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Abstract

Kelemenova, A. and E. Csuhaj-Varji, Languages of colonies, Theoretical Computer Science 134
(1994) 119-130.

A colony is a finite set of regular grammars, where each grammar generates a finite language. The
component grammars cooperate to derive a common language. In this paper we compare the
generative power of colonies with two cooperation strategies and with several types of the selection
of the alphabet for the common language. The results give representations of languages of colonies
in terms of classes of sequential and parallel languages.

1. Introduction

Colonies are grammatical models of multiagent systems motivated by subsumption
architectures [ 1, 2] and form a special variant of cooperating/distributed grammar
systems [3, 6]. The notion of a colony was introduced in [9] as a finite set of regular
grammars, where each grammar generates a finite language. The component gram-
mars cooperate to derive a common language. Regular grammars of the colony model
agents of the multiagent system and the common language corresponds to the
accepted (correct) behaviour of the system. The style of acceptance is expressed by the
relation of the alphabet of the common language to the terminal alphabets of
the component grammars. The way how the component grammars can take part in
the derivation, the derivation mode, corresponds to the strategy under which the
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agents cooperate. More details about acceptance styles can be found in [4]. Variants
of cooperation strategies are discussed in [9, 7].

In this paper we study the generative power of colonies with respect to acceptance
styles arb, all, one, ex and dist and with respect to two cooperation strategies, namely
to the basic mode of derivation and to the terminal mode of derivation. Acceptance
style arb means that the terminal set of the colony is an arbitrary subset of terminals of
all components. In the case of style all, every terminal symbol of the colony is
a terminal symbol for all components. If the acceptance style is one, then the terminal
set of the colony is identical with the terminal set of one of its components and the
terminal set of the colony in style ex is the union of the terminal sets of the
components. Acceptance style dist assumes only those terminals of the components
which are not nonterminals for any component of the colony.

In the basic mode of derivation a component executes a direct derivation step if it
replaces one occurrence of its startsymbol by any of its terminal words. In the terminal
mode a component has to replace each occurrence of its startsymbol by one of its
terminal words, not necessarily the same one.

The main result of Section 3 is that acceptance styles all, arb, one and dist are
equally powerful from the generative point of view and the acceptance style ex is less
powerful than the previously listed ones.

In Section 4 we demonstrate that the above two types of derivation mode differ
from each other in the generative power. In the basic mode of derivation the colonies
with acceptance style arb (or all or one or dist) are as powerful as e-free context-free
grammars. Acceptance style ex results in a smaller language class, in a subclass of pure
context-free languages. The terminal mode of derivation enhances the generative
power. In this case, the colonies with acceptance style arb (or all or one or dist)
generate all languages those can be obtained by 1-restricted EPT 0L systems. Colonies
with acceptance style ex are of the power of 1-restricted FPTOL systems with
nonrecursive tables.

2. Basic definitions and preliminaries

We assume that the reader is familiar with basis of formal language theory. The aim
of this section is to recall some types of sequential and parallel grammars and to state
some auxiliary relations among corresponding language classes, which we use in the
Section 4. For further details and unexplained notions the reader is refered to
[8, 12, 13].

For an alphabet X we denote by X * the set of all nonempty words over Z. The set of
all words over Z, included the empty word ¢, is denoted by 2*. For a word weX* we
denote by |w|, the total number of occurrences of symbol aeZ in w.

A language is an arbitrary set of words. Because colonies do not treate erasing rules,
we discuss e-free languages. For a language L we denote by alph L the smallest
alphabet X such that L < 2* holds.
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We denote a context-free grammar by G=(N,T,P,S), where N and T are the
disjoint finite sets of nonterminals and terminals, respectively, P is the finite set of
productions of form A — w, where AeN, we(Nu T)* and S is the startsymbol.

The language generated by a context-free grammar G is denoted by L(G).

By a regular grammar we mean a context-free grammar G=(N, T, P, §) with
productions of form 4 —aB and 4 — a, where 4, B are nonterminals and a is
a terminal.

By a pure context-free grammar we mean a triple G=(V, P, &), where V is a finite
alphabet, % is a finite set of elements of V' * and P is a finite set of productions of form
Z — w, where ZeV and we V'™ hold. (Note that we do not allow erasing rules here.)

