a covering space
F qPF such that q

*
n
1
(F)"h

*
n
1
(b). If h (b) is essential in F, then F is a cylinder; otherwise F is a

plane. The map h : bPF lifts to a map hI : bPF. The loop hI (b) may or may not be embedded in F.

Lemma 6.1. Suppose that R is a compact surface with boundary, that F is a compact surface, and that
h : RPF is an immersion. ¹hen the following two statements are equivalent:

1. For each boundary loop bLLR, h(b) lifts to an embedded loop in the covering space of F
corresponding to h

*
n
1
(b).

2. ¹here is a covering space FK of F and a lift hI :RPFK such that hI (R) is embedded in FK .
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Fig. 4. This immersed surface is not n
1
-injective. The dotted line shows a curve that is essential in the genus 1 surface but

inessential in the pair of pants.

Corollary 6.2. Suppose that R is a compact surface with boundary which is not a disk, that F is
a surface, and that h :RPF is an immersion. Suppose that for each boundary loop bLLR, h (b) lifts
to an embedded loop in the covering space corresponding to h

*
n
1
(b). ¹hen the induced map

h
*
: n

1
(R)Pn

1
(F) is injective if and only if for each boundary loop b of R, h(b) is essential in F.

The assumption that R is not a disk is unimportant, since if R is a disk, then h
*

: n
1
(R)Pn

1
(F) is

automatically injective.
The corollary does not hold without the assumption that the boundary loops lift to embedded

loops. Fig. 4 shows a genus 1 surface with 2 boundary loops that is immersed in a pair of pants. The
immersed surface has essential boundary curves but does not induce an injective map on funda-
mental groups.

Proof of Lemma 6.1. It is easy to see that statement (2) implies statement (1). Suppose that statement
(1) holds. For each loop bLLR, let F

b
be the covering space of F corresponding to h

*
n
1
(b). Let

q
b
:F

b
PF be the covering map, and let hI

b
(b) be the lift of b to F

b
. By assumption, hI

b
(b) is embedded.

If h(b) is not essential in F, then F
b
is a plane, and F

b
ChI

b
(b) consists of a disk and a cylinder. If

h(b) is essential in F, then F
b

is a cylinder and F
b
ChI

b
(b) consists of two cylinders.

Let N(b) be a collar neighborhood of b in R. Since h is an immersion and q
b
is a covering map,

there is a collar neighborhood N(hI
b
(b)) of hI

b
(b) in F

b
and a component K of N(hI

b
(b))ChI

b
(b) such

that q
b
(K)"h (N(b)Cb). Let A

b
be the component of F

b
ChI

b
(b) that does not contain K. Thus,

q
b
sends points of A

b
near hI

b
(b) to points of F on the opposite side of h (b) from h(R).

Construct the covering space F] of F by gluing each component A
b
onto R along the boundary

curve b. That is, let

F] "ARX Z
b|/R

A
bBNMx\hI

b
(x)D∀x3b, ∀bLLRN.
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De"ne q' :F] PF by

q'"G
h(x) if x3R ,
q
b
(x) if x3A

b
.

Since h is an immersion of a compact surface and each q
b
is a covering map, the map q' is a covering

map. The obvious embedding of R in F] is the desired lift hK . K

Proof of Corollary 6.2. Suppose that there is a boundary loop b of R such that h(b) is not essential
in F. Since R is not a disk, b is essential in R. Therefore, b represents an element of n

1
(R) which lies

in the kernel of the map h
*

: n
1
(R)Pn

1
(F).

Conversely, suppose that for each boundary loop b of R, h(b) is essential in F. By Lemma 6.1,
there is a covering space F] of F and a lift h) : RPF] such that h) (R) is embedded in F] . For each loop
b3LR, h(b) is essential in F, and therefore h) (b) is essential in F] . So h) (R)LF] is an embedded
subsurface with essential boundary. Consequently, h)

*
:n

1
(R)Pn

1
(F] ) is injective. So h

*
:n

1
(R)P

n
1
(F) is injective as well. K

Suppose that h : bPF is an immersion of a circle into F. A singular monogon for h (b) is a subarc
aLb with distinct endpoints, such that i(a) is a closed loop in F which is not essential. The loop i (a)
may or may not be embedded.

An essential immersed loop with no singular monogons always lifts to an embedded loop in an
appropriate covering space, as the following lemma shows.

Lemma 6.3. Suppose that b is a circle and F is a surface. Suppose that h : bPF is an immersion such
that h(b) is essential. ¹hen h(b) lifts to an embedded loop in the covering space corresponding to
h
*
n
1
(b) if and only if h (b) has no singular monogons.

Proof. Let F
b
be the covering space of F corresponding to h

*
n
1
(b) and let h) : bPF

b
be the lift of

b to F
b
. Consider the universal cover R of b and the universal cover R2 of F. Since h (b) is essential,

h lifts to a map hI :RPR2. Notice that h(b) has singular monogons if and only if hI has singular
monogons, and hI has singular monogons if and only if hI has double points. But hI has double points
if and only if h) (b) has double points; that is, if and only if h) (b) is not embedded. K

Lemma 6.3, together with the proof of Corollary 6.2, imply the following restatement of
Corollary 6.2.

Corollary 6.4. Suppose that R is a compact surface with boundary which is not a disk, that F is
a surface, and that h : RPF is an immersion. Suppose that for each boundary loop bLLR, h(b) has no
singular monogons. ¹hen the induced map h

*
: n

1
(R)Pn

1
(F) is injective if and only if for each

boundary loop bLLR, h(b) is essential in F.

7. Proof of the su7cient condition

Proof of Theorem 5.2. Let XLF]I be a surface that satis"es the hypotheses of the theorem. The
following argument proves that the induced map n

1
(X)Pn

1
(F]I) is injective, which implies that

X is incompressible in F]I.
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Fig. 5. An example of &
X
, where X corresponds to the surface in Fig. 3.

