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a b s t r a c t

In this paper, a novel algorithm based on Adomian decomposition for fractional differential
equations is proposed. Comparing the present method with the fractional Adams method,
we use this derived computational method to find a smaller ‘‘efficient dimension’’ such
that the fractional Lorenz equation is chaotic. We also apply this new method to the time-
fractional Burgers equation with initial and boundary value conditions. Numerical results
and computer graphics show that the constructed numerical is efficient.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Factional differential equations are increasingly used to model problems in acoustics and thermal systems, rheology and
mechanical systems, signal processing and systems identification, control and robotics, and other areas of applications, for
example, see [1,2] and many references cited therein. These applications in interdisciplinary sciences show the importance
and necessity of fractional calculus. All this motivates us to construct a variety of efficient numerical methods for fractional
differential equations.
Generally speaking, three kinds of definitions of fractional derivatives arewidely used, i.e., Grünwald–Letnikovderivative,

Riemann–Liouville derivative and Caputo derivative [3–6]. These three definitions are in general non-equivalent. However,
the first two definitions defined in the sufficiently smooth spaces are equivalent. So, numerical analysts often use the
definition of Grünwald–Letnikov derivative to discretize the fractional differential equations with Riemann–Liouville
derivative. The last two definitions are equivalent under their homogenous initial value conditions. If its initial values are
non-zero, the Riemann–Liouville derivative definition is used only by pure mathematicians but seldom utilized by applied
scientists and engineers since the initial value conditions are not easilymeasured due to vagueness of physicalmeanings and
geometric interpretation. The alternative definition of the fractional derivative given by Caputo has the advantage of only
requiring initial conditions given in terms of integer-order derivatives. In particular, when the Caputo derivative is chosen,
it allows us to specify inhomogeneous initial conditions for fractional differential equations with Caputo derivative if it is
desired. These initial conditions of integer-order derivatives represent well-understood features of a physical situation.
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In this paper we would rather use the Caputo derivative, precisely because of its applicability to real world models. The
definition of Riemann–Liouville fractional integral of a function y reads as

Jα0,ty(t) =
1

Γ (α)

∫ t

0
(t − τ)α−1y(τ )dτ , t > 0, n− 1 < α < n ∈ Z+,

and the Caputo fractional derivative of y is defined as

CDα0,ty(t) = J
n−α
0,t y

(n)(t) =
1

Γ (n− α)

∫ t

0
(t − τ)n−α−1y(n)(τ )dτ , t > 0, n− 1 < α < n ∈ Z+.

The nonlinear fractional differential equation with Caputo derivative is in the following form

CDα0,tx(t) = f (t, x(t)), x(k)(0) = x(k)0 , n− 1 < α < n ∈ Z+, k = 0, 1, . . . , dαe − 1, (1)
where dαe = n. It is well known that the initial value problem (1) is equivalent to a Volterra integral equation [7],

x(t) =
dαe−1∑
k=0

x(k)0
tk

k!
+

1
Γ (α)

∫ t

0
(t − τ)α−1f (τ , x(τ ))dτ (2)

in the sense that a continuous function solves (2) if and only if it solves (1).
In [8], Diethelm, et al., successfully constructed a Predictor–Corrector method for a fractional differential equation with

Caputo derivative, called ‘‘fractional Adams method’’ for brevity. And the error analysis for this method was given in [9].
Their fractional Adams method is introduced below.
Firstly the product trapezoidal quadrature formula is applied to replacing the integrals of (2). Set h = T/N, tn = nh,

n = 0, 1, . . . ,N ∈ Z+. Then (2) can be discretized as follows,

x(tn+1) =
dαe−1∑
k=0

x(k)0
tk

k!
+

hα

Γ (α + 2)

n+1∑
j=0

aj,n+1f (tj, x(tj)), (3)

where

aj,n+1 =

n
α+1
− (n− α)(n+ 1)α, j = 0,

(n− j+ 2)α+1 + (n− j)α+1 − 2(n− j+ 1)α+1, 1 ≤ j ≤ n,
1, j = n+ 1,

Eq. (3) can be rewritten as

x(tn+1) =
dαe−1∑
k=0

x(k)0
tk

k!
+

hα

Γ (α + 2)
f (tn+1, x(tn+1))+

hα

Γ (α + 2)

n∑
j=0

aj,n+1f (tj, x(tj)). (4)

