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turn provides a Kummer-type transformation formula for the generalized hypergeometric
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1. Introduction

The generalized hypergeometric function pFq(x)may be defined by the series

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣ x) ≡ ∞∑
k=0

(a1)k(a2)k . . . (ap)k
(b1)k(b2)k . . . (bq)k

xk

k!
,

where for nonnegative integers k the Pochhammer symbol or the ascending factorial (a)k is defined by (a)0 ≡ 1 and for
k ≥ 1 by

(a)k ≡ a(a+ 1) . . . (a+ k− 1).

More succinctly (a)k = 0(a + k)/0(a), but some authors [1] employ a rising factorial power ak̄ and falling factorial power
ak respectively defined by

ak̄ ≡ (a)k, ak ≡ (−1)k(−a)k̄. (1.1)

When p = q+ 1 and argument x = 1, the series pFq(1) converges provided that Re(b1 + · · · + bq) > Re(a1 + · · · + ap).
However, when only one of the numerator parameters ai is a negative integer or zero, then pFq(x) converges for all x since
it is merely a polynomial in x of degree−ai.
In what follows we will denote the sequence (a1, . . . , ap) simply by (ap). We also define the product of p Pochhammer

symbols by

((ap))k ≡ (a1)k . . . (ap)k,

where an empty product (p = 0) reduces to unity.
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Let (mr) be a nonempty sequence of r positive integersm1, . . . ,mr . In 1970 Minton deduced the summation formula for
a generalized hypergeometric series of unit argument

r+2Fr+1

(
−n, a, (fr +mr)
a+ 1, (fr)

∣∣∣∣ 1) = n!
(a+ 1)n

(f1 − a)m1
(f1)m1

. . .
(fr − a)mr
(fr)mr

, (1.2)

where n is an integer such that n ≥ m1 + · · · + mr . The importance of this result derives from the observation that
it often appears as a solution to problems in mathematical physics [2]. Minton’s summation formula has subsequently
been deduced by Karlsson [3] who gave a derivation of a modified form of Eq. (1.2) (with n!/(a + 1)n replaced by
0(1 + a)0(1 − b)/0(1 + a − b)) under the less restrictive condition that −nmay be replaced by the complex parameter
b such that Re(−b) > m1 + · · · + mr − 1 which guarantees the convergence of r+2Fr+1(1). We mention here that many
summation formulas for other specializations of p+1Fp(1) are recorded in [4, Section 7.10.2].
It is the purpose of the present investigation to provide other generalizations of Eq. (1.2), one ofwhich upon specialization

reduces to Minton’s theorem. To this end in the next section we shall derive several preliminary lemmas some of which
depend on the nonnegative integers known as Stirling numbers of the second kind. Although various definitions and
notations for Stirling numbers of the second kind are used in the literature, the properties of these integers are well known
(see e.g. [5, Section 24], [6, pp. 100–102]). In what follows we shall adopt the elegant notation

{
n
k

}
for Stirling numbers of

the second kind employed by Graham et al. [1, Section 6].

2. Preliminary results

We recall that Stirling numbers of the second kind
{
n
k

}
represent the number of ways to partition n objects into k

nonempty subsets. Thus
{
0
0

}
≡ 1 and

{
n
0

}
= 0 when integer n > 0. Moreover, for nonnegative integers n a generating

relation for the
{
n
k

}
is given by

xn =
n∑
k=0

{
n
k

}
xk (2.1a)

which is readily proved by induction (see [1, p. 262, Eq. 6.10]). However, noting Eqs. (1.1), Eq. (2.1a) may be written as

(−x)n =
n∑
k=0

(−1)k
{
n
k

}
(x)k . (2.1b)

Moreover, when x = −m for nonnegative integersm, since

(−m)k = (−1)kk!
(
m
k

)
we see that

mn =
n∑
k=0

k!
(
m
k

){
n
k

}
. (2.1c)

Lemma 1. For nonnegative integers m define

Sm ≡
∞∑
k=0

km
λk

k!
, S0 ≡

∞∑
k=0

λk

k!
, (2.2a)

where the sequence (λk) is such that Sm converges for all m. Then

Sm =
m∑
j=0

{
m
j

} ∞∑
k=0

λk+j

k!
, (2.2b)

where the
{
m
j

}
are Stirling numbers of the second kind.

