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The number of public health applications for molecular epidemiology and social network analysis has increased
rapidly since the improvement in computational capacities and the development of new sequencing techniques.
Currently,molecular epidemiologymethods are used in a variety of settings: from infectious disease surveillance
systems to the description of disease transmission pathways. The latter are of great epidemiological importance
as they let us describe how a virus spreads in a community, make predictions for the further epidemic develop-
ments, and plan preventive interventions. Social networkmethods are used to understand how infections spread
through communities and what the risk factors for this are, as well as in improved contact tracing and message-
dissemination interventions. Research is needed on how to combine molecular and social network data as both
include essential, but not fully sufficient information on infection transmission pathways. The main differences
between the two data sources are that, firstly, social network data include uninfected individuals unlike themo-
lecular data sampled only from infected network members. Thus, social network data includemore detailed pic-
ture of a network and can improve inferences made from molecular data. Secondly, network data refer to the
current state and interactions within the social network, while molecular data refer to the time points when
transmissions happened, which might have happened years before the sampling date. As of today, there have
been attempts to combine and compare the data obtained from the two sources. Even though there is no consen-
sus on whether and how social and genetic data complement each other, this research might significantly im-
prove our understanding of how viruses spread through communities.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Molecular epidemiology of infectious diseases aims to harness mo-
lecular (nucleotide or amino acid) sequences to study the ecology and
dynamics of pathogens (Foxman and Riley, 2001). With the recent ad-
vances in nucleotide sequencing (i.e. high throughput sequencing tech-
nologies) which allow faster and more affordable sequencing of
pathogens (Grada and Weinbrecht, 2013), vast amounts of genetic
data can be produced faster, cheaper and more efficiently than ever.
This data-driven revolution has generated expectations with respect
to more effective use of molecular sequences for scientific and public
health purposes. Even though techniques have been developed to use
these new forms and structures of data in research on spread, distribu-
tion, treatment and prevention of infectious disease epidemics (Kuhnert
et al., 2011; Hartfield et al., 2014), it is still unclear what can be inferred
by means of next generation sequencing (NGS, refers to multiple cur-
rent sequencing techniques) data and, most importantly, how can we
exploit them as much as possible.
agiorkinis).

. This is an open access article under
Here we will review theoretical developments and applications of
using molecular sequences to study the spread of infectious diseases
and more particularly human viruses. We first use a “frequently asked
questions” approach: we answer questions that we have heard during
discussions with researchers not directly related to the field of molecu-
lar epidemiology. Thenwe focus on the emerging field of integrating so-
cial network data with molecular sequences, as we believe we are
entering an exciting new era of socio-molecular epidemiology.

1. Epidemics on a macro scale: inferring the statistics of epidemic
spread

1.1. Can we use molecular sequences to estimate traditional epidemiologi-
cal parameters such as the basic reproductive number?

Genomic and epidemiological data can be used to estimate infec-
tious disease spread parameters as reliably as using mathematical
models or detailed epidemiological contact-tracing information. Param-
eters of interest usually include R0, the basic reproductive number,
which can be thought of as the number of secondary infections
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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attributed to one infected individual in a completely susceptible popula-
tion, and the generation time, which is the time that it takes one infect-
ed person to transmit a virus to another person (Anderson and May,
1991). Estimating R0 is crucial for the prognosis of an epidemic and for
developing strategies to stop the epidemic spread; knowing the gener-
ation time is important as it tells us when in the course of epidemic in-
terventions can be more effective to prevent transmissions. Using
genetic data R0 has been estimated for different viruses, including mul-
tiple types and subtypes of Hepatitis C (HCV) (Pybus et al., 2001;
Magiorkinis et al., 2013), HIV (Magiorkinis et al., 2014), and Influenza
A (Fraser et al., 2009). By assuming a range of durations of the infectivity
periods and different proportions of transmitters in a population, we
were able to estimate the generation time of HCV in different
populations in Greece by combining genetic and surveillance data
(Magiorkinis et al., 2013). During the 2009 Influenza outbreak and the
2014 Ebola outbreak researchers have shown that epidemiological pa-
rameters inferred through molecular data are similar to those coming
from the count-based epidemiological studies (Fraser et al., 2009;
Alizon et al., 2014), suggesting that molecular data are reliable for epi-
demiological parameters estimations.