The right hand side of system (4) contains term x(tn+1) in nonlinear function f (t, x(t)) so it is an implicit scheme. In order to
start the Adams–Moulton iterativemethod, the solution is accomplished by first ‘‘Predicting’’ (xP(tn+1)) by using the explicit
Adams–Bashforth formula, and then ‘‘Correcting’’ (x(tn+1)).
Now the Predictor–Corrector algorithm for (2) can be described as

x(tn+1) =
dαe−1∑
k=0

x(k)0
tk

k!
+

hα

Γ (α + 2)
f (tn+1, xP(tn+1))+

hα

Γ (α + 2)

n∑
j=0

aj,n+1f (tj, x(tj)),

xP(tn+1) =
dαe−1∑
k=0

x(k)0
tk

k!
+

1
Γ (α)

n∑
j=0

bj,n+1f (tj, x(tj)),

where bj,n+1 = hα
α
((n+ 1− j)α − (n− j)α), j = 0, 1, . . . , n.

The error estimate of this fractional Adams method for the fractional differential system is given below.

Lemma 1 ([9]). If CDα0,tx(t) ∈ C
2
[0, T ], then the truncated error estimate is

max
j=0,1,...,N

|x(tj)− xn(tj)| =
{
O(h2), if α ≥ 1,
O(h1+α), if 0 < α < 1.

If we do not use the predictor, a somewhat better method is chosen – the Newton iteration method – to numerically
solve x(tn+1) for Eq. (4). This requires that f (t, x(t)) be smooth and that the inverse of the derivative operator fx exists. For
a system of equations, Newton method often needs a lot of time so it is not economical. Luckily, Adomian decomposition
method can be used to solve this problem effectively.
We proceed as follows. In Section 2 we first recall the Adomian decomposition method, and then extend the method to

solve the fractional differential equations. We apply the derived algorithm to finding a smaller ‘‘efficient dimension’’ of the
fractional Lorenz system in Section 3. In Section 4 we use the constructed algorithm for solving the time-fractional Burgers
equation.
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2. The numerical algorithm based on Adomian decomposition

At the beginning of the 1980’s, Adomian proposed a new method for solving nonlinear functional equations of various
kinds. The technique is actually a decomposition of the nonlinear operators as a series of functions. Each term of this series
is a polynomial called Adomian’s polynomial. Let us first recall the basic idea of the decompositionmethod [10,11]. Consider
the general nonlinear equation

u = N(u)+ f ,

where N is a nonlinear operator, and where f is supposed to be known. The decomposition method consists in looking for a
solution having the series form

u =
∞∑
i=0

ui.

The nonlinear operator N is decomposed as

N(u) =
∞∑
n=0

An,

where An’s are called Adomian’s polynomials. In the first approach given by Adomian [10], An’s are obtained from the
following equalities

v =

∞∑
i=0

λiui,

N(v) = N

(
∞∑
i=0

λiui

)
=

∞∑
n=0

λnAn.

We remark that An’s are formally obtained from the relationship

An =
1
n!
dn

dλn

[
N

(
∞∑
i=0

λiui

)]
λ=0

.

The above process leads to the equality
∞∑
i=0

ui =
∞∑
n=0

An + f ,

and the Adomian method consists in identifying ui by means of the formulae below

u0 = f ,
u1 = A0(u0),
u2 = A1(u0, u1),
...

un = An−1(u0, u1 · · · un−1),
...

In practice, Adomian decomposition method gives very good results even if one takes a truncated series with a small
number of terms. The reason for such a result is due to the analogy of the Adomian series with the Taylor series.
Assume the following conditions hold.
(i) The solution u can be written as a series of functions ui, i.e., u ≈

∑
∞

i=0 ui. Furthermore, this series is absolutely
convergent, i.e.,

∑
∞

i=0 |ui| < +∞.
(ii) The nonlinear function N(u) can be developed in entire series with a convergence radius equal to infinity. In other

words, we may write

N(u) =
∞∑
n=0

N (n)(0)
un

n!
, |u| <∞.