The language generated by a pure grammar G is defined by L(G)={y: x =* y, xe & }.

A pure context-free grammar G=(V, P, &) is said to be with nonrecursive produc-
tions (rules), if P contains no production of type Z — xZy for xye V' *. (Derivations of
type Z = u=>" xZy are not forbidden for these grammars.)

We denote the class of languages generated by the context-free grammars (by the
pure context-free grammars and by the pure context-free grammars with nonrecursive
productions) by Z(CF), (¥ (pCF) and ¥ (nrpCF), respectively).

Proposition 2.1. ¥ (nrpCF)c ¥ (pCF)< #(CF).

Languages a*S and {a'Sb": i>0} are examples of languages in #(pCF) but not in
Z(nrpCF) and {a'b": i>1} is in £ (CF) but not in Z(pCF).

Context-free grammars, regular grammars and pure context-free grammars use
sequential derivations. We shall use also some types of grammars with parallel
derivation.

By an ETOL system we mean an (n+3) tuple H=(V, T, P4, ..., P,,S), where V is
a finite set of symbols, T< V' is a set of terminals, SeV is the startsymbol and P;, for
every i, 1<i<n, is a finite set of productions of form Z — w, where ZeV, weV *.
Moreover, every P; contains at least one production of form Z — w foreach Ze V. The
set P; is called the ith table of H.

A sentential form x=x,...x, with x;eV,1<j<m, derives a sentential form
y=Y1...Ym With y;eV* 1<j<m, in ETOL system H directly, denoted by x =y, if
there is a table P;, for some i, 1 <i<n, such that x; — y; is a production in P; for each j,
I1<j<m.

The language L(H) generated by H is defined by L(H)={w: S =* w, we T*}, where
=* denotes the reflexive transitive closure of =.

An ETOL system with V=T is a TOL system. We shall use P to distinguish the
systems with no erasing rule, i.e. we shall have PTOL systems, EPT 0L systems, etc.
A TOL system with finite set &% of axioms from V' * instead of S will be denoted as an
FTOL system.

An ETOL system H=(V,T,P,,...,P,,S) is said to be 1-restricted ETOL system,
abbreviated as ET 0Ly system, if for every P;, 1<i<n, there exists a symbol Z in
V such that if B#Z and B — weP;, then w= B holds.
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Thus, 1-restricted ET 0L systems allow to rewrite by each table at most one symbol
into something else than the symbol itself.

We say that an ET 0Ly, system H=(V,T,Py,...,P,, S) is a system with nonrecur-
sive tables, abbreviated as nrET OL;,; system, if there is no table P;, 1 <i<n, such that
P; contains a production Z — xZy, where xye V' * and, moreover, if Z —» a is in P; for
oa#Z then Z — Z is not in P;.

An nrETOLy; system with =V and with a finite set & of words called axioms
(instead of the single startsymbol S) is an nrFT 0L, system.

Thus, for « = B in nrET 0Ly, system, either f=o or there is exactly one letter in «,
say Z, such that a=a, Za, ... Zo, 4+ (s do not contain Z) and f=ot1us %, ... Uyl 1,
where u}s (and §) do not contain Z.

Similarly as for sequential grammars we shall use £(X) to denote the class of
languages generated by L systems in a class X (ie. Z(ETOL), L(ETOL,),
LmrETOLy;), L(FTOL),...).

Proposition 2.2.
P(CF)c $(nrEPTOLy,)= % (EPTOL,;) = £ (EPTOL),

Proof. (a) We show first that £ (CF) < & (nrEPTOLy;). Let L be an arbitrary e-free
context-free language. Without loss of the generality we may assume that L is
generated by a context-free grammar G=(N, 7, P, S), with all productions of form
A— BC, A— B, A— a, where A, B, C are pairwise different nonterminals and a is
a terminal. Let =N u T and let us denote by V' the primed version of alphabet V.
We construct for L an nrEPTOLy; system H. Let P={py, ..., p,}, where p;: X - a.
Let for every i, 1<i<n, Pi={p}u{X >X'}u{z->z ze(VuV' —{X})} and
Pi={X'->X}u{zozze(WuV'—{X'})}. Then, H=(VO V', T, Py, ..., Py, P, ...,
P, S) is obviously an nrEPT 0L, system.

