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Abstract Introduction: The aim of this study was to (1) replicate previous associations between six blood lipids
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and Alzheimer’s disease (AD) (Proitsi et al 2015) and (2) identify novel associations between lipids, clin-
ical AD diagnosis, disease progression and brain atrophy (left/right hippocampus/entorhinal cortex).
Methods: We performed untargeted lipidomic analysis on 148 AD and 152 elderly control plasma
samples and used univariate and multivariate analysis methods.
Results: We replicated our previous lipids associations and reported novel associations between
lipids molecules and all phenotypes. A combination of 24 molecules classified AD patients with
.70% accuracy in a test and a validation data set, and we identified lipid signatures that predicted
disease progression (R2 5 0.10, test data set) and brain atrophy (R2 � 0.14, all test data sets except
left entorhinal cortex). We putatively identified a number of metabolic features including cholesteryl
esters/triglycerides and phosphatidylcholines.
Discussion: Blood lipids are promising AD biomarkers that may lead to new treatment strategies.
� 2016TheAuthors.PublishedbyElsevier Inc. onbehalf of theAlzheimer’sAssociation.This is anopen
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Alzheimer’s disease (AD) is a devastating illness and
one of the major public health challenges of the 21st
century. The lack of effective treatments and early diag-
nosis highlights the importance of the identification of
noninvasive biomarkers, for early diagnosis and disease
progression. Blood metabolites have recently emerged
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as promising AD biomarkers [1–4]. They are small
molecules which could theoretically cross the already
compromised AD blood-brain barrier [5]; they are easily
accessible, and they represent an essential aspect of the
phenotype of an organism and a molecular “fingerprint”
of disease progression [6,7]. They can therefore aid early
diagnosis, recruitment into trials and may help identify
new therapeutic targets.

A number of blood metabolomic studies have high-
lighted the role of lipid compounds, such as phosphatidyl-
cholines (PCs) in AD [1–4]. We previously identified three
PCs that were diminished in mild cognitive impairment
(MCI) individuals and AD patients [4] and were further
associated with poorer memory performance and decreased
brain function during aging [8]. We further performed lip-
idomics analysis and identified 10 metabolites that pre-
dicted AD in an unseen test data set with 79% accuracy
[9]; six analytes were putatively identified as cholesteryl
esters (ChoEs), molecules related to PCs, and were reduced
in MCI and AD.

Here, we performed lipidomics analysis in a sample of
142 AD patients and 135 healthy controls aiming to (1) repli-
cate our previous associations [9] and (2) discover new lipids
and combinations of lipids associated with clinical AD diag-
nosis and AD endophenotypes, such as the rate of cognitive
decline and brain atrophy measures. This is to our knowl-
edge the most comprehensive blood lipidomics study to
date to identify lipid signatures associated with AD and
AD endophenotypes, improving our current knowledge of
molecules associated with AD.
2. Methods

2.1. Patient sample collection

This study used 148 AD patients and 152 controls from
the Dementia Case Register at King’s College London and
the EU-funded AddNeuroMed study [10]. All individuals
with AD patients met criteria for either probable
(NINCDS-ADRDA, DSM-IV) or definite (CERAD) AD.
All nonpopulation individuals who were controls were
screened for dementia using the MMSE or ADAS-cog or
were determined to be free from dementia at neuropatho-
logic examination or had a Braak score �2.5. Diagnosis
was confirmed by pathologic examination for a proportion
of cases and cognitively normal elderly controls. All AD
cases had an age of onset �60 years, and controls were
�60 years at examination. A total of 102 AD cases and
104 controls had HDL-c, LDL-c, TC, and TG serum levels
(mmol/L) available. Nonoverlapping individuals from
these cohorts have been previously reported [9]. Each indi-
vidual was required to fast for 2 hours before sample collec-
tion, and 10 mL of blood was collected in tubes coated with
sodium ethylenediaminetetraacetic acid to prevent clotting.
Whole blood was centrifuged at 2000 g for 10 minutes at
4�C to separate plasma, which was removed and stored at
280�C. All samples were centrifuged within approxi-
mately 2 hours of collection.
2.2. Lipidomics

Sample treatment has been described elsewhere [4,9,11]
and is explained in detail in Supplementary Methods 1.
Briefly, 20 mL of plasma was added to a glass HPLC vial
containing a 400-ml glass insert (Chromacol, UK). Ten mi-
croliters of high purity water and 40 mL of MS grade meth-
anol were added to each sample, followed by a 2-minute
vortex mix to precipitate proteins; 200 mL of Methyl tert-
Butyl Ether (MTBE) containing 10 mg/mL of internal
standard Tripentadecanoin (TG45:0) was added, and the
samples were mixed via vortex at room temperature for
1 hour. After addition of 50 mL of high purity water, a final
sample mixing was performed before centrifugation at
3000 g for 10 minutes. The upper, lipid-containing,
MTBE phase was then injected onto the LC-MS system
directly from the vial by adjustment of the instrument nee-
dle height (17.5 mm from bottom).