We see that
∞∑
i=1

ui =
∞∑
n=0

An =
∞∑
n=0

N (n)(0)
n!

(
∞∑
i=0

ui

)n
.
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If we consider a truncated series
∑R
i=1 ui for approximating u, we can calculate the error as follows:∣∣∣∣∣ ∞∑

i=0

ui −
R∑
i=0

ui

∣∣∣∣∣ =
∣∣∣∣∣ ∞∑
i=R+1

ui

∣∣∣∣∣ =
∣∣∣∣∣ ∞∑
n=R

An

∣∣∣∣∣ ≤ ∞∑
n=R

|N (n)(0)|
n!

Un,

where U =
∑
∞

i=0 |ui|.

Lemma 2 ([12]). Suppose that ‖U‖ ≤ M, and ‖N (n)(0)‖ ≤ S independent of n,
∑R
i=1 ui is an approximate solution of equation

u = N(u)+ f . Then the error is S
∑
∞

n=R
Mn
n! .

Applying Adomian’s idea, system (4) can be rewritten as,

x(tn+1) =
hα

Γ (α + 2)
(Lx(tn+1)+ Nx(tn+1))+

dαe−1∑
k=0

x(k)0
tk

k!
+

hα

Γ (α + 2)

n∑
j=0

aj,n+1f (tj, x(tj)), (5)

in which Lx(tn+1) is the linear terms of f (tn+1, x(tn+1)), andNx(tn+1) represents the nonlinear terms of f (tn+1, x(tn+1)). Now,
x(tn+1) can be presented as a series

x(tn+1) =
∞∑
r=0

xr(tn+1), (6)

with

x0(tn+1) =
dαe−1∑
k=0

x(k)0
tk

k!
+

hα

Γ (α + 2)

n∑
j=0

aj,n+1f (tj, x(tj)), (7)

and xr(tn+1) is to be determined.
The nonlinear term Nx(tn+1) is then decomposed to a series of Adomian polynomials. Substituting (6) and (7) into (5),

we obtain
∞∑
r=0

xr(tn+1) = x0(tn+1)+
hα

Γ (α + 2)

(
L

(
∞∑
r=0

xr(tn+1)

)
+ N

(
∞∑
r=0

xr(tn+1)

))
.

Consequently, we have

x0(tn+1) =
dαe−1∑
k=0

x(k)0
tk

k!
+

hα

Γ (α + 2)

n∑
j=0

aj,n+1f (tj, x(tj)),

x1(tn+1) =
hα

Γ (α + 2)
(Lx0(tn+1)+ A0),

x2(tn+1) =
hα

Γ (α + 2)
(Lx1(tn+1)+ A1),

...

xr+1(tn+1) =
hα

Γ (α + 2)
(Lxr(tn+1)+ Ar),

...

(8)

where

A0 = N(x0(tn+1)),

Ar =
1
r!
dr

dλr

[
N

(
∞∑
i=0

λixi(tn+1)

)]
λ=0

=

∑
p1+2p2+···rpr=r

(x1(tn+1))p1

p1!
(x2(tn+1))p2

p2!
· · ·

(xr(tn+1))pr

pr !
N (p1+p2+···pr )(x0(tn+1)), r = 1, 2, . . . .

All these x(tn+1)’s are calculable. Since the series rapidly converges, in practice we use a finite sum x̃(tn+1) =∑R
r=0 xr(tn+1) to approximate the solution of x(tn+1).
According to computational scheme (4)–(8), the errors come from two aspects, one comes from applying the product

trapezoidal quadrature formulae to replacing the integrals of (2), see [9], the other one comes from using x̃(tn+1) =∑R
r=0 xr(tn+1) to approximate the real solution x(tn+1) (see Lemma 2).
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The above numerical algorithm can be naturally generalized to a system of equations in the following form.
CD

α1
0,tx1(t) = f1(t, x(t)), x(k1)1 (0) = x(k1)10 , α1 > 0, k1 = 0, 1, . . . , dα1e − 1,

CD
α2
0,tx2(t) = f2(t, x(t)), x(k2)2 (0) = x(k2)20 , α2 > 0, k2 = 0, 1, . . . , dα2e − 1,

...