1.2. Can we use molecular sequences to monitor/infer the spatiotemporal
spread of an epidemic within a population?

Firstly, there are multiple examples where genomic data have been
used to improve epidemiological surveillance. For instance, public
health efforts to control influenza outbreaks were strengthened by de-
veloping a genomic surveillance system that allows monitoring the
temporal trends in virus mutations and planning preventive efforts (in-
cluding vaccine design) for the following years (Russell et al., 2008).
Surveillance systems like that have become more affordable/available
with the appearance of NGS data. Retrospectively, data on the air trans-
portation network and influenza A surveillancewere used to show that,
as expected, the spread of influenza H3N2 can be explained by air pas-
senger flows (Lemey et al., 2014). Another example of the use of phylo-
genetics to enhance infectious disease surveillance is an approach used
to define the clustering of HCV infections. Researchers from Canada
used genetic data sequentially collected from people who inject drugs
(PWID) to define the intra-host genetic distance (Olmstead et al.,
2015). They then classified “recent transmission clusters” if the be-
tween-hosts genetic distance fell within the intra-host distance inter-
vals. This approach allows monitoring small viral infections outbreaks
within the PWID group, which, to the extent to which it can be done
in real time, can assist in transmission-prevention, particularly since
for some viruses large proportions of transmissions occur soon after in-
fection, regardless of the risk group (Magiorkinis et al., 2013; Brenner et
al., 2007; Powers et al., 2011).

Further, molecular sequences have been increasingly used to recon-
struct population dynamics in time. The term phylodynamics has been
used to describe combination of methods that are based on epidemio-
logic and phylogenetic techniques for this purpose (Grenfell et al.,
2004). Most of the time the phylodynamics approach is used for rapidly
evolving pathogens (usually RNA viruses), as these tend to measurably
evolve within the host on a similar time scale as they spread between
hosts (Kuhnert et al., 2011; Magiorkinis et al., 2013). The phylodynamics
methods rely on the hypothesis of the molecular clock which posits that
the evolutionary rate of nucleotide sequences can be described bymath-
ematical models, the simplest form being the strict molecular clock with
a constant evolutionary rate (Kimura, 1968). Phylodynamics has been
extensively used to reconstruct the transmission dynamics ofmultiple vi-
ruses in deeper or more recent time, globally or within specific regions
(Magiorkinis et al., 2013; Alizon et al., 2014; Yebra et al., 2015;
Zehender et al., 2015).

To study spatial viral disease distribution, phylogeography superim-
poses geographical information about the molecular sequences on the
phylogenetic tree to provide inferences about the spread of the
organisms that we are interested in. Phylogeographic methods can be
used not only to describe how infectious diseases spread over particular
territories, but also to hypothesize what factors (political, socio-eco-
nomical, and/or ecological) initiated these particular dissemination
trends. These methods have been applied within countries and globally
to study viruses such as HCV (Pybus et al., 2007; Magiorkinis et al.,
2009), HIV (Paraskevis et al., 2009; Angelis et al., 2015; Faria et al.,
2014), and Influenza A (Pollett et al., 2015; Alkhamis et al., 2015).

Finally, epidemiological and genetic data can be combined to recon-
struct most probable transmission pathways on a community level. For
example, the probabilities of the spread of infection between farms dur-
ing an avian flu outbreak in Netherlands were estimated by taking
weighted averages over the set of possible transmission trees (Ypma
et al., 2012). The authors concluded that their method provides a
more accurate estimate of the transmission pathway than methods
based on solely genetic or epidemiological data.