As in Section 5, let Z be the quotient of X obtained by collapsing each twist line in X to a point.
Notice that each cross-over curve of X embeds in Z. Let R

X
be the surface obtained by gluing

a collar S1][0, e] or [0, 1]][0, e] to each cross-over loop or arc, respectively, embedded in Z. See
Fig. 5. The projection map p : XPF extends to an immersion j : R

X
PF.

Since the quotient map q : XPZ and the inclusion Z)R
X

are homotopy equivalences,
q
*
: n

1
(X)Pn

1
(R

X
) is an isomorphism. The projection map p : F]IPF is also a homotopy

equivalence, so p
*
: n

1
(F]I)Pn

1
(F) is also an isomorphism. Therefore, n

1
(X)Pn

1
(F]I) is

injective if and only if (pD
X
)
*

: n
1
(X)Pn

1
(F) is injective. Similarly, j

*
: n

1
(R

X
)Pn

1
(F) is injective if

and only if j
* 3

q
*

: n
1
(X)Pn

1
(F]I) is injective. Since pD

X
"j
3
q, it follows that n

1
(X)Pn

1
(F]I)

is injective if and only if j
*
: n

1
(R

X
)Pn

1
(F) is injective.

The case when LC"LC@"0 is most straightforward. In this case, for each boundary loop
b3LR

X
, j(b) is parallel to a cross-over loop i (c)LF. By assumption, all cross-over loops are

essential in F and lift to embedded loops in appropriate covering spaces of F. Therefore by
Corollary 6.2. j

*
: n

1
(R

X
)Pn

1
(F) is an injection. Thus, n

1
(X)Pn

1
(F]I) is an injection, as wanted.

The proof of the general case follows. Let the triplet (X@, F@, F@]I) be an isomorphic copy of
(X, F, F]I), which can be thought of as its mirror image. Let B"XW (LF]I), and let
B@"X@W(LF@]I). Let (X] , F] , F] ]I) be the triplet constructed from (XXX@, FXF@, (F]I)X (F@]I))
by identifying X and X@ along corresponding points of B and B@, identifying F and F@ along
corresponding points of p (B) and p(B@), and identifying F]I and F@]I along corresponding points
of p (B)]I and p (B@)]I.
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The surface X] LF] ]I is in near-horizontal position. Furthermore, since XLF]I is 2-sided
by assumption, X] LF] ]I is also 2-sided.

Notice that the inclusion XLX] induces an injective map n
1
(X)Pn

1
(X] ). Therefore, to prove

that n
1
(X)Pn

1
(F]I) is injective, it is enough to show that n

1
(X] )Pn

1
(F] ]I) is injective. Since

X] WLF] "0, it will su$ce to show that X] LF] ]I satis"es the hypothesis of the theorem and apply
the previous case.

Observe that X] LF] has the same twist lines as XLF. Furthermore, each cross-over loop of X] is
either a cross-over loop of XLF, a cross-over loop of X@LF@, or the union of a cross-over arc of
X with the corresponding cross-over arc of X@.

Let i (c) be a cross-over loop of X] . Suppose "rst that i(c) is a cross-over loop of XLF. Then i(c) is
essential in F by hypothesis. Since n

1
(F)Pn

1
(F] ) is injective, i (c) is essential in F] as well. Let F and

F] be covering spaces of F and F] , respectively, with fundamental group i
*
(n

1
(c)). Then F appears

as a subsurface of F] . Since i(c) lifts to an embedding in F, i (c) lifts to an embedding in F] as well.
The same arguments apply when i(c) is a cross-over loop of X@.

Suppose, instead, that i (c) is the union of a cross-over arc i (d) of X with the corresponding
cross-over arc i (d@) of X@. Let b be a component of B such that p(b) shares an endpoint with i (c).
Since X] is 2-sided, i (d) has endpoints in distinct arcs of B, by Lemma 5.1. Therefore, p (b) intersects
i (c) exactly once. Since p (b) is an arc of F] with endpoints in LF] , it follows that i(c) is an essential loop
of F] . Let F] be the covering space of F] with fundamental group i

*
(n

1
(c)). Let F be the universal

covering space of F and let F@ be the universal cover of F@. The surface F] can be formed by gluing
togetherF and F@ along pieces of their boundary in such a way that the lift of i (d) to F and the lift
of i(d@) to F@ glue up to form a lift of i (c) to F] . Since the lifts of i (d) and i (d@) are embedded, so is the
lift of i (c). K

8. Immersed graphs and switch moves

As observed in the proof of Theorem 5.2, n
1
(X)Pn

1
(F]I) is injective if and only if

j
*

: n
1
(R

X
)Pn

1
(F) is injective, where j : R

X
PF is an immersion of surfaces. Therefore, to decide

when a 2-sided surface in near-horizontal position is incompressible, it is enough to solve the
following problem. (For brevity, call a continuous map f : XP> loop-injective if the induced
homomorphism n

1
(X)Pn

1
(>) has trivial kernel.)

Problem 1. Find an algorithm to determine if an immersion of a compact surface in a surface is
loop-injective.

In fact, if R is a compact surface without boundary, then any immersion i : RPF is a covering
space. Therefore, by covering space theory [4], it is automatically loop injective.

Suppose that R is a compact surface with boundary. Then an immersion i :RPF can be
deformed to an immersion of a compact graph in F. One way to deform i (R) is to triangulate R and
repeatedly collapse triangles with edges in LR until a one-dimensional &&spine'' is reached.

Therefore, Problem 1 can be solved by "guring out Problem 2.

Problem 2. Find an algorithm to determine if an immersion of a compact graph in a surface is
loop-injective.
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Fig. 6. An immersed graph and its regular neighborhood.