CD
αs
0,txs(t) = fs(t, x(t)), x(ks)s (0) = x(ks)s0 , αs > 0, ks = 0, 1, . . . , dαse − 1,

(9)

where x(t) = (x1(t), x2(t), . . . , xs(t)) ∈ Rn.
Firstly, applying the trapezoidal quadrature formula to (9) leads to

x1(tn+1) =
hα1

Γ (α1 + 2)
(f1(tn+1, x(tn+1)))+

dα1e−1∑
k1=0

x(k1)0
tk1

k1!
+

hα1

Γ (α1 + 2)

n∑
j=0

a1,j,n+1f1(tj, x(tj)),

x2(tn+1) =
hα2

Γ (α2 + 2)
(f2(tn+1, x(tn+1)))+

dα2e−1∑
k2=0

x(k2)0
tk2

k2!
+

hα2

Γ (α2 + 2)

n∑
j=0

a2,j,n+1f2(tj, x(tj)),

...

xs(tn+1) =
hαs

Γ (αs + 2)
(fs(tn+1, xs(tn+1)))+

dαse−1∑
ks=0

x(ks)0
tks

ks!
+

hαs

Γ (αs + 2)

n∑
j=0

as,j,n+1fs(tj, x(tj))

in which

ai,j,n+1 =
{
nαi+1 − (n− αi)(n+ 1)αi , j = 0,
(n− j+ 2)αi+1 + (n− j)αi+1 − 2(n− j+ 1)αi+1, i = 1, 2, . . . , s, 1 ≤ j ≤ n.

Secondly, we use the Adomian decomposition method,

x1(tn+1) =
hα1

Γ (α1 + 2)
(L1 x(tn+1)+ N1 x(tn+1))+ x1,0(tn+1),

x2(tn+1) =
hα2

Γ (α2 + 2)
(L2 x2(tn+1)+ N2 x(tn+1))+ x2,0(tn+1),

...

xs(tn+1) =
hαs

Γ (αs + 2)
(Ls xs(tn+1)+ Ns x(tn+1))+ xs,0(tn+1)

where Li x(tn+1) are the linear terms of fi(tn+1, x(tn+1)), and Ni x(tn+1) represents the nonlinear terms of fi(tn+1, x(tn+1)).
According to (5)–(8), x1(tn+1), x2(tn+1), . . . , xs(tn+1) can be presented as x1(tn+1) =

∑
∞

r=0 x1,r(tn+1), x2(tn+1) =
∑
∞

r=0
x2,r(tn+1), . . . , xs(tn+1) =

∑
∞

r=0 xs,r(tn+1). Here xi,j(tn+1), i = 1, 2, . . . , s, j = 1, 2, . . ., can be calculated as

x1,0(tn+1) =
dα1e−1∑
k1=0

xk10
tk1

k1!
+

hα1

Γ (α1 + 2)

n∑
j=0

a1,j,n+1f1(tj, x(tj)),

x2,0(tn+1) =
dα2e−1∑
k2=0

x(k2)0
tk2

k2!
+

hα2

Γ (α2 + 2)

n∑
j=0

a2,j,n+1f2(tj, x(tj)),

...

xs,0(tn+1) =
dαse−1∑
ks=0

x(ks)0
tks

ks!
+

hαs

Γ (αs + 2)

n∑
j=0

as,j,n+1fs(tj, x(tj));



x1,1(tn+1) =
hα1

Γ (α1 + 2)
(L1 x0(tn+1)+ A1,0(x1,0(tn+1), x2,0(tn+1), . . . , xs,0(tn+1))),

x2,1(tn+1) =
hα1

Γ (α2 + 2)
(L2 x0(tn+1)+ A2,0(x1,0(tn+1), x2,0(tn+1), . . . , xs,0(tn+1))),

...

xs,1(tn+1) =
hαs

Γ (αs + 2)
(Lsx0(tn+1)+ As,0(x1,0(tn+1), x2,0(tn+1), . . . , xs,0(tn+1)));
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x1,2(tn+1) =
hα1