2. Epidemics on the micro scale: reconstructing the details of trans-
mission networks

2.1. Canwe usemolecular sequences to infer transmission pathways during
infectious disease outbreaks?

Phylogenetic trees reconstructed from genetic sequences contain
valuable information about the evolutionary history of the viral strain
that can be used to infer possible scenarios of viral infection spread dur-
ing infectious disease outbreaks. This information is very valuable as it
could help to make a prognosis about the further spread of the disease
as well as develop control measures in similar epidemiological settings.
On a community level a depiction of transmission networks can be esti-
mated by means of phylogeography (Famulare and Hu, 2015). To re-
solve transmission pathways on an individual level epidemiological
contact tracing data are usually used during infectious disease out-
breaks. Compared to the contact tracing data that heavily rely on the
quality of provided by respondents information and are often subject
to self-report bias, genetic data has the advantage of containing unbi-
ased biological information. However, sequencing viral strains quickly
as an outbreak develops is challenging for multiple reasons, including
unspecific/absence of disease symptoms and/or timely sequencing of
the viral strains. Thus, molecular data have been mostly used in a retro-
spective manner to investigate such infectious disease outbreaks as a
nosocomial HCV outbreak in Italy (Spada et al., 2004) and Spain
(Gonzalez-Candelas et al., 2013), or on a larger scale for influenza
(Jombart et al., 2011). Given that now molecular data can be produced
faster and at a lower cost than previously, their use in real-life outbreak
investigations becomes more attractive and feasible for some diseases.
This has a special promise since portable sequencing technologies
such as MinION become available and allow pathogen sequencing in
the field (Laver et al., 2015). Recently, genomic data were used in
Ebola outbreak investigations to prove that the virus that seeded the
outbreak in Guinea in 2014 emerged from Zaire ebolavirus lineage
(Dudas and Rambaut, 2014). Similarly, molecular epidemiology
methods helped to describe how HIV spread in a community of PWID
in several recent outbreaks, including those in Athens, Greece, and Bu-
charest, Romania (Paraskevis et al., 2015), and in Indiana, USA (Galang
et al., 2015; personal communication).

2.2. Can we use phylogenetic trees to infer directionality and timing of
transmission events?

Unfortunately, reconstructing phylogenetic trees does not allow us
to answer the burning question of “Who infected whom?” (i.e. define
the direction of the infection), but only informs us if the two sequences
evolved from the same genetic strain. If two sequences are clustered
together on a phylogenetic tree, we can say that they have an ances-
tor in common. Further assigning sampling dates to sequences and
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implementingmolecular clock analyses provides us with an estimate
of the timing of the putative transmission events (Leigh Brown et al.,
2011). However, these estimates are a subject to bias, because there
is a discrepancy between the timing of phylogenetic tree branching
that refers to the moment when a viral strain evolved into two and
the timing of in-between hosts transmission events. The strain that
is transmitted might have evolved within the virus-donor long be-
fore the transmission event happened (Fig. 1) (Ypma et al., 2013;
Romero-Severson et al., 2014), and, thus, the branching on the tree
can overestimate the time of transmission events. This issue can par-
tially be resolved if we can estimate the time of transmission events
otherwise. For example, if we sample multiple quasispecies' se-
quences from each patient (e.g. with NGS, single genome amplifica-
tion, or cloning), then by running a molecular clock analysis we can
estimate the time to most recent common ancestor (TMRCA) of se-
quences within a patient. This TMRCA can be then superimposed
on the phylogenetic tree constructed from sequences obtained
from multiple patients.
2.3. Inwhich epidemiological settings are phylogenetic treesmore useful for
transmission pathways reconstruction?

Inferring transmission networks from phylogenetic trees can be
problematic for many epidemiological settings. For example, in densely
sampled outbreaks of infectious agents phylogenetic trees are likely to
have low confidence support. This is especially true when the timescale
of the transmission events is comparably fast relative to the evolution of
the pathogens, which makes it difficult to infer transmission events
based on these phylogenetic trees. Recently, a Bayesian model that
takes into account within-host genetic diversity attempted to resolve
this issue (Didelot et al., 2014). Even though transmission pathways in-
ferred from genetic data were more ambiguous than those inferred
from detailed epidemiological data, the model could still reconstruct
some parts of the transmission network, including correctly defining
the source of infection in a hypothetical population. An alternative
Bayesian model, which also accounts for the within-host virus evolu-
tion, but takes into account the non-random host population structure
of the epidemic (instead of assuming population panmixis), was sug-
gested for similar settings where dense sampling is available (Hall et
al., 2015). It suggests that in a densely sampled outbreak, a well-re-
solved phylogenetic tree contains the transmission pathway and by
sampling different sub-sets of the tree and calculating its posterior
probability it is possible to reconstruct a reliable transmission network.
Fig. 1. The inferred rooted phylogenetic tree (the root defined using a reference strain not
shown on the figure) from a hypothetical known transmission chain. The branch nodes
correspond to the coalescent events of the different viral lineages; the arrows show the
hypothesized time points when the transmissions happened. Even though it might seem
that there was a short time between C ≥ B and B ≥ A transmissions (short genetic distance
between the branching and the points of transmission showed by the arrows), in reality it
might have been years in between the two events.
The limitation of the later approach is that all of the cases have to be
sampled, which is unrealistic for some viral infections, particularly
those where a large proportion of cases are unlikely to be diagnosed
(like influenza, when many people will be never referred to a hospital)
or those that can be asymptomatic for a long time, such as HIV and HCV.
3. Social network approach in infectious disease epidemiology