For simplicity, only &&general position'' immersed graphs are considered in the following dis-
cussion. Suppose that i :GPF is a immersion of a graph G into a surface F. Say that x3F is
a double point if i~1(x) contains exactly two points. The immersed graph i (G) is in general position if

1. for each x3F, i~1 (x) contains at most two points, and
2. at each double point x3F, two edges of G intersect transversely.

Suppose i : GPF is a general position immersed graph. Let i :RPF be the immersed surface
obtained as a regular neighborhood of i (G) (Fig. 6). Corollary 6.4 shows that Problem 2 is easy to
solve if i (R) has no singular monogons in its immersed boundary loops. To solve the problem in
general, it will help to de"ne a move to get rid of monogons.

Suppose that there is a boundary loop bLLR that contains a singular monogon. Let x be the
double point of i : GPF corresponding to the vertex of the monogon. Let e and f be the edges of
G that contain preimages of x. Orient the loop b, and orient e and f to agree with the orientation of
b near x. (This is possible even when e"f.) A switch move on i (G) is performed by

1. cutting e and f along i~1(x),
2. regluing in the way that disrepects orientation, and
3. isotoping the resulting immersed graph to lie in general position.

See Fig. 7.
A switch move preserves loop-injectivity:

Lemma 8.1. Suppose that the immersed graph i@(G@) is obtained from the immersed graph i (G) by a
monogon switch move. ¹hen i@

*
:n

1
(G@)Pn

1
(F) is injective if and only if i

*
:n

1
(G)Pn

1
(F) is injective.

Proof. Glue a disk D to G by identifying LD to the arc of the monogon in G. By de"nition, the
map i sends LDLG to a non-essential loop of F. Therefore, the map i can be extended across D to
a map j : GXDPF. It is easy to see that i :GPF and i@ : G@PF are both deformation retracts of the
map j : GXDPF. See Fig. 8. K
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Fig. 7. A switch move.

Fig. 8. Switch moves preserve n
1
-injectivity.
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9. An algorithm

When G is a circle, work of Peter Scott and Joel Hass [1] yields a well-known algorithm for
solving Problem 2, which is included here for completeness.

Theorem 2.7 of [1] states:

Theorem. ¸et f : S1PF be a general position loop on an orientable surface F which is homotopic to an
embedding but is not an embedding. ¹hen there is an embedded monogon or digon for f.

An embedded monogon for f :S1PF is a subarc aLS1 such that f (a) is a closed loop, f D
*/5(a) is

injective, and f (a) bounds a disk of F. An embedded digon is a pair of disjoint subarcs a and b of
S1 such that f Da and f Db are embeddings, and f (aXb) bounds a disk D of F with

f (a)X f (b)"LD and f (a)W f (b)"f (La)"f (Lb)

By this theorem, if F is orientable and f : S1PF has no embedded monogons or digons, then i (S1)
must either be essential or bound an embedded disk in F. This makes the following algorithm work.

Algorithm when G 5 S1 and F is orientable
1. Decide if i (S1) has any embedded monogons or digons.

f If so, remove one by cutting and pasting, and repeat Step 1.

f If not, continue.
2. Decide if i (S1) bounds an embedded disk in F

f If so, i IS NOT loop-injective.
f Otherwise, i IS loop-injective.

This algorithm terminates in "nitely many steps, since each application of Step 1 eliminates at
least one double point.

If F is non-orientable, then Theorem 3.5 of [1] still applies.

Theorem. ¸et f : S1PF be a general position loop on a surface F. If f has excess self-intersection,
then f has a singular monogon or a weak digon.
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A singular monogon is de"ned in Section 6. A weak digon is a pair of subarcs a and b such that
f identi"es the endpoints of a with those of b and the loop formed by f Da and f Db is null-homotopic
in F.

The algorithm for when F is orientable can be modi"ed as follows:

Algorithm when G 5 S1 and F is non-orientable
1. Decide if i (S1) has any singular monogons or weak digons.

Singular monogons can be located as follows:
(a) orient S1,
(b) choose a double point,
(c) form two loops by cutting and pasting i (S1) at this double point, in a way that respects the

orientation of S1, and
(d) apply this algorithm recursively on these two loops to decide if either is non-essential in

F (and therefore a singular monogon).
Weak digons can be located, similarly, starting with two double points.

f If i (G) has any singular monogons or weak digons, then remove one by cutting and pasting,
and repeat Step 1.

f If not, continue.
2. Decide if i (G) bounds an embedded disk in F.

f If so, i IS NOT loop-injective.
f Otherwise, i IS loop-injective.

The algorithm when G is any compact graph is also straightforward.

Algorithm in general
1. Decide whether G is a tree.

f If it is, then i: GPF IS loop-injective.
f Otherwise, continue.

2. Draw R, the immersed surface that is a regular neighborhood of i (G), and look for singular
monogons in the immersed boundary loops of R. Singular monogons can be located using one
of the previous two algorithms.

f If there is a singular monogon, perform a switch move and repeat Step 2 with the new
general position immersed graph.

f Otherwise, continue.
3. Decide whether all immersed boundary loops of R are essential, using one of the previous two

algorithms.
f If so, then i :GPF IS loop-injective.
f Otherwise, i : GPF IS NOT loop-injective.

The conclusions in Step 3 follow from Corollary 6.4.
Notice that the general algorithm terminates after "nitely many steps, since each switch move

decreases the number of double points of the immersed graph.
See Figs. 9 and 10 for some examples of this algorithm.
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Fig. 9. Two examples of the algorithm. F is a thrice-punctured disk in the "rst example, and a once-punctured disk in the
second.

Fig. 10. A further example of the algorithm. F is a disk with 4 punctures.
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Fig. 11. A system of arcs Ma
i
N.

10. Classi5cation

The results of this paper suggest an alternative method to normal surface theory [3] for "nding
the incompressible surfaces in a handlebody (up to isotopy). Here is a sketch of the procedure.