Proof. By using Eq. (2.1c)

km =
m∑
j=0

j!
{
m
j

}(
k
j

)
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and so we have

Sm =
∞∑
k=0

m∑
j=0

j!
{
m
j

}(
k
j

)
λk

k!

=

m∑
j=0

j!
{
m
j

} ∞∑
k=0

(
k
j

)
λk

k!
.

But
(
k
j

)
= 0 for k < j so that

Sm =
m∑
j=0

j!
{
m
j

} ∞∑
k=j

(
k
j

)
λk

k!

=

m∑
j=0

j!
{
m
j

} ∞∑
k=0

(
k+ j
j

)
λk+j

(k+ j)!

which yields Eq. (2.2b) since
(
k+ j
j

)
= (k+ j)!/k!j!. �

Lemma 2. Suppose j,m, n are nonnegative integers such that n ≥ j, m ≥ j. Then

2F1

(
−n+ j, a+ j
b+ j

∣∣∣∣ 1) = (λ)n

(b)n

(λ+ n)m−j(b)j
(λ)m

, (2.3)

where λ ≡ b− a−m.

Proof. Because j − n ≤ 0 the series terminates and therefore converges. Thus employing Gauss’ summation theorem we
have

2F1

(
−n+ j, a+ j
b+ j

∣∣∣∣ 1) = 0(b+ j)0(λ+ n+m− j)
0(b+ n)0(λ+m)

=
(b)j
(b)n

(λ+ n)m−j
(λ)m

0(λ+ n)
0(λ)

which yields Eq. (2.3) since 0(λ+ n)/0(λ) = (λ)n. �

Lemma 3. For nonnegative integers j we have

n∑
k=0

kj
(−n)k(a)k
(b)kk!

=
(λ)n

(b)n(λ)m

j∑
`=0

{
j
`

}
(a)`(−n)`(n+ λ)m−`, (2.4)

where λ = b− a−m and m is an integer such that m ≥ j.

Proof. Employing Lemma 1 with λk ≡ (−n)k(a)k/(b)k gives

∞∑
k=0

kj
(−n)k(a)k
(b)kk!

=

j∑
`=0

{
j
`

} ∞∑
k=0

(−n)k+`(a)k+`
(b)k+`k!

.

Since (−n)k = 0 when k > n and (a)k+` = (a)`(a+ `)k the latter may be written as

n∑
k=0

kj
(−n)k(a)k
(b)kk!

=

j∑
`=0

{
j
`

}
(−n)`(a)`
(b)`

∞∑
k=0

(−n+ `)k(a+ `)k
(b+ `)kk!

, (2.5)

where the infinite k-summation is just a Gaussian series of unit argument. We can always assume that ` − n ≤ 0 for if
`− n > 0 the right side of Eq. (2.5) vanishes since (−n)` = 0. Thus employing Lemma 2 we have

2F1

(
−n+ `, a+ `
b+ `

∣∣∣∣ 1) = (λ)n

(b)n

(λ+ n)m−`(b)`
(λ)m

, (2.6)

where λ = b− a−m andm ≥ ` for ` = 0, 1, . . . , j. Eq. (2.4) then follows from Eqs. (2.5) and (2.6). �
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Lemma 4. Consider the polynomial in n of degree µ ≥ 1 given by a0nµ + a1nµ−1 + · · · + aµ−1n+ aµ, where a0 6= 0, aµ 6= 0
and n is a nonnegative integer. Then we may write

a0nµ + a1nµ−1 + · · · + aµ−1n+ aµ = aµ
(1+ ξ1)n
(ξ1)n

. . .
(1+ ξµ)n
(ξµ)n

, (2.7)

where ξ1, . . . , ξµ are nonvanishing zeros of the polynomial Qµ(t) defined by

Qµ(t) ≡ a0(−t)µ + a1(−t)µ−1 + · · · + aµ−1(−t)+ aµ. (2.8)

Proof. Factor the polynomial in n into a unique product of µ linear terms so that

a0nµ + a1nµ−1 + · · · + aµ−1n+ aµ = a0(n+ ξ1) . . . (n+ ξµ),

where aµ = a0ξ1 . . . ξµ. Since for j = 1, . . . , µ

n+ ξj =
0(1+ ξj + n)
0(ξj + n)