We show that L(G)=L(H). We first note that for i, 1<i<n, the subsequent
application of tables P; and P; for a sentential form veV * corresponds to the
application of production p;: X — a in G for some occurrence of X in v. By this fact,
L(G)< L(H) is obvious. L(H) < L(G) also holds since P; changes only X' to X and,
therefore, it can be applied immediately after the occurrence to X' in a sentential form.
Therefore, for arbitrary derivation

D: S=a,=>0= =,
a,eT* in H, there is a derivation
D: S=a] =a)= =0,

in H such that ), =a, and if &= /. ; by P; then exactly one occurrence of X in o is
rewritten to « and o, ; = &} , rewrites the occurrences of all X' to X (if there is any).
In the case that in D in some derivation step o;=>a;,, P; is used to rewrite more
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occurrences of X to « then in D’ we rewrite X’s “sequentially” using corresponding
number of derivation steps. Thus, terminating derivations in H correspond to termi-
nating derivations in G. This implies that the equality of languages holds and, thus,
ZL(CFYe L(nrEPTOL ).

The corresponding proper inclusions come out from the fact that L={a*"
n>1}¢.2(CF) can be generated by the nrEPTOLy; system H=({A4}, {a}, Py, P,, A),
where P, ={A > aa,a—>a} and P,={a—> A, A —> A}.

(b) To prove L (nrEPTOL{y,)=%(EPTOL;,) we have to show £ (EPTOL;;) =
&L (nrEPTOL(y). The reverse inclusion is obvious.

Let H=(V,T1,P,,...,P,,§) be an EPTOL;; system with an alphabet
V={A,,...,A,}. Let V' denote the primed version of V. For a word w and for
anonterminal 4 we denote by w* the word that is obtained from w by replacing every
occurrence of A by a new nonterminal A’.

Let Pi={A > ua,| |a,}u{X > X: XeV—{A}} be a fixed table. We define P}
by Pi={A-oaf| et} u{X >X: XeVuV' —{4}} and for AeV we put
Py,={A - A}u{X > X:Xe(VuV'—{A'})}. Then the system H'=(VuV,T,

Yooos Py Py, Py, S)is an nrEPTOLy,, system and L(H)=L(H').

() ZL(ETOL{;))= L(ETOL) was proved in [10]. All other inclusions in the Prop-
osition 2.2 are evident. They are proper because {a’" n>1}e ¥ (FPTOL;)—
L(nmrFPTOL,)) and {a*"b*": n>1}e L(FPTOL)— L(FPTOLy,). O

3. Basic properties of colonies

In this section we turn to special systems of grammars, called colonies. Detailed
information on grammar systems can be found in [5, 6]. First we recall the notion of
a colony from [9].

Definition 3.1. By a colony we mean an (n+2)-tuple C=(T,R,, ...,R,, S), where
(i) R;=(N;, T;, P;, S;), for every i, | <i<n, is a regular grammar generating a finite
language; R; is called a component of C;
(i) S=S; for some i, 1 <i<n; S is called the startsymbol of C;
(iti) T<( )=, T; is called the set of terminals of C.

We denote the total alphabet of C by V, ie. V={ ). (T;UN,).
Colonies can generate languages in basic mode (b-mode) of derivation and in
terminal mode (t-mode) of derivation.

Definition 3.2. Let C=(T,R,...,R,,S) be a colony and let x, ye V' *, where V is the
total alphabet of C.
(i) We say that x derives y in C in basic mode (b-mode) of derivation directly,
denoted by x =y, if there is a component R; of C for some i, 1 <i<n, such that
x=x,5;x, and y=x;wx, hold, where x; x,eV* and we L(R,).
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(i) We say that x derives y in C in terminal mode (t-mode) of derivation directly,
denoted by x $C y, if there is a component R; of C for some i, 1 <i<n, such that
X=X18%38:X3 ... XmSiXm+1 and  y=Xx;WiXoWsX3...XpyWnXpn+1, Where
X1X3 .o Xme1 €(V—{S;})* and w;e L(R;), for each j, 1 <j<m.