Manypathogens including viruses likeHIV andHCV spreadnon-ran-
domly through networks of closely connected people who engage to-
gether in injecting or sexual practices. Consequently, social network
analysis has been extensively used as an approach in viral infectious dis-
ease epidemiology to recruit participants, monitor and predict behavior
patterns, and model further and past disease spread. Initially, the net-
work approach was used a lot to recruit participants into surveys and
behavioural studies. Since the mid 1980s epidemiologists faced the
problem of obtaining a probability sample of vulnerable to HIV groups,
such as those of PWID or men who have sex withmen (MSM). Random
sampling assumes that every individual and every possible sub-sample
within a population has an equal probability to be sampled, which is im-
possible to define for PWID or MSM, because we don't have a full list of
individuals that belong to these groups. Since risky sexual and injecting
behaviors are also often stigmatized, contacting PWID or MSM was
more difficult than representatives of a general population. Researchers
started designing studies based on “snowball” sampling to recruit and
study these hard to reach populations (Morris, 2004). One popular sam-
pling strategy is respondent driven sampling, which allows respondents
to recruit their peers, but also lets researchers adjust the obtained re-
sults to generalize to the whole population (Heckathorn, 1997).

Researchers have integrated social network methods into classical
infectious disease epidemiology to study risk factors that enable viral in-
fectious diseases to spread not only at an individual, but at the network
level. One of the first network studies, where MSM in California were
asked about their sexual partners, found clusters of MSM with AIDS di-
agnosis who shared sexual partners (Auerbach et al., 1984). This study
was of a great importance as it presented epidemiological evidence
that AIDS is caused by an infectious agent. Later early network studies
on HIV were conducted among drug users in New York (Neaigus et al.,
1994; Friedman et al., 1997), female sex workers and PWID in Colorado
(Rothenberg et al., 1998), and MSM in California. These studies discov-
ered that the risk to acquire HIV is not only associated with individuals'
behaviors; the network position and the behaviors of peers (sexual/
injecting partners) play an important role as well (Christley et al.,
2005). The network structure might facilitate or limit the spread of
viral infections (as well as safe behavior messages) within groups. As a
consequence, the social network approach became an important epide-
miological tool in the prevention and treatment of viral infectious dis-
eases (Latkin et al., 2013).

Data from real-life social network studies are widely used in mathe-
matical modeling to accurately describe epidemic spread and help to
define aims for prevention efforts. The important role of an underlying
non-panmictic population structure in epidemic prognosis has been
shown for HIV outbreaks a long time ago (Gupta et al., 1989). Popula-
tions with assortative mixing of individuals are more likely to experi-
ence a rapid epidemic growth early on, while outbreaks in populations
with disassortative mixing are more likely to grow into larger epi-
demics. Later the so-called “firewall” effect was introduced which in
theory can be observed when the HIV long-term infected individuals
“protect” susceptible individuals from getting in contact with highly in-
fectious acutely infected individuals, inducing saturation at a lower
prevalence than the one predicted by a panmictic model (Friedman et
al., 2000; Khan et al., 2013; Dombrowski et al., 2013). Improvements
in computational capacities have facilitated such advanced epidemio-
logical modeling that takes more complicated population network
structures into account (Danon et al., 2011).
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4. Integrating social and molecular data: the potential of the socio-
molecular approach

Similarly to phylogenetic trees, social network data frompeoplewho
share some risky behaviors include information about possible trans-
mission routes. However, using only network information to resolve
transmission pathways is not straightforward: firstly, self-reported be-
havioural data can contain biased information (especially with regard
to socially undesirable/illegal activities); secondly, network studies
can almost never recruit all the network members, resulting in incom-
plete network information. Finally, behavioural data do not necessarily
provide evidence about the transmission history of an infectious
agent, rather contain information about the shared risks, which might
not have led to an infection. For example, sharing syringes/injectingma-
terial or practicing unprotected sex with multiple partners can tell
about the risks that an individual has undertaken, but cannot be conclu-
sive about the putative source or the date of viral transmission(s). Con-
sequently, combining genetic and social network data into a complex
socio-molecular approach might improve the way we infer transmis-
sion pathways and reduce the limitations of each other.