Lipidomics was performed by a Waters ACQUITY
UPLC and XEVOQTOF system. The method has previously
been published [4,12] and has been shown to quantitate
.4500 metabolite species (Supplementary Methods 1).
Samples were analyzed in a randomized order, in four
batches, with pooled plasma sampled (QC) at regular inter-
vals throughout the run (n 5 30 for both positive and nega-
tive ionization). Features were extracted from netCDF
files using the R package “XCMS” [13] which performed
filtration, peak identification, matching of peaks across sam-
ples, and retention time correction. Positive and negative
ionization mode data were extracted separately and quantile
normalized.
2.3. Structural magnetic resonance imaging

Volumes of whole brain and the hippocampi and entorhi-
nal cortices were obtained using FreeSurfer 5.1.0 from 123
subjects (53 AD patients and 70 Controls) who had under-
gone sMRI. Regions were normalized by intracranial vol-
ume [14]. The volumetric data were not used to aid in the
clinical diagnosis of AD. Detailed information regarding
data acquisition, pre-processing, and quality control assess-
ment has been described elsewhere [15,16]. Before analyses,
sMRI measures were standardized to have a mean of 0 and a
standard deviation (SD) of 1.
2.4. Calculation of rate of cognitive decline

The ROD was available for 118 AD patients with analyte
data and has been described elsewhere [17]. The ROD was
based on longitudinal mini mental state examination
(MMSE) assessments [18], and only samples with at least
three MMSE measures were included in the calculation us-
ing linear mixed effect models. After covariate adjustment
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[17], the slope coefficient for each sample was used as the
ROD defined as the change in MMSE per day.
2.5. Statistical analysis
2.5.1. Quality control
Data QC has been previously described [9] and included

filtering of features and individuals, data transformation,
batch effect correction, outlier detection, and imputation
(Supplementary Methods 2.1 and Supplementary Fig. 1).
All analyses took place in R.3.01.

2.5.2. Single-analyte statistical analysis
Logistic regression investigated the association of each

metabolite with clinical AD diagnosis and linear regression
the association with cognitive decline and sMRI measures.
Logistic regression and linear regression models for the
sMRI measures were adjusted for age at sampling, gender,
presence of the apolipoprotein E (APOE) ε4 allele, batch,
and study site. For the ROD models, covariate adjustment
was only applied for batch as the rest of the covariates
were included in the ROD calculation [17]. sMRI measure-
ments were not adjusted for diagnosis to allow identification
of features associated with brain atrophy caused by AD.
False discovery rate (FDR) correction (0.05) was applied
to correct for multiple testing (“fdrtool”). Secondary models
investigated whether any associations were modified by the
APOE ε4 allele or by gender.

Logistic regression results (summary statistics) for the pos-
itive ionization metabolites were combined with the results
(summary statistics) from the Proitsi et al data set [9] using in-
Table 1

Sample demographics

AD (N 5 142) C

Age, mean (SD) 77 (6.5)

Gender (males/females) 48/87 4

APOE ε4 allele (absence/presence) 54/81 9

MMSE, mean (SD; Range) 20.1 (4.6; 10–27)

ROD (per year), mean (SD)y 21.46 (1.26) N

Entorhinal cortex right, mean (SD)zx 0.00092 (0.0003) 0

Entorhinal cortex left, mean (SD)zx 0.00094 (0.0002) 0

Hippocampus right, mean (SD)zx 0.0019 (0.0004) 0

Hippocampus left, mean (SD)zx 0.0018 (0.0004) 0

Mean HDL-c (SD), mmol/Lk 1.58 (0.37)

Mean LDL-c (SD), mmol/Lk 3.42 (1.01)

Mean TC (SD), mmol/Lk 5.69 (1.17)

Mean TG (SD), mmol/Lk 1.64 (1.04)

Statins (yes/no) 38/97 3

Abbreviations: AD, Alzheimer’s disease; MMSE, mini-mental state examinatio

*Differences in the means/frequencies of clinical/demographic variables were te

for age, gender, the APOE ε4 allele, and study site.
yRate of decline data was available for a subset of AD patients (N 5 118).
zsMRI data were available for a subset of study participants (N 5 123 [AD 5
xNormalized to intracranial volume.
kSerum HDL cholesterol, LDL cholesterol, total cholesterol, and triglyceride le

Controls 5 106]).
verse varianceweighted fixed effectmeta-analysis (“metafor”).
The published data set [9] was restricted to 576 features ex-
tracted using Mass-Lynx, and therefore, the analysis presented
here includes a large number of previously unreported mole-
cules extracted using XCMS. All associations are reported as
the change per one metabolite standard deviation (SD).