The language generated by C in x-mode of derivation for xe{b,t} is defined by
L(C)={w:S=%w, weT*}, where =¥ denotes the reflexive transitive closure of =.

If there is no misunderstanding, then subscript C can be omitted.

According to different selections of the terminal set of the colony we can distinguish
colonies with different styles of acceptance.

Definition 3.3. We say that colony C=(T,Ry,...,R,,S) has an acceptance style
() arbif Te\Ji_, T,
(ii) one if T=T; for some i, 1 <i<n,
(i) ex if T=)7_, T:,
(v) all if T=(\;-, T;,
() dist if T=(J7, T)—(Ui=, N0

Notation 3.4. For xe{b,t} and fe{one,arb, ex, all,dist} the class of languages gener-
ated by colonies in x-mode of derivation with acceptance style f is denoted by
ZL(Col, x,f).

Theorem 3.5. For xe{b, t}
ZL(Col, x,ex) = L(Col, x, arb),

ZL(Col, x, one)= % (Col, x, all)= ¥ (Col, x, dist)= £ (Col, x, arb).

Proof. Acceptance styles one, ex, all and dist are special cases of the style arb. So it is
sufficient to prove that £ (Col, x, arb) = £(Col, x, f) for f being one or all or dist. Let
C=(T,Ry,...,R,,S) with T={a,, ...,a,} be a colony with acceptance style arb. Let
C'=(T,Ry,...,R,,R,,,...,R,,,S") be a colony, where Ri=(N; Tu T: P, §}), for
1<i<n, and N, T}, P, S} are primed versions of N;, T}, P;,S; in R;=(N;, T;, P;, S}),
respectively. Let R,,=({a}}, T, {aj— a;}, a}) for 1<j<p. T in C’ obviously fulfils the
conditions for any of the acceptance styles one, all or dist. We show that
L.(C')=L,(C). Inclusion L,(C) < L,(C’) holds clearly, because we can simulate every
derivation S = w; = w, = --- =>w,=w in C where w;e V** 1<j<n, weT " by a de-
rivation S’ = wh = wh 2.3 wp=w =*w in C’, where w) is the primed version of
wj, 1<j<n, and w can be derived from w’ using components of R,,, ..., Ry,

The reverse inclusion L,(C') < L.(C) holds, too. Because there is no component
that changes any of letters a;, 1 <j<p, we can reorganize every terminating derivation
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X X X X . . . .
S'=zi=>z)=..=>z=zinC’, where z;e(V'uT)", 1< j<s, zeT *, into a termina-

ting derivation S’ = w = w) = ... = w,=z with wje(V'u T)*, 1 <j<s, such that for
some m, with 1<m<s, it holds that w,, =z and we use in the subderivation
Wi => Wpiq = -+ = Wi_; = w,=z only components R,,,...,R,, .

This property leads to L,(C')=L,(C) and thus equality L.(C)=L,(C’) fol-
lows. O

Note 3.6. For C’ in the previous proof the alphabet of L(R}) and L(R,,) is a proper
subset of the terminal alphabet of R} and of R, respectively. This condition is
necessary to prove Theorem 3.5 for acceptance style all, otherwise, £ (Col, x, all) is the
collection of all e-free finite languages. For acceptance style one and dist, Theorem 3.5
remains true even in the case of T;=alph L(R;). The proof for the case dist is
straightforward. To prove Theorem 3.5 for style one, it is enough to add to colony
C one additional component Ry ={(N,, To=T, Py, S) such that L(Ry)<= L,(C) and
alph L(Ry)=alph L.(C).

Example 3.7. Acceptance style ex.

Let Co.=({a, b}, Ry, R,, a) with Ry =({a, x}, {b}, {a > bx, x > b}, a) and R, =({b},
{a}, {b — a}, b). C,, is a colony with acceptance style ex.