1. Write the handlebody as F]I, where F is a punctured disk.
2. List all possible collections of curves C, C@, and p(B) that satisfy conditions (1)} (3) in the

de"nition of near-horizontal position, given in Section 2. Collections of boundary loops that
are isotopic need only be listed once.

3. Assign numbers to the regions of FC(CXC@) according to the rules set out in Section 3. The
numbers determine surfaces in near-horizontal position.

4. Determine which of these surfaces are incompressible, using the algorithm of Section 9.

One way to accomplish Step 2 above is outlined as follows. Fix a system of arcs Ma
i
NLF such

that Ma
i
]IN divides F]I into solid pairs of pants. See Fig. 11. Notice that each component of

FCMa
i
N is a hexagon with sides that alternate between arcs of LFCMLa

i
N and arcs of Ma

i
N. Create

a collection of curves C, C@, and p (B) using the following steps.

f Assign a non-negative integer to each arc of LFCMLa
i
N and an ordered pair of non-negative

integers to each arc of Ma
i
N. Assign numbers in such a way that for each hexagon H of FCMa

i
N, the

numbers along the three arcs of LFCMLa
i
N that are sides of H, together with the "rst coordinates in

the ordered pairs along the three arcs of Ma
i
N that are sides of H, all add up to an even number.

The sum should also be even if the second coordinates in the ordered pairs are used instead of the
"rst coordinates.

The number assigned to an arc of LFCMLa
i
N will specify how many segments of p(B) are

contained in that arc. The "rst coordinate and second coordinate in the ordered pair assigned to
an arc of Ma

i
N will specify how many times the curves of C and C@, respectively, intersect that arc.

f For each arc a
i
, draw m

i
black points and n

i
white points on a

i
, where (m

i
, n

i
) is the ordered pair

assigned to a
i
. For each arc b

j
of LFCMLa

i
N, draw k

j
gray points on the arc, where k

j
is the number

assigned to b
j
.

f For each hexagon of FCMa
i
N, draw non-intersecting black arcs in the hexagon such that the

endpoints of the black arcs are exactly the union of the black points and the gray points. This can
be done in "nitely many ways, up to isotopy. Similarly, draw non-intersecting white arcs in the
hexagon such that the endpoints of the white arcs are exactly the union of the white points and
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Fig. 12. Black and white arcs in a hexagon.

the gray points. The black arcs and the white arcs may intersect, but should be chosen to intersect
transversely. See Fig. 12.

f Black arcs from neighboring hexagons "t together and white arcs from neighboring hexagons "t
together to create a set of curves on F. Call the black curves C, the white curves C@, and stretch
the gray points into small intervals to get a set of arcs p(B). The curves C, C@, and p(B) satisfy
properties (1), (2), and (3) in the de"nition of near-horizontal position.

11. Proof of near-horizontal position

This "nal section contains the proof of Theorem 4.1.

Proof of Theorem 4.1. Notice that it is possible to isotope X (leaving it "xed outside a neighbor-
hood of LX), so that LX satis"es requirements 1}3 in the de"nition of near-horizontal position.
Therefore, assume that C intersects C@ transversely, that each component of B is an arc with one
endpoint in LF]1 and one endpoint in LF]0, and that pD

B
is an embedding, where C, C@, and B are

de"ned as above.
Suppose that X contains components X

1
, X

2
,2X

n
that are boundary parallel disks. Each

X
i
can be isotoped so that pD

Xi
is an embedding and so that p(LX

i
) is disjoint from p(LXCLX

i
).

Therefore, if XC(X
1
XX

2
X2XX

n
) can be isotoped to near-horizontal position, so can X. So

without loss of generality, assume that X has no components that are boundary parallel disks.
Since X is incompressible, this assumption insures that all loops in C and C@ are essential in F.

All isotopies in the rest of the proof will leave LX "xed.
Let A be the union of vertical strips and annuli C][0, 1] and let A@"C@][0, 1]. The plan of the

proof is as follows. First, a notion of &&pseudo-transverse'' is de"ned and a measure of complexity is
given for surfaces that are pseudo-transverse to AXA@. Then three moves are described which
decrease this complexity. In Step 1, X is isotoped so that it is pseudo-transverse to A and A@. In
Step 2, X is isotoped using the three moves as many times as possible. Next, six claims are veri"ed

698 L.E. Green / Topology 39 (2000) 681}710



about the position of X. In Step 3, X is isotoped so that the projection map p is injective when
restricted to any arc or loop of XW (ACA@) and XW(A@CA) . In Step 4, X is isotoped so that p is
locally injective everywhere except at twist lines. This completes the proof of the theorem.

Say that XLF]I is pseudo-transverse to AXA@ if the following three conditions hold:

1. For any point z3 (C!C@) there is a neighborhood;LF of z such that p~1(;)WX is a disjoint
union of regions of the form

Here, thick lines represent arcs of p~1(C)WX and dashed lines represent arcs of B. Dotted lines
represent arcs in the boundary of p~1(;)WX that are not part of p~1(C)WX or B. One of the
last two pictures occurs if and only if z3LC. Note that the third and "fth pictures do not occur
when the surfaces p~1(C) and X are actually transverse along their common boundary. These
two pictures re#ect the possibility that the surfaces could be tangent at z3LC, where their
intersection forms a half-saddle critical point.

2. For any point z3 (C@!C) , there is a neighborhood U of z such that p~1(;)WX is a disjoint
union of regions of the form

Here, thin lines represent arcs of p~1(C@)WX and dashed and dotted lines are used as above. One
of the last two pictures occurs if and only if z3LC@.

3. For any point z3 (CWC@) , there is a neighborhood; of z such that p~1(;)WX is either a single
region of the form

or else a disjoint union of regions of the form
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Fig. 13. Move 1 disks.

Suppose X is pseudo-transverse to AXA@. De"ne the complexity of X by

f (X)"(DXW(AWA@) D, rank H
1
(XWA)#rank H

1
(XWA@))

ordered lexicographically. Consider the following three moves.