= ξj
(1+ ξj)n
(ξj)n

we immediately obtain Eq. (2.7). Moreover, it is evident that ξ1, . . . , ξµ must be nonvanishing zeros of Qµ(t) defined
by Eq. (2.8). �

3. Summation theorems

Supposem is a positive integer and f 6= 0. Since (f + k)m is a polynomial in k of degreemwe may write

(f + k)m =
m∑
j=0

sm−jkj,

where s0 = 1 and sm = (f )m. Accordingly, we define for the nonempty sequence of positive integersm1, . . . ,mr

(f1 + k)m1 =
m1∑
j1=0

s(1)m1−j1k
j1

...

(fr + k)mr =
mr∑
jr=0

s(r)mr−jr k
jr ,

(3.1)

where each fi 6= 0. Thus defining

σ(j1, . . . , jr) ≡ s
(1)
m1−j1

. . . s(r)mr−jr (3.2a)

and

j ≡ j1 + · · · + jr (3.2b)

we may write

(f1 + k)m1 . . . (fr + k)mr =
m1∑
j1=0

. . .

mr∑
jr=0

σ(j1, . . . , jr)kj. (3.2c)

Now consider the generalized hypergeometric series of unit argument

r+2Fr+1

(
−n, a, (fr +mr)

b, (fr)

∣∣∣∣ 1) = n∑
k=0

(−n)k(a)k
(b)kk!

((fr +mr))k
((fr))k

, (3.3a)

where ((fr))k = (f1)k . . . (fr)k. Since

(f +m)k
(f )k

=
(f + k)m
(f )m

(3.3b)

upon using Eq. (3.2c) we have for the right side of Eq. (3.3a)

1
(f1)m1 . . . (fr)mr

m1∑
j1=0

. . .

mr∑
jr=0

σ(j1, . . . , jr)
n∑
k=0

kj
(−n)k(a)k
(b)kk!

. (3.3c)
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In Lemma 3 letm = m1 + · · · +mr so thatm ≥ j1 + · · · + jr = j. Thus we have finally the following Lemma 5.

Lemma 5. For nonnegative integer n and positive integers (mr) the generalized hypergeometric series of unit argument

r+2Fr+1

(
−n, a, (fr +mr)

b, (fr)

∣∣∣∣ 1) = (λ)n

(b)n

Pm(n)
(λ)m(f1)m1 . . . (fr)mr

. (3.4a)

The polynomial in n of degree m is defined by

Pm(n) ≡
m1∑
j1=0

. . .

mr∑
jr=0

σ(j1, . . . , jr)
j∑

`=0

{
j
`

}
(a)`(−n)`(n+ λ)m−`, (3.4b)

where m = m1 + · · · +mr , λ = b− a−m, j = j1 + · · · + jr and σ(j1, . . . , jr) is given by Eq. (3.2a).

It is easy to see that the constant term in Pm(n) is given by Pm(0). Since the only contributions to this constant come from
the indices ` = 0 and j1 = . . . = jr = 0 upon noting that σ(0, . . . , 0) = s

(1)
m1 . . . s

(r)
mr = (f1)m1 . . . (fr)mr we see that

Pm(0) = (λ)m(f1)m1 . . . (fr)mr .

Furthermore, the coefficient of nm in the polynomial Pm(n) is readily seen to be given by

m1∑
j1=0

. . .

mr∑
jr=0

s(1)m1−j1 . . . s
(r)
mr−jr

j∑
`=0

(−1)`
{
j
`

}
(a)` =

m1∑
j1=0

s(1)m1−j1(−a)
j1 . . .

mr∑
jr=0

s(r)mr−jr (−a)
jr

= (f1 − a)m1 . . . (fr − a)mr ,

where we have used Eq. (2.1b) and Eqs. (3.1) with k replaced by−a.
Thus

Pm(n) = (f1 − a)m1 . . . (fr − a)mr n
m
+ · · · + (λ)m(f1)m1 . . . (fr)mr , (3.4c)

where the remaining intermediate coefficients of powers of n in Pm(n) (whenm > 1) are determined by the expression on
the right of Eq. (3.4b). We shall neither need nor be concerned with these coefficients. Now assuming a 6= fi (1 ≤ i ≤ r) and
(λ)m 6= 0 we may invoke Lemma 4 thus obtaining