2.5.3. Multivariate statistical analysis
A random forest (RF) classifier approach (using “rf” and

“rfe” in “CARET”) was used to develop a clinical diagnosis
classifier as previously described [9] (Supplementary
Methods 2.2). Briefly, AD cases and controls were divided
into a training data set (2/3 of the sample) matched for age,
gender, and site and an independent data set (rest 1/3 of the
sample). An RF model was built on the training data set
(100 bootstraps), and in each iteration, each variable was as-
signed a variable importance (VI) score. The summedVI ranks
provided an indication of the predictive power for each vari-
able, and the top 10% molecules were selected for RF with
recursive feature elimination (rfe; 100 bootstraps) from 250
down to two features. For each subset of predictors, the
mean bootstrap testing performance was calculated, and the
optimal number of variables was identified using “sizeToler-
ance” that picks a subset of variables that is small without
sacrificing too much performance. Subsets of variables within
2.5% and 5% of the optimum performancewere examined and
used to build final models in the complete training data, which
were tested on the test set. The final model was also tested in
the Proitsi et al data set [9] which was used as a validation data
set, after excluding metabolites in the negative ionization
mode. The area under curve (AUC) was used to test the perfor-
mance of each classifier. Receiver operator curves (ROCs)
ontrols (N 5 135)

Difference between AD patients and

controls*

74 (5.9) t 5 24.8 (270), P value 5 2.62 ! 1026

7/95 c2 5 0.09 (1), P value 5 .761

9/43 c2 5 23.53 (1), P value 5 1.23 ! 1026

29.2 (0.9; 27–30) t 5 22.58 (143), P value , 2.0 ! 10216

A NA

.0013 (0.0003) t 5 6.02 (99), P value 5 2.87 ! 1028

.0013 (0.0004) t 5 5.26 (86), P value 5 1.58 ! 1026

.0025 (0.0003) t 5 9.06 (100), P value 5 1.3 ! 10214

.0025 (0.003) t 5 10.57 (104), P value , 2.0 ! 10216

1.55 (0.38) b 5 0.109 (SE 5 0.33), P value 5 .068

3.07 (0.82) b 5 0.092 (SE 5 0.15), P value 5 .529

5.29 (1.01) b 5 0.209 (SE 5 0.173), P value 5 .229

1.52 (0.67) b 5 0.021 (SE 5 0.146), P value 5 .885

4/108 c2 5 0.436 (1), P value 5 .509

n score; ROD, rate of cognitive decline; SD, standard deviation.

sted using t test t(df), x2(df) test, or linear regression analyses after adjusting

53, controls 5 70]).

vels were available for a subset of study participants (N 5 208 [AD 5 102,



Fig. 1. Associations of previously reported molecules (Proitsi et al 2015) with clinical AD diagnosis in the current data set and associations of putatively annotated

molecules, selected through random forest analyses, with the respective phenotype. (A) Association of Mass 856 with clinical AD diagnosis; (B) Association of

Mass 866 with clinical AD diagnosis; (C) Association of Mass 868 with clinical AD diagnosis; (D) Association of Mass 882 with clinical AD diagnosis; (E) As-

sociation ofMass 894with clinical AD diagnosis; (F) Association ofMass 970with clinical AD diagnosis; (G) Association ofMass 882 (2) (PC 40:4) with clinical

AD diagnosis; (H) Association of Mass 948 (1) TG (57:1) with clinical AD diagnosis; (I) Association of Mass 919 (1) TG 50:2 with Hippocampus (Right); (J)

Association ofMass 943 (1) (ChoE/TG) withHippocampus Left; (K) Association ofMass 367 (sterol) with Entorhinal Cortex (Right); (L) Association ofMass 816

(1) with Entorhinal Cortex (Left); (M) Association ofMass 771 (1) PC 36:3 with the rate of cognitive decline (ROD). The P values displayed are for the univariate

regressions after adjusting for covariates. All molecules are scaled to have a mean of 0 and a standard deviation of 1.

P. Proitsi et al. / Alzheimer’s & Dementia 13 (2017) 140-151 143



Fig. 1. (Continued)
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were plotted using “ROCR”. Models including APOE ε4 and
the six features in Proitsi et al [9] were also tested.