How can the two kinds of data contribute to analysing each of them?
First, recognizing the network structure of a population can help ad-
vance the phylodynamics methodology itself. Many phylodynamics
methods are based on the coalescence model that falsely assumes that
host populations are panmictic—that is, that every host has an equal
probability to contact and transmit the viral infection agent to another
individual, which is not the case in real life. On the contrary, thenetwork
population structure of hosts implies preferentialmixing by the number
of partners (i.e., “highly active people tend to have highly active part-
ners”) and often within social groups (like race/ethnicities) or across
sexual groups (men with women more than men with men or women
with women) (Goodreau, 2006). Consequently, it leads to heterogene-
ity in the number of secondary infections, i.e. some people transmit to
more people than others, giving birth to more new infections
(Goodreau, 2006). Models have been developed to estimate the effect
of this heterogeneity on the phylogenies. Some researchers have
found that the distribution of the number of secondary infections in a
population have an effect on reconstructed pathogen phylogenies
(Robinson et al., 2013). Heterogeneity in thenumber of secondary infec-
tions results in phylogenies with more clusters of a smaller size and
shorter mean branch lengths compared to phylogenies reconstructed
from a populationwith homogeneity in the number of secondary infec-
tions. Introducing this kind of more complex phylodynamics models
that account for the network structure of a population may allow
more accurate estimates of transmission chains.

In practice, social network information can sometimes be applied to
resolving ambiguous or equally plausible transmission pathways recon-
structed from phylogenetic trees if genetic and social data come from
the same individuals. One of the main differences between the social
and the genetic data is that the social network datamay theoretically in-
clude an overall contact network (as in Fig. 2.1), including non-infected
individuals, even individuals whowere never recruited (but reported to
be part of the network by other members). Knowing additional infor-
mation about other members of the network, whose viral genetic infor-
mation was not sampled for some reason, can help to choose one out of
multiple plausible transmission pathways inferred from a phylogenetic
tree (Fig. 3). For example, for many infectious agents, spontaneous
clearance is part of the natural history of the disease. This makes it dif-
ficult to rely on phylogenies in an attempt to reconstruct transmission
pathways: there are individuals who might have transmitted the path-
ogen in the past, but at the time of sampling have successfully cleared
the infection (Brewer et al., 2006). In this case, viral strains cannot be re-
trieved for sequencing and phylogenetic analyses, but the epidemiolog-
ical data from disease-free network members can include self-reported
information about their previous disease status. Evenmore, an antibody
positive test might indicate that a person used to be infected, while the
type (e.g. IgM or IgG) and specificity (e.g. avidity test) of the antibodies,
might provide us with information about the recent or non-recent na-
ture of a transmission. Thus, connections that lead to transmissions
might not be captured in the phylogenetic tree, but social network in-
formation and epidemiological data might help to fill in the gaps on a
hypothetical transmission pathway.

Social network information in theory can bring many insights onto
how to interpret the phylogenetic trees, although the methods to do
this have yet to be developed. Supposedly, knowing the network posi-
tion of sampled individuals can help to estimate how reliable are the
transmission pathways estimated from thephylogenetic trees. As previ-
ously said, inmost settings, it is too optimistic to think that all of the net-
work members can be recruited (or specimens from all the infected
collected, either), and incomplete sampling can bias the analyses. Luck-
ily, in social network studies respondents are usually asked about other
members of the network. Theoretically, this information about other
members of the network can help to place additional nodes at the trans-
mission networks estimated from phylogenetic trees helping to resolve
ambiguous transmission patterns. Further, hypothetically, sampling in-
dividuals who have more central position in a network allows estimat-
ing phylogenetic trees that aremore likely to contain a real transmission
pathway (Fig. 2.1, 2.2). At the same time, sampling individuals with less
central position in a network might result in multiple phylogenetic
trees, thus, making an attempt to reconstruct the true path of the
virus spread more challenging.