Move 1. Suppose D is a disk of A such that DWX"LD and LDWA@"0. Then D can be used to
isotope X relative to LX and decrease f (X). The isotopy leaves X in the class of pseudo-transverse
embeddings. If the roles of A and A@ are interchanged, an analogous move is possible.

Explanation of Move 1. Since X is incompressible in F]I, LD bounds a disk D@ in X (see Fig. 13).
The set DXD@ forms a sphere in F]I, which must be embedded since int(D)WX"0. Since F]I is
irreducible, the sphere bounds a ball, which can be used to isotope X relative to LX. If LDWLX"0,
then D@ can be pushed entirely o! of LD, and one component of XWA is eliminated. Components of
XW(AWA@), components of XWA@, and additional components of XWA may also be removed if
int(D@)W (AXA@)O0, but no new components of any kind are added. Therefore, f (X) goes down.
If, instead, LDWLXO0, then the isotopy of X relative to LX must leave LDWLX "xed. But this
isotopy still decreases the rank of H

1
(XWA) without increasing the rank of H

1
(XWA@) or the

number of components of XW(AWA@).
The explanation is analogous if the roles of A and A@ are interchanged.

Move 2. Suppose E is a disk in F]I whose boundary consists of two arcs a and p. Suppose that
EWX"p and that EWA"EWA@"a. Then E can be used to isotope X relative to LX and
decrease f (X). The isotopy leaves X in the class of pseudo-transverse embeddings.

Explanation of Move 2. Consider three cases depending on how many points of Lp lie in LX. See
Figs. 14 and 15.

Case 1. Both endpoints of p lie in int(X). Then X can be isotoped in a neighborhood of p so that
it moves through E and slips entirely o! of a. This isotopy decreases by two the number of
components of XW(AWA@).

Case 2. One endpoint of p lies in int(X) and one endpoint lies in LX. Now X cannot be isotoped
relative to LX entirely o! a since the endpoint of Lp in LX must remain "xed. But X can still be
pushed o! int(a) and o! the free endpoint, lowering the number of components of XW(AWA@)
by one.
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Fig. 14. Move 2 disks.

Case 3. Both endpoints of p lie in LX. Notice that one endpoint must lie in XW (F]1) and one
must lie in XW(F]0), since a is a vertical line connecting them. In this case X can be isotoped
relative to LX in a neighborhood of p to move p directly onto the vertical line a and produce a twist
around this vertical line resembling the "rst picture in condition (3) of the de"nition of
pseudo}transverse embeddings. This isotopy decreases the number of components of XW(AWA@)
by one, since it transforms the two endpoints of Lp into a single vertical line.

Move 3. Suppose that = is an annulus contained in A such that =WA@"0, that L= is
the boundary of an annulus of XCA, and that the loops of L= do not bound disks in A.
Then = can be used to isotope X and decrease f (X). The isotopy leaves X in the class of
pseudo-transverse embeddings. A similar move is possible if the roles of A and A@ are interchanged
(Fig. 16).
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Fig. 15. Using move 2 disks to isotope X.

Fig. 16. Move 3 annuli.

Explanation of Move 3. Let G be the annulus of XCA such that LG"L=, and let F
0
]I be the

closure of the component of F]ICA that contains G. Let A
0
be the component of A that contains=.

The main claim behind Move 3 is that=XG bounds a solid torus in F
0
]I and that the loops of

L= are longitudes for this solid torus. This claim is easiest to prove when= is embedded in A
0

in
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such a way that for each point x3p(A
0
), (x]I)WL= contains exactly two points, one for each loop

of L=. However, even if= is embedded in A
0

in a more complicated way,=XG can be isotoped
within F

0
]I until L= has this property, since the loops of L= have degree 1 in A

0
by assumption.

If the isotoped version of=XG bounds a solid torus and the loops of L= are longitudes, then the
same is true for the original version. Therefore, it will su$ce to prove the claim under the
assumption that for each point x3p(A

0
), (x]I) WL= contains two points.

By assumption, p(A
0
) is essential in F. So F

0
is not a disk. Therefore, it is possible to "nd

a properly embedded arc p in F
0
, with at least one endpoint on p (A

0
), which is not homotopic

relative boundary to an arc in p (A
0
). Isotope G relative to LG so that it is transverse to p]I. The

intersection of p]I with G is a union of arcs and loops.
It is possible to isotope G relative to LG to remove any loops by the following argument. Pick

a loop j of (p]I)WG that is innermost in p]I. Let D be the disk it bounds in p]I. The loop
j cannot be homotopic in G to LG, since p(LG) is essential in F. So j must bound a disk D@ in G. The
set DXD@ forms a sphere in F]I, which must be embedded since j is innermost in p]I. Since F]I
is irreducible, the sphere bounds a ball which can be used to isotope G relative to LG to remove the
loop j. All loops of (p]I)WG can be removed similarly.

For each endpoint x3LpWp(A
0
), (x]I)WL= consists of two points by assumption: one

for each loop of L=. Therefore, (p]I)WG consists of one or two arcs. Let b be an arc of (p]I)WG.
Suppose that b stretches between distinct components of Lp]I. Then b will necessarily have
both endpoints in the same loop of L=, and so b will be homotopic in G relative boundary into
L=. Therefore p (b) will be homotopic in F

0
relative boundary into p (A

0
) . Since b stretches across

p]I, p will be homotopic in F
0

relative boundary into p(A
0
) as well. But this violates the choice

of p.
So b does not stretch between distinct components of Lp]I. Instead, it has both endpoints on

the same vertical interval of Lp]I. Thus b, together with a subinterval of Lp]I, bounds a subdisk
E of p]I.

Since LE intersects each loop of L= in one point, E does not bound a disk in=XG. Instead, E is
a compression disk for the torus =XGLF

0
.