Random forest regression (RFR) models were built for
cognitive decline and sMRImeasures following the same strat-
egy as for clinical diagnosis. The data set was split randomly
into a training (2/3 of the data) and test set (1/3 of the data)
for each endophenotype such that the training and test data
sets were stratified for each endophenotype and contained



P. Proitsi et al. / Alzheimer’s & Dementia 13 (2017) 140-151 145
equal representation of each site. Age, gender, and APOE ε4
presence were included in the model development for the
sMRI models, and the root mean squared error (RMSE) was
used to evaluate the performance of the models.
3. Results

A total of 2539 positive ionization and 358 negative ioni-
zation features were initially extracted from 300 individuals.
After QC, 2216 positive and 289 negative ionization features
from 277 individuals (142 AD cases and 135 controls) were
used in subsequent analyses. Of these, 53 AD patients and 70
controls had sMRI data available, and 118 AD patients had
ROD data available. Sample demographics are displayed
in Table 1.
3.1. Univariate analyses results

Logistic regression analyses were initially used to inves-
tigate the association of each lipid with AD. We then per-
formed fixed-effects meta-analyses between the results of
this data set and our previously published data set [9], using
fixed-effects meta-analyses. Briefly, 425 features were
associated with AD at P value ,.05 in this data set; of
these, 87 features passed correction for multiple testing at
Q value ,0.05. After meta-analysis, 377 features were
associated with AD at P value ,.05 and 125 at Q val-
ue,0.05. All six features from Proitsi et al [9] were associ-
ated with AD at Q value ,0.05 in meta-analysis (Fig. 1
(A–F) and Table 2).

Linear regression investigated the association of each
lipid with brain atrophy and the rate of cognitive decline.
A total of 266 features were associated with the ROD at P
value ,.05, but none passed multiple testing correction. A
total of 181 features were associated with right hippocampus
volume and 224 were associated with left hippocampus vol-
ume; only six features were associated with left hippocam-
pus at Q value ,0.05. Finally, 156 and 124 features were
associated with EC volume (left and right, respectively) at
P value,.05, but no associations passed correction for mul-
tiple testing. Results for all logistic and linear regression an-
alyses are provided in Supplementary Table 1.

Overall, most lipids were reduced in AD compared to
controls (54 of the 87 features associated at Q-value
,0.05 were reduced in AD). Additionally, we observed sub-
stantial overlap between features associated with clinical
AD diagnosis and brain atrophy (Supplementary Fig. 2).

We further investigated whether the APOE ε4 and gender
modified the associations between lipids and clinical AD
diagnosis. APOE ε4 modified the association of 231 features
with AD, and gender modified the association of 191 fea-
tures with AD (P value ,.05); none of these associations
was significant at Q-value , 0.05. There were only 3 indi-
viduals with the ε2/ε4 genotype, and there were therefore
no differences in lipids levels between ε4 and non-ε4 carriers
after excluding ε2/ε4 individuals.
3.2. Multivariate analysis results

A RF approach was used to identify a panel of molecules
associated with clinical AD diagnosis. After an initial RF pre-
selection step on the training data set, the top 10% lipids (250
features), in terms of their variable importance, were selected
(after 100 Bootstraps). Furthermore, random forest with
recursive feature elimination (RF-rfe) on the training data
set showed that the best training performance was for a model
with 240 features. To choose a model with high accuracy
while reducing the number of features as low as possible, a
5% tolerance RF-rfe model (25 features) was fitted on the
whole training data set (AUC, 0.87) and classified the test
data set with 73% accuracy (Supplementary Fig. 3 and
Table 3). The model was then fitted on the training data set,
excluding one negative ionizationmode analyte and classified
the test training data set with 74% accuracy and the Proitsi
et al [9] validation data set with 71% accuracy. There was
no increase in accuracy when covariates and the features
from Proitsi et al [9] were added to the models (Table 3).

Random forest regressions using the same pipeline were
applied to the ROD and brain atrophy measures. After
RFR-rfe on the training data set, the lowest mean RMSE
for RODwas for a model with 40 features. The 5% tolerance
model of the lowest RMSE model (10 features) was fitted to
the whole training data set (R25 0.49) and predicted the test
data set with R2 5 0.10 (Table 4).

For right hippocampus, the lowest RMSE was with a
model with 70 features that included age. A 5% tolerance
model (12 features) was fitted to the training data set
(R2 5 0.55) and predicted the test data set with R2 5 0.15
(Table 3). For left hippocampus, the lowest training RMSE
was with 100 features that also included age. The 5% toler-
ance model (12 features) was fitted to the training data set
(R2 5 0.59) and predicted the test data set with R2 5 0.15
(Table 3). The performance of the models was almost iden-
tical when age was excluded.