Let us consider t-mode of derivation. Then every terminating derivation is of the
form

t

t t t t . t t t m
a=bb=aa= --=b*> or a=bb=aa=--=a*"

Thus, L(C..)={a*": n=0} u{b*": n>1} and so L,(C.,)¢.Z(CF).
If C,, uses b-mode of derivation, then terminating derivations are of form
n+1

b b b o )
a=bb=-.-=a"b"a" .. a"b"*!, where Y i,>2.
t=1

Thus, Ly(C..)={a, b} " —{b} and this language is a regular language.

Example 3.8. Acceptance styles arb, one, all, dist.

Let C=({c}, Ry, Ry, R3,0q) with Ri=({a,x}, {b, c},{a - bx, x > b},a),
Ry=({b}, {a, c}, {b—>a}, b) and Ry=({b}, {c}, {b > c}, b). C is the colony with the
arbitrary of the acceptance styles arb, all, one and dist. Every terminating derivation in
the t-mode in C is of the form

a=bb=aa= bbbb = --. = p2" = 2",

Then L,(C)={c*": n>1} and L,(C)¢.£(CF).
For the basic mode of derivation we obtain the regular language L,(C)=cc™.
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4. The power of colonies

In this section we determine the generative power of colonies with different modes
of derivations and different acceptance styles. We show that colonies with acceptance
style arb (and therefore also with one or all or dist) in the basic mode of derivation
determine e-free context-free languages, while the acceptance style ex in the basic
mode results in a less powerful language class, the class of languages determined by
sequential forms of grammars with no direct recursive rule. Colonies with acceptance
style arb (and therefore also one or all or dist) for terminal mode of derivation
determine the class of 1-restricted EPTOL languages. In the case of acceptance style ex
and terminal mode of derivation, we obtain the class of FPT 0L, languages with
nonrecursive tables. These characterizations lead to (Main) Theorem 4.5, is which we
present the hierarchy among the language classes of colonies studied in the paper.

We start with the basic mode of derivation.

Theorem 4.1 (Kelemen and Kelemenova [10]). £ (Col, b, dist}=¥¢(CF).
Acceptance style ex is less powerful.
Theorem 4.2. #(Col,b,ex)= L (nrpCF).

Proof. (a) First we show that for a given colony C,, with acceptance style ex there
exists a pure context-free grammar G with nonrecursive rules such that L,(C..)=L(G)
holds.

Assume that C,.=(T,R,,...,R,,S) is the colony with T={J;_, T; for
R;=(N;, T;, P;, S;), 1<i<n. Let us define P={J}_, {S; > w:weL(R)}, V=i, alph
L(R;), and & ={S} for Se T and & = {s: se L(R;) for all i such that S;=S}, otherwise.

The pure context-free grammar G =(V, P, &) has nonrecursive rules and it gener-
ates the same language as C,, does. This follows from the fact that T'= UL  Tifor C,y
and every component of the colony derives a terminal word over its own alphabet, so
for every terminating derivation S 2 Wy =Wy => .- 2 w,=w in C,,, where weT *, it
holds that strings wy,w,,...,w,_ are in T, too.

Moreover for each derivation in C,, of type as above there is a corresponding
derivation s=*w,=>w,=---=>w,=w in G and vice versa. Therefore,
Z(Col, b, ex) = L (nrpCF).

(b) We continue by proving that for a pure context-free grammar G with nonrecur-
sive rules there is a colony C,. with acceptance style ex such that L,(C..)=L(G)
holds.

Assume that G=(V, P, &) is the given pure context-free grammar with nonrecur-
sive rules and & = {5y, ..., s, }. Let G have n rules. We define C..=(7, Ry, ..., R,+1, 5),
where S is a new starting symbol and T= V. Further, for every rule p: 4 > a, ... 4, in
P there is a component R, in C, with rules 4—-a; X, X; > a:X,,..., X,
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—a,_1X,-1,X,_; > a,, where X's are new pairwise different nonterminals different
for each rule. Finally, let the set of productions of the (n+1)st component
P, contain for every s;=s; ; ... 5; o, %, where s; ;e ¥V, 1 <i<r, 1 < j<n;, productions
S—os5.1Y, Y 282Ys,..., Y, = s, Wwhere the Y’s are pairwise different new non-
terminals for different i’s and j’s where 1<i<r, I <j<n,.