Since F
0
]I is irreducible and L= is not contained in a ball,=XG must bound a solid torus.

Furthermore, since LE intersects each loop of L= in one point, the loops of L= are longitudes of
the solid torus, as claimed. It follows that the solid torus can be used to isotope X relative to LX by
pushing G through=.

Notice that L= and LX share at most one component. If L= and LX are disjoint, then the
isotopy removes at least two components of XWA. If L= and LX share a component, the isotopy
removes at least one component of XWA. In either case, the isotopy decreases the rank of
H

1
(XWA) without increasing the rank of H

1
(XWA@) or the number of components of XW(AWA@).

The explanation is analogous if the roles of A and A@ are interchanged.
Call the type of disk used in Move 1 a move 1 disk, the type of disk used in Move 2 a move 2 disk,

and the type of annulus used in Move 3 a move 3 annulus.
Step 1: Isotope X relative to LX so that it is pseudo-transverse to AXA@. This can be

accomplished, for example, by making X honestly transverse to AXA@. Then the only pictures that
can occur are the "rst, second and fourth pictures in condition (1), the "rst, second and fourth
pictures in condition (2) and the second, third and fourth pictures in condition (3) of the de"nition
of pseudo-transverse.
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Fig. 17. Endpoints of k go to distinct vertical lines of AWA@.

Step 2: Suppose F]I contains a move 1 disk, a move 2 disk, or a move 3 annulus. Use it to
isotope X. Repeat this step as often as necessary, until there are no more such disks or annuli. The
process must terminate after "nitely many moves, since each move decreases f (X).

At this stage, X already has a neat posture with respect to AXA@. In particular, the following
claims hold, where K is any component of XC(AXA@) and ¸]I is the component of (F]I)C(AXA@)
that contains K.

Claim 1. Suppose that k is an arc contained in XW(ACA@) with both endpoints in AWA@. ¹hen either
the endpoints of k go to distinct vertical lines of (AWA@) or else k wraps all the way around an annulus
of A. ¸ikewise for arcs of XW(A@CA). See Fig. 17.

Claim 2. For any point z3CCC@, there is a neighborhood ; of z such that p~1(;)WX is a disjoint
union of neighborhoods of the form:

¸ikewise for points of (C@CC). In other words, the third and ,fth pictures in condition (1) and the third
and ,fth pictures in condition (2) in the de,nition of pseudo-transverse do not occur.

Claim 3. Every circle of LK has non-zero degree in the cylinder of L¸]I that contains it.

Claim 4. n
1
(K)Pn

1
(¸]I) is injective.

Claim 5. Either n
1
(K)Pn

1
(¸]I) is surjective, or else K is an annulus that is parallel to L¸]I.

Claim 6. If K is an annulus, then the two loops of LK go to two distinct cylinders of L¸]I.

Proof of Claim 1. Let k be an arc contained in XW(ACA@) and suppose both endpoints of k lie in
one vertical line of AWA@. Suppose that k does not wrap all the way around an annulus of A, and let
a be the segment of AWA@ that connects the endpoints of k. Then aXk bounds a half-disk E in A.
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Fig. 19. The arc a in the proof of Claim 2.

Fig. 18. EWX may contain additional arcs.

Notice that EWA@"a. The set EWX cannot contain any closed loops of XWA, since any
innermost such loop would bound a move 1 subdisk of E, which should have been removed in
Step 2. But EWX may contain other arcs besides k with endpoints on a. (See Fig. 18.) By replacing
k and E with an arc and subdisk closer to a if necessary, assume that EWX"k. Nudge E relative
a o! of A to get a new disk E@ bounded by the arcs a and k@, where k@LX and int(k@)Lint(X).
Since EWX"k and EWA@"a, this can be done so that E@WX"k@ and E@WA@"a. Also,
E@WA"a. So E@ is a move 2 disk, in violation of Step 2. Thus, the endpoints of k must lie in distinct
components of AWA@ after all.

The same argument applies to arcs contained in XW (A@CA).

Proof of Claim 2. Supose the third or the "fth picture of condition (1) does occur. (The argument is
similar if the third or the "fth picture of condition (2) occurs.) Let a be the segment of
p~1(;)WXWA drawn vertically in these pictures, extended in A until it "rst hits LX or AWA@. See
Fig. 19. Label the "rst endpoint of a as L

1
a and the second endpoint as L

2
a. So L

1
a lies on C]1.

Suppose "rst that L
2
a lies on LX but not on AWA@. Recall that LX"(C]1)X(C@]0)XB;

therefore (LXWA)C(AWA@)L((C]1)WA)X(BWA). Since pD
B

is an embedding, it follows that
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Fig. 20. Suppose a circle c of LK gets sent to a cylinder of L¸]I with degree 0.

BWALC]1. So L
2
a lies in LXW(C]1). Thus, a cuts o! an arc b of C]1 such that aXb bounds

a move 1 disk. This disk should already have been removed in Step 2.
Next, suppose that L

2
a lies on AWA@, and let b be the arc of LX such that L

1
b"L

1
a and L

2
b lies

on the same vertical line of AWA@ as L
2
a, and so that aXb does not wrap all the way around an

annulus of A. Then aXb is an arc contained in XWA with both endpoints in the same vertical line
which should not exist by Claim 1.

Proof of Claim 3. Let K be a component of XC(AXA@) and let ¸]I be the component of
(F]I)C(AXA@) that contains it. Suppose that a circle c of LK gets sent to a cylinder G of L¸]I by
degree 0.

Suppose "rst that c is contained in a single component of ACA@ or A@CA. (This happens, in
particular, if G is an annulus of A or A@.) Since c has degree 0 in G, it must bound a disk in G, which
can be assumed to have interior disjoint from X by replacing c with an innermost loop if necessary.
But this disk is a move 1 disk, so it should have been removed already in Step 2. See Fig. 20.