For the right EC, the lowest mean training RMSE was
with 70 features; a 5% tolerance model (12 features) was
fitted to the training data set (R2 5 0.54) and predicted the
test data set with R2 5 0.14. Finally, for left EC, a model
with 90 features had the lowest RMSE, and a 5% tolerance
model (12 features) was fitted to the training data set
(R2 5 0.42) and predicted the test data set with R2 5 0.01
(Table 3). Results of all 2.5% models are presented in
Supplementary Tables 2 and 3, and the list of molecules
included in each classifier is found in Supplementary
Table 1. The strength of association between selected fea-
tures and each model is shown in Fig. 2, and the scaled VI
of each lipid after RF-RFE/RFR-RFE for each phenotype
is shown in Supplementary Fig. 4.
3.3. Lipid annotation and putative identification

We opted to annotate the top features, in terms of VI
from each model and features selected in more than one



Table 2

List of putatively identified metabolite molecules selected by the six random forest models

Logistic

regression

analysis

m/z

(ionization

mode)

Putative

metabolite

molecule

Present study data set Proitsi et al 2015 data set Meta-analysis

OR 95% CI P value OR 95% CI P value OR 95% CI P value

Clinical AD

diagnosis

882 (2) PC 40:4 1.996 1.35–3.01 6.79E204* NA NA NA NA NA NA

948 (1) TG 57:1 0.514 0.36–0.71 8.09E205* 0.522 0.28–0.92 3.01E202 0.516 0.39–0.69 6.83E206*

856 (1) ChoE/TGy 0.711 0.51–0.99 4.34E202 0.141 0.04–0.43 1.75E203 0.632 0.46–0.87 4.94E203*

866 (1) ChoE/TGy 0.663 0.46–0.94 2.42E202 0.251 0.10–0.52 7.51E204* 0.569 0.41–0.79 7.37E204*

868 (1) ChoE/TGy 0.65 0.47–0.89 7.74E203* 0.218 0.07–0.55 3.15E203 0.591 0.44–0.80 7.16E204*

882 (1) ChoE/TGy 0.57 0.41–0.79 7.99E204* 0.231 0.08–0.53 1.56E203 0.517 0.38–0.71 3.05E205*

894 (1) ChoE/TGy 0.732 0.51–1.04 8.05E202 0.151 0.05–0.38 3.14E204* 0.615 0.44–0.86 4.65E203*

970 (1) ChoE/TGy 0.643 0.47–0.87 4.96E203* 0.362 0.18–0.67 2.56E203 0.58 0.44–0.77 1.27E204*

Linear regression

analysis Beta 95% CI P value NA NA NA NA NA NA

Hippocampus (right) 919 (1) TG 50:2 0.396 0.20–0.59 7.91E205* NA NA NA NA NA NA

Hippocampus (Left) 943 (1) ChoE/TG 0.320 0.13–0.51 9.97E204* NA NA NA NA NA NA

Entorhinal Cortex

(Right)

367 (1) Sterol 20.201 20.39 to 20.01 3.88E202 NA NA NA NA NA NA

Entorhinal Cortex

(Left)

816 (1) NA 0.218 0.03–0.41 2.47E202 NA NA NA NA NA NA

ROD 771 (1) PC 36:3z 20.412 20.65 to 20.17 9.92E204 NA NA NA NA NA NA

Abbreviations: AD, Alzheimer’s disease; ChoE, cholesteryl ester; CI, confidence interval; m/z, mass-to-charge ratio; OR, odds ratio; PC, phosphatidylcho-

line; ROD, rate of cognitive decline; TG, Triglyceride.

NOTE. The six random forest models were for the clinical AD diagnosis, ROD, hippocampus (R/L), and entorhinal cortex (R/L) phenotypes. The association

of eachmolecule is presented with the respective phenotype (i.e., primary phenotype of association). The association of the six molecules previously reported by

Proitsi et al 2015 with AD is also presented.

*Q value ,0.05.
yFeatures identified by Proitsi et al 2015 and for the Proitsi et al., data set semiquantified values are presented.
zPC 36:3 has m/z 770, and m/z 771 is its C13 isotope. ChoE/TG indicates co-elution of ChoE and TG molecules.
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model, using our in-house lipid database and MS/MS frag-
mentation patterns [4,11,12]. These features were
annotated as mainly long-chain triglycerides (LCTs) and
ChoEs, some were PCs and a sterol. Fig. 1 (G–M) and
Table 2 present the univariate associations of these mole-
cules with the respective phenotypes. The association of
Table 3

Random forest classifier model results (clinical AD diagnosis) for the training da

Model (5% tolerance)

Training data set (N 5 179) Test data set (N

Sens. Spec. AUC Acc. Sens.

Covariates only* 0.72 0.71 0.77 0.56 0.54

25 featuresy 0.82 0.82 0.87 0.73 0.77

24 featuresz 0.81 0.82 0.86 0.74 0.74

25 featuresy 1 covariates* 0.83 0.83 0.88 0.75 0.79

24 featuresz 1 covariates* 0.84 0.82 0.88 0.75 0.79

25 featuresy 1 6 ChoE/TGx 0.82 0.82 0.87 0.71 0.74

24 featuresz 1 6 ChoE/TGx 0.82 0.81 0.87 0.71 0.79

25 featuresz 1 covariates*

1 6 ChoE/TGx
0.83 0.83 0.88 0.74 0.77

24 featuresz 1 covariates*

1 6 ChoE/TGx
0.83 0.82 0.88 0.74 0.79

Abbreviations: Acc, accuracy; AUC, area under the curve; ChoE, cholesteryl e

sensitivity; Spec, specificity; TG, triglyceride.