Also, social network data and phylogenetic trees usually refer to dif-
ferent time points and using the estimated timing of the transmission
events can provide insight on dynamic changes in the structure of a
transmission network. Contact data collected in social network studies
describe the most recent connections among individuals. Most social
network studies have only addressed a short period of time, because re-
lationships among individuals change rapidly and, additionally, recall
bias is higher with respect to older connections (Bell et al., 2007). Phy-
logenetic trees on the contrary can infer past events that happened
when the viruses evolved within infected individuals. For chronic viral
infections these eventsmight have occurredmanyyears ago. Thus, com-
bining the two data sources can provide complementary insights about
changes in social structure of the population of hosts and, consequently,
transmission networks.

5. Current applications that combine multiple data sources

Trying to reconstruct possible transmission chains from phylogenet-
ic data, some researchers have relied on bootstrapping as away to iden-
tify probable ties (Lewis et al., 2008). Leigh Brown et al. used molecular
clock analysis of HIV in combination with epidemiologic data obtained
from one social network study. The authors used genetic sequences
(one per patient) as nodes and links weremade if themost recent com-
mon ancestor of two nodes went back in time not more than a defined
period of time (e.g. less than 3 years) (Leigh Brown et al., 2011). They
then compared the distribution of the average number of sexual part-
ners in MSM that they got from the networks constructed from phylog-
enies to the numbers obtained in surveys. They obtained similar highly
right-skewed distributions of the number of links from epidemiological
and genetic data.

Several research groups have used additional epidemiological infor-
mation (patient's risk group) assigned to the viral sequences to study
whether transmissions happen within contact networks of particular
sub-populations; they found that population mixing in the groups
they studied was assortative and there was little bridging between the
risk groups (Yebra et al., 2015; de Bruijne et al., 2009; Lunar et al.,
2015). Other researchers found, on contrary, that HIV epidemics in
one group can be seeded by introductions from other risk groupswithin
the same country. For example, in some European countries, HIV epi-
demics among heterosexuals were seeded and sustained by transmis-
sions from PWID (Kouyos et al., 2010; Graw et al., 2012). Kouyos et al.



Fig. 2. 1 A hypothetical contact network of PWID with known transmission pathway. Red circles – HIV-infected individuals, green circles – HIV-free individuals. Red arrows indicate the
direction of infection (who infected whom), green lines indicate an injecting partnership that did not lead to an HIV transmission. 2 Phylogenetic trees reconstructed from a subset of a
network of PWID. Panel A represents the phylogenetic tree based on the samples collected from the individuals 1, 3, 4, 5, 7 (who have higher degree of centrality). Panels B, C, and D
represent phylogenetic trees reconstructed from the samples collected from individuals who have lower degree of centrality.
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were able to identify sexual transmission ofHCV in cases of HIV-infected
MSM and heterosexuals by combining genetic information and clinical
and epidemiological information (patients' risk group and HCV
serostatus), improving our knowledge about transmission routes and
epidemiology of HIV-HCV co-infection (Kouyos et al., 2014). Revealing
suchpatterns of transmission betweengroups can assist in designing in-
tervention strategies.

Some attempts to apply the socio-molecular approach to study viral
transmissions have compared social and viral genetic distances be-
tween individuals. Several studies used HCV spread in PWID as a
model system. Such, multiple data sources were combined to look at
the association between genetic relatedness of the HCV sequences
(within genotype groups) and social distances between PWID in two
studies from Melbourne, Australia (Aitken et al., 2004; Sacks-Davis et
al., 2012). The authors of both studies found aweak correlation between
social geodesic distance (the smallest number of injecting partnerships
connecting two nodes) and HCV genetic distance. They have explained
this by incomplete sampling, potentially biased self-reported data, long
carriage of HCV, and,most importantly, the long injecting history of par-
ticipants (over 10 years) and long duration of injecting partnerships.
The authors suggested that cohorts of recent drug injectors or recently
infected individuals might be more appropriate to search for an associ-
ation between social and genetic distances. This was partly addressed
by another study of HCV in PWID in Seattle, Washington. The authors