Evidently, L(G)= Ly(C,,), because each derivation s; = w;= .- =>w, in G can be
simulated in C,, by the corresponding derivation S gs,- ;wl 2. =b>w,,, and vice
versa. Therefore, ¥ (nrpCF)= % (Col, b, ex). Summarizing parts (a) and (b) of the
proof we get the result.

In the following we study terminal mode of the derivation in colonies.
Theorem 4.3. ¥ (Col, t, arby=%(EPTO0Ly;)

Proof. First we prove that for a colony C with acceptance style arb there exists an
1-restricted EPTOL system H such that L,(C)=L(H) holds.

Assume that C=(T, R,,...,R,, S) is given with R;=(N,, T}, P;, S;), 1<i<n. We
determine the EPTOLy; system H=(N, T, Py, ..., P,, §) as follows: S and T are that of
the colony, V'={J!_,(T;uS;) and P;={x - x: xe(V—{S:})} u{S; - w: weL(R;)}.

By the definition of the t-mode derivation, if component R;, for some i, 1 <i<n,
executes a t-mode derivation for a sentential form x=x, ... x, with letters x;, 1 <j<q,
then we obtain a sentential form y=y, ... y,, where y,=x, if x, #S; and y,eL(R;) if
x,=S8; for 1<k<gq. By the definition of l-restricted EPTOL systems, the above
derivation corresponds to the application of a table of EPT0Ly,; system H.

The equality L(C)=L{H) is obvious. Therefore ¥ (Col, t, arb) € L(EPT0L;).

Following Proposition 2.2 it remains to prove that for every 1-restricted nrEPTOL
system H there exists a colony C with the acceptance style arb such that L,(C)=L(H)
holds.

Assume that H=(V,T,P,,...,P,,S) is a given nrEPTOL;;; system and
Pi={A;> o AieV,aeV ", o 4,=0}u{x — x: xe(V—{A4;})}. We associate to every
production p:A4;—-x;...x,eP;, where nx=2, a set of productions
{Adi=>x; X5, X5>x,X5,...,X, > x,}, where X5,...,X,, are new symbols intro-
duced to p. Let the sets of new symbols, introduced to such productions, be pairwise
disjoint. All productions of form A; —» xe P;, where xe V' —{4;}, remain unchanged.
Let us assume that the new symbols, being introduced to tables of H, are pairwise
different. Let us denote by P; the set of all productions determined in the above way
by all productions of P;.

We define the colony C=(T, R}, ...,R,, S) as follows. T and S are the same as in
Hand Rj=({A4;} UN}, V—{A;}, Pi, A)), 1 <i<n, where N} denotes the set of all new
symbols introduced to table P; in the above way. Since H is propagating, nonrecursive
and 1-restricted, and the new symbols are pairwise different, the above-determined
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structure C is a well-defined colony of acceptance style arb. It is clear that R; is
a regular grammar and it generates L(R})={o: 4; > aeP;}.

We show that L(H)=L,(C). By the definition of the t-mode of derivation, the
application of component R} of C for some i, 1<i<n, for some sentential form
w corresponds to the application of table P; of H and, reversely, every application of
table P;, 1<j<n, corresponds a t-mode derivation of component R;. Thus,
L(H)=L,(C) and Z(EPTOL;) = Z(Col, t, arb).

Hence we have the result. [

Theorem 4.4. ¥ (Col, t, ex)=L (nrFPT0Ly;)

Proof. (a) First we prove that for every colony C,, with the acceptance style ex there
is an nrFPTOL[;; system H such that L,(C,)=L(H) holds. Assume that
C..=(T,Ry,...,R,, S)is a given colony with T'= U?=1 T;, where T; is the terminal
alphabet of R; for 1<i<n. To determine the nrFPTOLyy; system we put V=|Ji_,
alph L(R)), P;={S; > w: weL(R))} u{x > x: xe(V—{S;})},and ¥ = {8} if SeTin C,,
and & ={s: seL(R;) for all i such that S;=S}, otherwise. Evidently,
H=(V,Py,...,P,, ¥)isan FTOL, system. From the properties of colonies it follows
that H is also propagating and nonrecursive. For H the equality L(H)=L,(C,,) comes
out from the definition of & and from the fact that to the derivation step x = y in
C., which uses the component R; corresponds in H to the derivation step x = y using
the table P;, and vice versa. So £ (Col, t, ex) € &L (nrFPTOL(y;).