*Age, sex, ε4.
y5% tolerance model including negative ionization molecule.
z5% tolerance model excluding negative ionization molecule.
xSix features identified by Proitsi et al 2015.
the annotated molecules with all phenotypes is shown in
Supplementary Fig. 5. The raw intensity counts for each
AD associated lipid across AD and controls, along with
the coefficients of variation (relative standard deviation
[RSD]) of the pooled samples (QCs) are shown in
Supplementary Table 4.
ta set and predictions on the test data set and the Proitsi et al data set

5 98) Validation data set (N 5 75)

Spec. AUC PPV NPV Acc. Sens. Spec. AUC PPV NPV

0.58 0.56 0.5 0.62 0.6 0.57 0.63 0.6 0.57 0.63

0.69 0.73 0.66 0.79 NA NA NA NA NA NA

0.73 0.74 0.68 0.78 0.71 0.69 0.73 0.71 0.69 0.73

0.71 0.75 0.68 0.81 NA NA NA NA NA NA

0.71 0.75 0.68 0.81 0.71 0.69 0.73 0.71 0.69 0.73

0.67 0.71 0.64 0.77 NA NA NA NA NA NA

0.66 0.72 0.65 0.80 0.72 0.71 0.73 0.72 0.69 0.74

0.71 0.74 0.68 0.80 NA NA NA NA NA NA

0.69 0.74 0.67 0.81 0.71 0.69 0.73 0.71 0.69 0.73

ster; NPV, negative predictive value; PPV, positive predictive value; Sens,



Table 4

Random forest regression model results for the training data set and

predictions on the test data set for each AD endophenotype

Phenotype

Model

(5% tolerance)

Train data

set (n 5 93)

Test data

set (n 5 28)

RMSE R2 RMSE R2

Hippocampus

(right)

Covariates only* 0.92 0.28 1.09 0.02

12 featuresy 0.58 0.55 0.9 0.15

Hippocampus

(Left)

Covariates only* 0.89 0.34 1.21 0.01

12 featuresy 0.64 0.59 0.99 0.15

Entorhinal

cortex (right)

Covariates only* 0.95 0.22 1.14 ,0.01

12 features 0.66 0.54 0.92 0.14

Entorhinal

cortex (left)

Covariates only* 1.00 0.22 1.17 ,0.01

12 features 0.77 0.42 1.07 0.01

ROD 10 featuresz 0.93 0.49 1.09 0.10

Abbreviations: RMSE, root mean squared error; ROD, rate of cognitive

decline.

*Age, sex, ε4.
yAge was included in the final model. There was no difference in either

train or test data set performance when age was excluded.
zCovariates were already included in the calculation for the ROD.
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4. Discussion

This is to our knowledge, the largest nontargeted blood
lipidomics study in AD to date. Here, we expanded our
recent work [9], and using univariate and multivariate ap-
proaches, we replicated the associations between six previ-
ously reported blood lipids and AD [9] and reported their
association with brain atrophy. We further identified com-
binations of lipids that classified AD patients with rela-
tively good accuracy when tested in both a test and a
validation data set (.70%), and combinations of molecules
that predicted changes in disease progression (R2 5 0.10
for test data set) and brain atrophy (R2 � 0.14 for all test
data sets except for left EC). Overall, we observed substan-
tial overlap between features associated with clinical AD
diagnosis and brain atrophy. The associations of all mole-
cules included in each model with all phenotypes is shown
in Fig. 2. Although these signatures cannot be used for
diagnostic purposes yet, they suggest important biological
mechanisms associated with AD.
4.1. Identification and role of lipids in AD

We putatively identified two PC molecules; additionally,
ChoEs and triglycerides (TGs) were tentatively annotated
due to chromatographic coelution, and finally, we putatively
annotated a molecule as a sterol. The higher MS-MS sensi-
tivity achieved here enabled the detection of a number of
additional lipids that co-eluted with ChoE; these were anno-
tated as TGs (Table 2).

The association of PCs with AD and cognition has been
extensively described [4,8]. Here, one of the molecules
most strongly associated with AD is a putative PC (PC
40:4), and the top lipid in the ROD model is also a putative
PC (PC 36:3). In contrast to the same species of molecules,
we have previously identified, both PCs are increased in
AD, and PC 36:3 is associated with faster ROD. Although
most studies to date have reported a reduction of PC levels
in AD, an increase in CSF PCs has been observed in AD
compared to control brains [19] and recently in “AD-like” pa-
tients based on their CSFAmyloid-beta42, Tau, and Phospho-
Tau-181 levels [20]. A recent study also reported a parallel
increase of PCs containing saturated and short-chain fatty
acids in serum from AD patients [21]. These suggest deregu-
lation in the biosynthesis, turnover, and acyl chain remodeling
of phospholipids, in accordance with increased phospholipid
breakdown due to PLA2 [21] overactivation.