Fig. 3. (A) A phylogenetic tree, inferred from sequences obtained from a set of individuals that form a network sharing a risky behavior; (B), (C), and (D) Some of the transmission
pathways that could be inferred from this phylogenetic tree. If participants 2, 6, and 7 provide information about unsampled/cleared individuals number 4 and 5, the transmission
pathway can be better resolved to describe the actual transmission pathway (E).
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of this research looked at the relationship between social and genetic
distances between recently HCV-infected participants (anti-HCV-nega-
tive b8months ago). Initially, the authors found an association between
social and genetic distances. However, this seemed to be due to one in-
fluential point (one confirmed transmission pair with reported needle
sharing and shared common ancestor). When this pair was removed
from the phylogenetic tree the association was lost (Brewer et al.,
2006). This suggests that even when social and genetic data are collect-
ed at the same period of time, there may sometimes be low or no corre-
lation between the two measures.

Looking for similarities between social and genetic patterns, re-
searchers have compared phylogenetic clustering of HCV and social
network structures of PWID. The same study from Melbourne that
found a weak association between the two distance measures when
only individuals and their ties were considered found an association be-
tween a social partnership (self-reported injecting in the same place
and at the same time) and being in the same phylogenetic cluster
(Sacks-Davis et al., 2012). This suggests that including information
about venueswhere people engage in risk behaviors can help tofind as-
sociations between genetic and social data. Another group of re-
searchers searched for the association between phylogenetic
clustering of both HIV and HCV and social partnership (defined as the
distance on their recruitment chain) within injecting networks of
PWID in Ottawa, Ontario, Canada (Pilon et al., 2011). An interesting
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finding was that participants co-infected with both infections were not
always concordantly clustered within the phylogenies of HIV and HCV.
Thus, participants who were clustered on an HIV phylogenetic tree
were clustered on an HCV phylogenetic tree only in 50% of the cases.
Again, the authors reported that there was a lack of support of social
network information from the phylogenetic trees: if two HIV-positive
people recruited each other, their specimens never shared a common
viral ancestor (for HCV 10% of phylogenetic clustering resulted from re-
cruitment). However, recruitment chain proximity can be a poor proxy
for a social partnership/distance.

Although there is no “conventional”way to combine genetic and so-
cial network data, several approaches have been suggested up to now.
These include network simulations, comparisons between real-life
data, informing network data based on the social information and vice
versa. Goodreaumodelled several social network patterns, consequent-
ly simulatingHIV spread in those networks and then the viralmutations
among infected hosts (Goodreau, 2006). He used the coalescence ap-
proach to estimate Ne (effective population size which equals the size
of an idealized population that shows the same genetic drift as the stud-
ied population) under different underlying population structures. He
concluded that these estimates for some population structures are sim-
ilar to those obtained under the assumption of population panmixis.
Still, some social network patterns, like those resembling venue-cen-
tered networks of female sexual workers, surprisingly produced much
higher estimates of Ne than the actual population size. Additional re-
search is needed to define if for some risk groups phylodynamic esti-
mates are less reasonable than for the others.

The socio-molecular approach in epidemiology is at its starting
point. Many researchers try to find the best way to use both social and
molecular data to improve different aspects of infectious disease epide-
miology. There are several issues that prevent from wider use of net-
work data. First, the cost of collecting network data is high; secondly,
many infectious diseases (e.g. HIV), are associated with stigma that
demotivates participants to participate in the studies and/or refer their
partners; finally, network surveys often include sensitive questions
about sexual and injecting partners, which renders these studies ethi-
cally challenging and potentially raises safety issues for the field re-
searchers. However, some main obstacles of previous years, such as
computational complexity of the network analysis and expensive and
time-consuming sequencing are greatly relaxed, suggesting that a
wider use of social and molecular approaches is feasible, and at the
same time raising interestingquestions. How to relate social data tomo-
lecular? What questions can be asked with the two sources that never
would have occurred to us with only one source? How reliable are
transmission pathways estimated fromboth sources?Will the combina-
tion of the two improve our understanding of how transmissions hap-
pen or will they contradict to each other? Can combining the two
methods assist in case finding or other interventions? Further research
on how the socio-molecular approach can validate data obtained from
one of the sources, overcoming limitations, or relaxing assumptions of
epidemiological methods will help answering these questions.
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