Γ (α1 + 2)
(L1 x1(tn+1)+ A1,1(x1,0(tn+1), x1,1(tn+1); x2,0(tn+1), x2,1(tn+1); · · · ; xs,0(tn+1), xs,1(tn+1))),

x2,2(tn+1) =
hα1

Γ (α2 + 2)
(L2 x1(tn+1)+ A2,1(x1,0(tn+1), x1,1(tn+1); x2,0(tn+1), x2,1(tn+1); · · · ; xs,0(tn+1), xs,1(tn+1))),

...

xs,2(tn+1) =
hαs

Γ (αs + 2)
(Lsx1(tn+1)+ As,1(x1,0(tn+1), x1,1(tn+1); x2,0(tn+1), x2,1(tn+1); · · · ; xs,0(tn+1), xs,1(tn+1)));

· · · · · ·

x1,r+1(tn+1) =
hα1

Γ (α1 + 2)
(L1 xr(tn+1)+ A1,r(x1,0(tn+1), x1,1(tn+1), . . . , x1,r(tn+1);

x2,0(tn+1), x2,1(tn+1), . . . , x2,r(tn+1); · · · ; xs,0(tn+1), xs,1(tn+1) . . . , xs,r(tn+1))),

x2,r+1(tn+1) =
hα1

Γ (α2 + 2)
(L2 xr(tn+1)+ A2,r(x1,0(tn+1), x1,1(tn+1), . . . , x1,r(tn+1);

x2,0(tn+1), x2,1(tn+1), . . . , x2,r(tn+1); · · · ; xs,0(tn+1), xs,1(tn+1) . . . , xs,r(tn+1))),
...

xs,r+1(tn+1) =
hαs

Γ (αs + 2)
(Ls xr(tn+1)+ As,r(x1,0(tn+1), x1,1(tn+1), . . . , x1,r(tn+1);

x2,0(tn+1), x2,1(tn+1), . . . , x2,r(tn+1); · · · ; xs,0(tn+1), xs,1(tn+1) . . . , xs,r(tn+1)));
· · · · · ·

where

Lix0(tn+1) = Li(x1,0(tn+1), x2,0(tn+1), . . . , xs,0(tn+1)),
Lixr(tn+1) = Li(x1,r(tn+1), x2,r(tn+1), . . . , xs,r(tn+1)),
Ai,0(x1,0(tn+1), x2,0(tn+1), . . . , xs,0(tn+1)) = Ni(x1,0(tn+1), x2,0(tn+1), . . . , xs,0(tn+1)),
Ai,r(x1,0(tn+1), x1,1(tn+1), . . . , x1,r(tn+1); x2,0(tn+1), x2,1(tn+1), . . . , x2,r(tn+1); · · · ;

xs,0(tn+1), xs,1(tn+1) . . . , xs,r(tn+1))

=

∑
∧
r

(x1,1(tn+1))k1,1

k1,1!
· · ·

(x1,r(tn+1))k1,r

k1,r !
· · ·

(xs,1(tn+1))ks,1

ks,1!
· · ·

(xs,r(tn+1))ks,r

ks,r !

×
∂ (k1,1+···+k1,r )+···+(ks,1+···+ks,,r )

∂xk1,1+···+k1,r1 · · · ∂xks,1+···+ks,rs

Ni(x1,0(tn+1), x2,0(tn+1), . . . , xs,0(tn+1)), i = 1, . . . , s,∧
r

= (k1,1 + 2k1,2 + · · · + rk1,r)+ · · · + (ks,1 + 2ks,2 + · · · + rks,r) = r, r = 1, 2, . . . .

Finally, we use x̃1(tn+1) =
∑R
r=0 x1,r(tn+1), x̃2(tn+1) =

∑R
r=0 x2,r(tn+1), . . . , x̃s(tn+1) =

∑R
r=0 xs,r(tn+1), to approximate

x1(tn+1), x2(tn+1), . . . , xs(tn+1).