We have also reported associations with low-chain and
very-low-chain triglycerides (LCTs/VLCTs; fatty acid
chain length .16 carbons). One of the most interesting
findings was that due to the higher MS-MS sensitivity
achieved in this study, we were able to observe putative
VLCTs that were coeluting with ChoEs (Table 2). We
have previously reported on the synthesis of ChoEs [9];
briefly, it takes place by transfer of fatty acids from PC to
cholesterol, a reaction catalyzed by lecithin cholesterol
acyl transferase in plasma and by acyl-coenzyme A: choles-
terol acyl transferase 1 and 2 (ACAT1 and ACAT2) in other
tissues, including the brain. The association of LCTs/
VLCTs with AD is noteworthy. Although overall TGs are
seen as risk factors for many disorders including cardiovas-
cular disease (CVD) and type 2 diabetes (T2D), numerous
investigations point to the diverse role of TGs with different
chain lengths. It is known for example that medium-chain
triglycerides (MCTs) and LCTs have different metabolic
pathways in digestion and absorption [22]. Moreover,
although LCTs of lower carbon number and double bond
content have been associated with increased CVD [23]
and T2D risk [24], LCTs with higher carbon number and
double bond content, like the ones here, have been associ-
ated with decreased risk of T2D [24], whereas no associa-
tions between T2D and total triglyceride levels were
observed in the same individuals [24]. Furthermore,
decreased concentration of LCTs and an increased concen-
tration of VLCTs have been associated with longevity [25].
These findings are particularly interesting as most vege-
table oils are comprised of long-chain fatty acids; however,
only MTCs have to our knowledge been implicated in AD,
although findings are controversial [26]. When we previ-
ously investigated the association of total cholesterol and
TGs with AD in overlapping individuals using Mendelian
randomization, we found no evidence for an association
with AD [27]. Additionally, we observed no difference in
serum triglycerides, total cholesterol, LDL cholesterol,
and HDL cholesterol between AD patients and controls
for a random subset of study participants in this study
(AD5 102, controls5 106) that had serum lipid measures
available for the same visit, as well as no difference in the
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Fig. 2. Heatmap of the univariate associations between features selected during random forest analyses for each phenotype. The color of each box represents the

univariate logistic regression beta coefficient (log[OR]) for clinical diagnosis or the univariate scaled linear regression beta coefficients for the rate of cognitive

decline and brain atrophy, after adjusting for covariates. The stars on each box represent the strength of the association: *P value,.05; **P value,.01; ***P

value,.001; ****P value,.0001; *****P value,.00001. The order of the metabolite molecules on the y-axis is based on a hierarchical clustering using the

metabolites pairwise correlations. XN denotes negative ionization mode feature. Abbreviations: AD-CTL, Clinical AD diagnosis; ROD, rate of cognitive

decline; HIP_L, left hippocampus; HIP_R, right hippocampus; ERC_L, left entorhinal cortex; ERC_R, right entorhinal cortex.
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frequency of AD patients and controls who were taking sta-
tins. On the other hand, a recent study reported an overlap
between genes involved in elevated plasma lipid levels and
inflammation and the risk for AD [28]. All these highlight
the relevance of investigating smaller lipid fractions as they
highlight specific steps in their biosynthesis and meta-
bolism that may be associated with AD.

Finally, we observed an association between most pheno-
types and a feature of m/z 367. We previously described a
molecule with the same mass and similar retention time to
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be reduced in AD [9]. The molecule discovered here was
associated with an increased risk for AD in both data sets
and with reduced brain volume and was included in the
ERC and clinical diagnosis models. We believe this feature
is a fragment and a sterol, specifically an isomer of desmos-
terol. Desmosterol is a precursor of cholesterol and seladin
(DHCR24), which governs the metabolism of desmosterol
to cholesterol in specific brain areas. Desmosterol has been
shown to inhibit b-secretase cleavage of APP, and the forma-
tion of amyloid-b and lower desmosterol levels has been
found in the plasma and brains of AD patients compared
to controls [29–32].