Now suppose that c is not contained in a single component of ACA@ or A@CA. Since pD
B

is an
embedding, c must be disjoint from LF]I. Again, c bounds a disk in G. The vertical lines of AWA@
cut the disk into subdisks. Consider an outermost subdisk and the arc pLc that forms half its
boundary. This arc p is contained in XW(ACA@) (or in XW (A@CA) ) and both its endpoints lie in the
same vertical line. Furthermore, p cannot wrap all the way around an annulus of A (or A@). Claim 1
says that such arcs do not exist.

Proof of Claim 4. The following diagram commutes, and the map n
1
(X) Pn

1
(F]I) is injective. So

it will su$ce to show that n
1
(K)Pn

1
(X) is injective.

If n
1
(K)Pn

1
(X) does not inject, then some loop in LK must bound a disk D in XCK. The

following argument shows that D contains at least one loop u of XWA or XWA@.
Since LD bounds D on one side and K on the other, LD must be disjoint from LX. So LD must

intersect A or A@. Assume without loss of generality that X intersects A. Possibly LD itself is
contained in XWA. In this case set u"LD. Otherwise, take an arc of LDW(XWA) and let u be the
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component of XWA that contains it. Notice that u must lie in D, since it cannot intersect int(K).
Since DWLX"0, u is a closed loop rather than an arc.

Since uLD, u is null-homotopic in F]I. Since each annulus in A n
1
-injects into F]I, u must

bound a disk E in A. If EWA@"0, then E is a move 1 disk, which should already have been
removed. If EWA@O0, then LEW(ACA@) will contain an arc whose endpoints lie in the same vertical
line of AWA@, but does not wrap all the way around A. Claim 1 says that such arcs do not exist.

Proof of Claim 5. From Claim 4, the map n
1
(K)Pn

1
(¸]I) is injective. Therefore, it is possible to

write n
1
(¸]I) either as an amalgamated product or as an HNN extension over n

1
(K), depending

on whether or not K separates ¸. In fact, K separates ¸]I, because the inclusion of ¸]1 into ¸]I
induces an isomorphism of fundamental groups, which could not happen if n

1
(¸]I) were an HNN

extension. Let M
1

be the component of (¸]I)CK that contains ¸]1, and let M
2

be the other
component. Then the composition of maps

n
1
(¸]1)Pn

1
(M

1
)Pn

1
(¸]I)

is an isomorphism. So n
1
(M

1
)Pn

1
(¸]I) is surjective. But

n
1
(¸]I)"n

1
(M

1
) *nÇ(K)

n
1
(M

2
)

so the injection n
1
(K)Pn

1
(M

2
) must be an isomorphism. By the h-cobordism theorem [2,

Theorem 10.2], (M
2
, K):(K]I, K]1).

Now there are two possibilities: either ¸]0LM
1

or ¸]0LM
2
. If ¸]0LM

1
, then LM

2
CK is

a subset of L¸]I. So K is parallel to a subsurface of L¸]I, and therefore must be a disk or an
annulus. By Claim 3, K must be a boundary parallel annulus.

If ¸]0LM
2
, then it follows as above that the composition

n
1
(¸]0)Pn

1
(M

2
)Pn

1
(¸]I)

is an isomorphism. Therefore, n
1
(M

2
)Pn

1
(¸]I) is surjective. Also, n

1
(M

2
)Pn

1
(¸]I) is injective

since

n
1
(¸]I)"n

1
(M

1
) *nÇ(K)

n
1
(M

2
)

So n
1
(M

2
)Pn

1
(¸]I) is an isomorphism. In addition, n

1
(K)Pn

1
(M

2
) is an isomorphism, from

above. Therefore, n
1
(K)Pn

1
(¸]I) is an isomorphism, and the claim is proved.

Proof of Claim 6. Let K be any annulus component of XC(AXA@), let ¸]I be the corresponding
component of (F]I)C(AXA@), and suppose that both circles of LK go to the same cylinder G of
L¸]I. Since both circles have degree $1 in L¸]I, they bound an annulus= in L¸]I. Notice
that= is disjoint from LF]I, since by assumption, pD

B
: BPLF is an embedding. If= is entirely

contained in A or A@, then= is a move 3 annulus, which should have been removed in Step 2. So
= must consist of alternating rectangles of A and A@.

The union=XK forms a torus, which is embedded in ¸]I since int(K)W (L¸]I)"0. Since
K is an annulus and n

1
(K)Pn

1
(¸]I) injects by Claim 5, the argument in the explanation of

Move 3 can be used to show that =XK bounds a solid torus ¹ in ¸]I and that the loops of
L= are longitudes of this torus.
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Construct a move 2 disk as follows. Start with a vertical arc a of =W(AWA@). Connect its
endpoints with an embedded arc p of K so that aXp is null homotopic in ¹. This can be done
because each component of LK generates n

1
(¹), so it is possible to replace a poor choice of p by one

that wraps around LK an additional number of times and get a good choice of p. Now aXp bounds
an embedded disk E in ¹, which can be assumed to have interior disjoint from X by replacing it
with a subdisk if necessary. In addition, EWA"EWA@"a, so E is a move 2 disk. But Step 2
already eliminated all disks of this form.

Step 3: Recall that p : F]IPF is the projection map. In this step, X is isotoped relative to LX so
that for any component c of XW(ACA@) or of XW (A@CA), pDc is a local homeomorphism onto its
image. The following discussion considers arc components "rst and loop components next.

Take any arc k of XW(ACA@). If int(k)WLXO0, then kLLX by Claim 2. The map p is already
injective on arcs of LXWA and LXWA@, so k can be left alone. If int(k)WLX"0, then isotope
k relative to Lk to an embedded arc k@ in ACA@ such that pDk{ is a homeomorphism onto its image.
This is possible because by Claim 1, either k wraps all the way around an annulus of A or else the
endpoints of k lie in distinct vertical lines of AWA@. The isotopy can be done in such a way that k@
does not intersect any other arcs of XW(ACA@) that may lie in the same vertical rectangle. Perturb
X in a neighborhood of k to extend the isotopy on k.