(b) Assume that H=(V, P,,...,P,, %) is a given nrFPTOL;; system with
F={s1,...,5 . We define a colony C..=(T,Ry,...,R,+,S) as follows: Let S be
a new starting symbol and let T=V. The table P;={4; > a;| |} u{x - x:
xe(V—{A;})} determines the set P; of productions of the component R; in the
following way. Assume o,=a, ; ... 4, ; for 1<t<k. Then P;= Uf=1 {Ai> a1 X, 1,
Xi12a2X0 20Xt joos = O oo Xejoo s Xe,jooy = @, 5, ). We construct Py, the set
of rules of the (n+ 1)st component R, , 1, as follows: for every s;=s; 1 ... 5; ,, €%, where
si €V, 1<i<r, 1<j<n;, P, contains productions S—s; Yy, Yy —>5,Y,,...,
Y, = i, Where the Y’s are pairwise different new nonterminals for different i’s and
j’s, where 1<i<r, 1<j<n;. Evidently, the above-defined C,, is a colony, since H is
nonrecursive and propagating. L,(C,,)= L(H), since for we V' * we have w = w' in H if
and only if w =win C... So we have & (nr FTOL(y;) € £ (Col, t, ex). Hence we have
the result. O

Summarizing Theorems 4.1-4.4 we obtain the following hierarchy.

Theorem 4.5. Let fe{one, arb, all, dist}. Then
(a) Z(Col,b, ex)= L(Col,b,f)c L(Col, t,f)
(b) L (Col, t,ex) = L(Col, t,f)
(c) Families ¥ (Col, b, f) and £ (Col, t, ex) are incomparable.
(d) Families & (Col, b, ex) and .£(Col, t, ex) are incomparable.
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Proof. (a) We have
Z(Col, b, ex)= L (nrpCF)c L(CF)=¥(Col, b, f) = L(EPTOL;)
=Z(Col, t,f)

by Theorem 4.2, Proposition 2.1, Theorems 4.1 and 3.5, Proposition 2.2 and Theorem
4.3.

(b) L(FPTOL;) = L(EPTOLy;) is evident. (One can add a new table, which
rewrites a new startsymbol to the original axioms.) So

ZL(Col, t,ex)=L (nrFPTOLy )« L(FPTOL ;) < L(EPTOLy,)
=Z(Col,t,f)

by Theorem 4.4, Proposition 2.2 and Theorem 4.3.

(c) Note that in a component of a colony a letter cannot be both terminal and
nonterminal symbol. Therefore, a colony over one letter alphabet, say {a}, with the
acceptance style ex degenerates. Its derivations consist of at most one step, rewriting
the axiom § into a word over {a}, i.e. such a colony produces finite language only.
So {a} e L(Col,b,f)— L (Col, t, ex).

{a®", b*": n>1} is in L (Col, t, ex) but not in £ (Col, b, f)= #(CF). See Example 3.1.

Consequently, £ (Col, b, f) and £ (Col, t, ex) are incomparable.

(d) {@®,b*": n=1} is in £(Col, t, ex) according to Example 3.7 and it is not in
Z(Col, b, ex) = Z(CF).

Lyo={a,b}* —{b}isin Z(Col, b, ex) according to Example 3.7. We shall prove that
Ly i1s not in £ (Col,t,ex). Assume we have a colony C=(T,R,,...,R,, §) with
T={a,b} being the union of terminal alphabets of R,,...,R, and such that
L,(C)=Ly. Then only the symbols S, a and b can be startsymbols of components of C.
If S is the startsymbol of R;, then L(R;) is a finite subset of (aub)™. If a is the
startsymbol of R;, then a is a nonterminal of R; and L(R;) = bb* and, analogously, if
b is the startsymbol of R;, then L(R;) < a*. Therefore, only finite many words in L(C)
contain both occurrences of @ and b, hence Ly# L,(C).

Consequently, #(Col, t, ex) and #(Col, b, ex) are incomparable.
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