Although the association of aberrant lipid metabolism in
AD pathogenesis is undisputed [33–35]; at this stage, the
mechanisms by which these changes in lipids might occur
in AD are unclear. One possibility involves AD selective
alterations to circulating lipid metabolism. However,
another possibility relates to cellular lipid production. A
number of phospholipids are synthesized within a
specialized region of the endoplasmic reticulum (ER) that
is closely associated with mitochondria, the mitochondria-
associated ER membranes (MAM). The close association
of MAM to mitochondria facilitates Ca21 and phospholipid
exchange between the two organelles [36–38]. Recent
studies have shown that MAM contacts are damaged in
AD [39–42]. Because ER-mitochondria contacts are
required for the synthesis of certain lipids [36–38], such
changes may affect lipid metabolism and lead to some of
the changes described here. Indeed, different APOE alleles
have been shown to influence MAM [43].
4.2. Strengths and limitations

Here, we have used a large well-characterized AD
cohort and a careful and systematic analysis pipeline.
Through bootstrapping, we have reduced over-fitting, and
subsequently, we validated our results in an unseen data
set for each phenotype and an additional validation data
set for clinical AD diagnosis. Our AD diagnostic classifier
achieved 88% accuracy on the training data set (summary
of 100 bootstraps) and predicted the test and validation
data sets with .70% accuracy. Our training data set
comprised of individuals matched on age and gender. On
the other hand, the test data set consisted primarily by fe-
males, and AD patients were significantly older than con-
trols. Additionally, the validation data set [9] included
AD patients and controls of UK origin only, older than
the individuals of the current data set. These findings high-
light robustness in the model. For the AD endophenotypes,
the Random Forest Regression models had a very good per-
formance on all training data sets. Although the perfor-
mance dropped significantly in the test data sets, we
observed R2 . 0.10 for all phenotypes except for Left EC
(R250.01). The drop in performance can be attributed to
over-fitting of the training data sets and the smaller number
of individuals with ROD/brain atrophy measures. The poor
performance of the Left EC is in agreement with our univar-
iate analyses that highlighted weaker associations with the
EC for the whole sample; however, it is in contrast to the
overall right-to-left asymmetry in AD [17].

A limitation of this study is that wewere not able to deci-
pher the exact fatty acid chain structure of some features.
Owing to the higher MS-MS sensitivity, we observed a
number of putative ChoEs and TGs co-eluting, which is
commonly observed in lipidomics studies due to hundreds
of lipids detected in one analysis; to minimize co-elution
problems, our chromatographic run is 2 hours long using
ultra pressure chromatography [11,44].

Additionally, although this is the largest AD lipidomics
study to date, we acknowledge that the sample size is still
modest and further replication is required, especially for
the ROD and brain atrophy phenotypes. Moreover,
although we had information on the ROD, this calculation
was based on the MMSE, which is a crude measure of
measurement of cognition. Furthermore, the present study
did not contain an MCI cohort or information on conver-
sion to MCI/AD, and therefore, we do not know whether
these features are associated with initiation of AD. This
study additionally suffers from limitations inherent to
AD case-control studies, such as the large number of co-
morbidities in old age, the possibility that some of the
elderly controls may already carry pathology, and that
some of the clinically diagnosed AD may be pathologi-
cally non-AD dementias. Finally, this study lacks infor-
mation on BMI and body fat distribution that could
potentially explain some of the differences between AD
patients and controls.

However, through the longitudinal nature of these co-
horts, we know that all the AD patients used for our
analysis maintained the diagnosis of AD as did all con-
trols for at least 3 years from their baseline visit. Addi-
tionally, our information on disease progression and
brain atrophy provide us with more precise phenotypes
that capture different stages of disease pathology
including the early preclinical stages. Given the good
performance of these models, we believe that enrichment
with additional individuals and pathology information
would increase their performance. Finally, although we
did not have BMI information for our cohort, we
observed no difference in statin use or serum lipids be-
tween AD cases and controls.
5. Conclusion

In conclusion, the findings of this study deepen our
knowledge of AD disease mechanisms and emphasize
the importance of investigating in detail different lipid
fractions in dementia research. As it is not known whether
the observed changes in lipid levels are causally related to
or are just a marker of changes in lipoprotein dynamics
and composition, studies that address causality are essen-
tial, as the success of targeting specific molecules and
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identifying potentially causal pathways amenable to inter-
vention is predicated on these molecules being on the
causal pathway. Finally, integrating additional types of
biological modalities such as protein, gene expression,
and genotype information may increase the fit of these
models and help us to understand more about the biolog-
ical context in which these molecules operate.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using PubMed and reported key publications.
There is a pressing need to identify noninvasive Alz-
heimer’s disease (AD) biomarkers, and blood metab-
olites are promising biomarkers that could aid early
diagnosis and ultimately lead to the development of
more effective interventions. Recent blood metabo-
lomic studies have highlighted the role of lipid com-
pounds in AD. However, most studies are small and
relatively heterogeneous.

2. Interpretation: This study replicated previous associ-
ations between blood lipids and AD and reported
novel associations between blood lipids and clinical
AD diagnosis, the rate of cognitive and brain atrophy.
These findings deepen our knowledge of AD disease
mechanisms and suggest novel targets for future
work.

3. Future directions: Results of this study could be com-
plemented with protein and genetic data. Future
studies should address whether these changes are
causally related to AD or are just a marker of changes
in lipoprotein dynamics and composition.
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