3. Numerical tracking the smallest ‘‘efficient dimension’’ of the fractional Lorenz system

The definition of ‘‘efficient dimensions’’ was defined for a fractional dynamical system [13–15], where the efficient
dimension characterizes the damping property for the stable limit set of a fractional differential system of equations [16].
In this section, we study the fractional Lorenz system in the following form

CD
p1
0,tx(t) = (25γ + 10)(y− x),

CD
p2
0,ty(t) = (28− 35γ )x− x z + (29γ − 1)y,

CD
p3
0,tx3(t) = x y−

γ + 8
3
z,

(10)

where γ ∈ [0, 0.8), and its efficient dimension q = p1 + p2 + p3. If p1 = p2 = p3 = 1 and γ = 0, then it is the classical
Lorenz system. Here we use our algorithm to numerically detect the smallest efficient dimension q such that system (10) is
chaotic.
The computational procedure is given below. Throughout the section, we always let γ = 0.78 for comparison.
10 First, fix p2 = p3 = 1, let p1 decrease with step-length1s = 0.1. After k steps, p1(k) = 1− 0.1k. If system (10) has no

chaotic attractor for p1(k) and p2 = p3 = 1 but has a chaotic attractor for p1(k− 1) = 1− 0.1(k− 1) and the same p2, p3
values. Next we decrease p1(k− 1)with a new step-length1′s = 0.01. After k′ steps, p1 changes into p1(k− 1)− 0.01k′. If
system (10) has no chaotic attractor for p1(k−1)−0.01k′ and p2 = p3 = 1but has one for p1(k−1)−0.01(k′−1) and the same



1678 C. Li, Y. Wang / Computers and Mathematics with Applications 57 (2009) 1672–1681

10
15

20
25

30
35

-20

-10

0

10

20
-30

-20

-10

0

10

20

30

z
x

y

30
35

40
45

50

-20

-10

0

10

20

z

y

x

-60

-40

-20

0

20

40

60

80a b

Fig. 1. Chaotic attractors of the fractional Lorenz system. Initial value (x10, x20, x30) = (−15.5,−17.48, 35.64), γ = 0.78, R = 8 (the meaning
of R can be found from the computational scheme for system (9)). (a) (p1, p2, p3) = (0.8, 0.7, 0.7), N = 5200, time step-length h = 0.004;
(b) (p1, p2, p3) = (0.45, 0.27, 0.35), N = 5200, time step-length h = 0.002, the first 100 points are removed.

p2, p3 values.We stop here and think in this situation the smaller efficient dimension |q| = p2+p3+p1(k−1)−0.01(k′−1)
such that system (10) has a chaotic attractor.
20 Fix p1 = p1(k− 1)− 0.01(k′ − 1), let p2, p3 decrease as above.
It is surprisingly found that chaos is generated for γ = 0.78 when p1 = 0.45, p2 = 0.27, p3 = 0.35. The smallest

efficient dimension is |q| = p1 + p2 + p3 = 1.07. For the same parameter γ value and the same tracking procedure, we
use the fractional Adams method but find that the smallest efficient dimension is q = p1 + p2 + p3 = 1.32 [17] such that
system (10) is chaotic. See Fig. 1. Comparing between the two methods, our algorithm spends less time and finds a smaller
efficient dimension.

4. Numerical algorithm for the time-fractional Burgers equation

In the present section, we adopt the derived algorithm for nonlinear fractional partial differential equation. Here we
numerically study the time-fractional Burgers equation of the form below

CDα0,tu+ u
∂u
∂x
=
1
Re
∂2u
∂x2

, 0 < x < 1, t > 0,{
u(x, 0) = sin(πx), 0 ≤ x ≤ 1, if 0 < α ≤ 1,
u(x, 0) = sin(πx), ut(x, 0) = 0, 0 ≤ x ≤ 1, if 1 < α ≤ 2,
u(0, t) = u(1, t) = 0, t > 0,

(11)

where the constant Re is the Reynolds number.
Now we set1x = h, h = 1/N, xi = ih, i = 1, 2, . . . ,N − 1, then

∂u
∂x

∣∣∣∣
x=xi

=
ui+1 − ui−1

2h
,

∂2u
∂x2

∣∣∣∣
x=xi

=
ui+1 − 2ui + ui−1

h2
.

(12)

According to (11) and (12), the partial differential equation (11) can be decomposed into an ordinary differential system of
equations with time-fractional derivative.