Pick another arc of XW(ACA@) and repeat the procedure. When all the arcs of XW(ACA@) have
been pulled taut, continue with arcs of XW(A@CA).

Next, consider any loop j of XWA that does not intersect A@. By Claim 3, the loop j has degree 1
in A, so it can be isotoped to a loop j@ such that pDj is a homeomorphism onto its image. As before,
the isotopy can be done in such a way that j@ does not intersect any other loops of XWA, and the
isotopy can be extended to a neighborhood of j in X. Loops of XWA@ that are disjoint from A can
be isotoped similarly.

The following argument shows that at this stage, for any component K of XC(AXA@), pD
/K

is a
local homeomorphism except along vertical lines of KW(AWA@). Every point of LK is either a point
on the interior of an arc of LXW(LF]I), a point of XWAW (LF]I) or of XW(A@W (LF]I)), a point
of AWA@, or a point on the interior of an arc or loop of XW (ACA@) or XW(A@CA). The map pD

/K
is

a local homeomorphism near the "rst type of point by assumption. It is a local homeomorphism
near the second type of point by Claim 2. It is a local homeomorphism near the third type of point
(away from vertical lines) because X is pseudo-transverse to A and A@. Finally, pD

/K
is a local

homeomorphism near the fourth type of point by the work done in Step 3.

Step 4: In this "nal step, X is isotoped so that p is locally injective everywhere except at vertical
twist lines. The argument uses a fact about maps between surfaces.

Fact. ¸et f : (G, LG)P(H, LH) be a map between surfaces such that f DLG is a local homeomorphism
and f

*
: n

1
(G)Pn

1
(H) is injective. ¹hen there is a homotopy fq : (G, LG)P(H, LH), with q3I, f

0
"f,

and fqD/G"f
0
D
/G

for all q, such that either (1) or (2) holds:

1. G is an annulus or Mobius band and f
1
(G)LLH, or

2. f
1
: GPH is a covering map.

The case when G is a disk is easy to verify; all other cases are covered by [2, Theorem 13.1].
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Pick a component K of XC(AXA@), and let ¸]I be the corresponding component of
(F]I)C(AXA@). Assume "rst that LK does not contain any vertical arcs of AWA@. By Claim 4, the
map n

1
(K)Pn

1
(¸]I) is injective. Since p

*
: n

1
(¸]I)Pn

1
(¸) is an isomorphism, the composition

(pD
K
)
*

: n
1
(K) Pn

1
(¸) is injective. Furthermore, by the discussion following Step 3, pDLK : LKPL¸

is a local homeomorphism on LK. Therefore, there is a homotopy fq :KP¸ with f
0
"pD

K
and

fqD/K"pD
/K

such that either K is an annulus or Mobius band and f
1
(K) LL¸, or f

1
is a covering

map.
If K is a Mobius band and f

1
(K)LL¸, then f

0
(LK) is a degree 2 loop in L¸ which is impossible

since LKLL¸]I is embedded. By Claim 6, it not possible for K to be an annulus and f
1
(K) to be a

subset of L¸. Therefore, f
1

must be a covering map. By Claims 5 and 6, the map n
1
(K) Pn

1
(¸]I) is

surjective. So the map (pD
K
)
*
:n

1
(K)Pn

1
(¸) is surjective. Therefore, f

1
must be a homeomorphism.

If LK contains vertical arcs of AWA@, then pD
/K

is still very close to a local homeomorphism } in
fact, if K] is the surface obtained by collapsing each vertical arc of LKW(AWA@) to a point, then pD

K
factors through a map p' : K] P¸ such that p' D

/K
is a local homeomorphism. So it is still possible to

homotope pD
K

relative to LK to a map f
1

such that f
1
D
*/5 (K)

is a homeomorphism.
The homotopy fq of K relative to LK in ¸ induces a homotopy of K relative to LK in ¸]I which

keeps the vertical coordinate of each point of K constant and changes its horizontal coordinate
according to fq . At the end of the homotopy, the new surface K@ itself will be embedded in F]I,
since pD

K{
is a homeomorphism.

Homotope X as described above for every component of XC(AXA@). After doing this, each
component of XC(AXA@) is embedded in F]I. But two components K@

1
and K@

2
in the same piece

¸]I of (F]I)C(AXA@) might intersect each other. If that happens, an additional homotopy of
K can be tacked on to clear up the problem, as follows.

Let K
1
L¸]I and K

2
L¸]I be two components of XC(AXA@) before the homotopy of Step 4

and let K@
1

and K@
2

be these components after the homotopy. Suppose that K@
1

intersects the
component K@

2
. Since K

1
and K

2
are disjoint, the component of (¸]I)CK

1
that contains ¸]0

either contains all of K
2

or else contains no part of K
2
. Therefore, either all loops of K

1
lie above

the corresponding loops of K
2

or else they all lie below the corresponding loops. Since the
homotopies of K

1
and K

2
did not move LK

1
and LK

2
, the same statement holds for loops of LK@

1
and LK@

2
. Therefore, it is possible to alter the vertical coordinates of K@

1
and K@

2
to make the two

surfaces parallel, so that K@
1

lies entirely above K@
2

or entirely below K@
2
. Therefore all components

of XC(AXA@) can be assumed disjoint after the homotopy of Step 4.
In its "nal position, X is embedded in F]I. A theorem of Waldhausen [5, Corollary 5.5] states

that if G and H are incompressible surfaces embedded in an irreducible 3-manifold, and there is
a homotopy from G to H that "xes LG, then there is an isotopy from G to H that "xes LG.
Therefore, the above sequence of homotopies can be replaced by an isotopy. K
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