CDα0,tui + ui
ui+1 − ui−1

2h
=
1
Re
ui+1 − 2ui + ui−1

h2
, (13)

where u0 = uN = 0 and{
u(x, 0)|x=xi = sin(πxi), 0 ≤ x ≤ 1, if 0 < α ≤ 1,
u(x, 0)|x=xi = sin(πxi), ut(x, 0)|x=xi = 0, 0 ≤ x ≤ 1, if 1 < α ≤ 2.

Suppose U = (u1, u2, . . . uN−1)T, then (11) reads as a compact form,

CDα0,tU = B(t,U)U, (14)
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Fig. 2. Figures of the classical Burgers equation (α = 1). The space step-length is h = 0.01. (a) (α, Re, ω) = (1.0, 50, 0.0025). (b) (α, Re, ω) =
(1.0, 100, 0.005).

Fig. 3. Figures of the time-fractional Burgers equation (0 < α < 1). The space step-length is h = 0.01. (a) (α, Re, ω) = (0.9, 100, 0.0025).
(b) (α, Re, ω) = (0.8, 300, 0.0025).

B(t,U) =
1
Re h2



−2 1 0 · · · · · · 0 0
1 −2 1 · · · · · · 0 0
0 1 −2 · · · · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · · · · −2 1
0 0 0 · · · · · · 1 −2


+
1
2h



u2 0 0 · · · · · · 0 0
0 c2 0 · · · · · · 0 0
0 0 c3 · · · · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 cN−2
0 0 0 · · · · · · 0 cN−2


.

Here ck = uk+1 − uk−1, k = 2, 3, . . . ,N − 2, cN−2 = −uN−2.
Next, set1t = ω, tn+1 = (n+1)ω, u(xi, tn+1) ≈ ui(tn+1) ≈ un+1i , i = 0, 1, 2, . . . ,N−1, n = 1, 2, . . . ,M−1. According

to the computational scheme of system (9), we can easily write out the computational scheme for system (14) so the scheme
is omitted here. By numerical experiments, we may take R = 6, the meaning of R is in the computational scheme of
system (9).
If α = 1, then system (11) is the classical Burgers equation. Here we apply our numerical algorithm to compute the

classical Burgers equation. In this case, for a fixed space step-length h, Re relates to the time step-length ω, i.e., smaller
Re, smaller ω. The numerical results obtained by our algorithm are the same as those of Sun and Qin’s [18]. In the present
paper we focus on studying the time-fractional Burgers equation. For a given space step-length h, during our numerical
simulations we find that the time step-length ω depends on parameter Re for 0.5 < α ≤ 1, i.e, the smaller Re, the smaller
ω. Furthermore, when α decreases from α = 1, Re should be more than 100 and the time step-length ω should be less than
0.005. But it is different for the case with 1 < α < 2. For a given space step-length h, when α becomes larger from α = 1, Re
should be less than 100 andω should be less than 0.005. The computer graphics for classical/fractional Burgers equation are
in Figs. 2–5. These numerical results show that our algorithm works well. This numerical method can be certainly applied
to other fractional differential equations, for example, the known fractional KdV equation [19].
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Fig. 4. Figures of the time-fractional Burgers equation (1 < α < 2). The space step-length is h = 0.01. (a) (α, Re, ω) = (1.5, 50, 0.005). (b) (α, Re, ω)
= (1.5, 100, 0.005).

Fig. 5. Figures of the time-fractional Burgers equation (1 < α < 2). The space step-length is h = 0.01. (a) (α, Re, ω) = (1.8, 10, 0.005).
(b) (α, Re, ω) = (1.8, 20, 0.005).

5. Conclusion

In this paper, we derive a novel algorithm based on Adomian decomposition for fractional differential equations.
Comparing the fractional Adamsmethodwith our numerical method, the latter needs less time due to less iteration time. By
using this method, we can find a smaller ‘‘efficient dimension’’ such that the fractional Lorenz system is chaotic. Andwe also
successfully compute the fractional Burgers equation. From the experiments, we find that the Reynolds number Re relates
to the time step-length for given α and space step-length.
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