Pm(n) = (λ)m(f1)m1 . . . (fr)mr
(1+ ξ1)n
(ξ1)n

. . .
(1+ ξm)n
(ξm)n

, (3.5)

where the ξ1, . . . , ξm are nonvanishing zeros of the polynomial in t of degreem = m1 + · · · +mr defined by

Qm(t) ≡
m1∑
j1=0

. . .

mr∑
jr=0

s(1)m1−j1 . . . s
(r)
mr−jr

j∑
`=0

{
j
`

}
(a)`(t)`(λ− t)m−`. (3.6)

The s(i)mi−ji , 1 ≤ i ≤ r are determined by Eqs. (3.1) where the index kmay be replaced by the variable x. Thus the s
(i)
mi−ji

are
generated by the relations

(fi + x)mi =
mi∑
ji=0

s(i)mi−jix
ji , (3.7)

where 1 ≤ i ≤ r . Since Qm(t) ultimately depends on the parameters of r+2Fr+1(1) we shall call it the associated parametric
polynomial.
Eqs. (3.4a) and (3.5)–(3.7) and the above discussion may now be combined in the following summation theorem for the

generalized hypergeometric series r+2Fr+1(1).

Theorem 1. For nonnegative integer n and positive integers (mr)

r+2Fr+1

(
−n, a, (fr +mr)

b, (fr)

∣∣∣∣ 1) = (λ)n

(b)n

(1+ ξ1)n
(ξ1)n

. . .
(1+ ξm)n
(ξm)n

,

where

m = m1 + · · · +mr , λ = b− a−m, (λ)m 6= 0, a 6= fi (1 ≤ i ≤ r) .
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The ξ1, . . . , ξm are nonvanishing zeros of the associated parametric polynomial of degree m given by

Qm(t) =
m1∑
j1=0

. . .

mr∑
jr=0

s(1)m1−j1 . . . s
(r)
mr−jr

j∑
`=0

{
j
`

}
(a)`(t)`(λ− t)m−`,

where

j = j1 + · · · + jr

and the s(i)mi−ji (1 ≤ i ≤ r) are determined by the generating relations

(f1 + x)m1 =
m1∑
j1=0

s(1)m1−j1x
j1

...

(fr + x)mr =
mr∑
jr=0

s(r)mr−jr x
jr .

In Section 4 we shall employ a modified form of Theorem 1 (recorded as Corollary 1 below) with the specialization
m1 = · · · = mr = 1 to obtain a Kummer-type transformation formula for the generalized hypergeometric function pFp(x).
To this end we note that in deriving Lemma 5 and Theorem 1 we used Eqs. (3.2)

(f1 + k)m1 . . . (fr + k)mr =
m1∑
j1=0

. . .

mr∑
jr=0

s(1)m1−j1 . . . s
(r)
mr−jr k

j,

where j = j1 + · · · + jr . Form1 = · · · = mr = 1 this becomes

(f1 + k) . . . (fr + k) =
1∑
j1=0

. . .

1∑
jr=0

s(1)1−j1 . . . s
(r)
1−jr k

j.

However, the left side of the latter is a polynomial in k of degree r and so we may write

(f1 + k) . . . (fr + k) =
r∑
j=0

sr−jkj,

where s0 = 1 and the si (1 ≤ i ≤ r) are sums of all possible products of i distinct elements from the set {f1, . . . , fr}. Thus
in Eqs. (3.3a) and (3.3c) lettingm1 = · · · = mr = 1, replacing the multiple ji-summations by the latter j-summation and in
Lemma 3 lettingm = r so thatm ≥ jwe have mutatis mutandis the following corollary of Theorem 1.

Corollary 1. For nonnegative integer n

r+2Fr+1

(
−n, a, (fr + 1)

b, (fr)

∣∣∣∣ 1) = (λ)n

(b)n

(1+ ξ1)n
(ξ1)n

. . .
(1+ ξr)n
(ξr)n

,

where

λ = b− a− r, (λ)r 6= 0, a 6= fi (1 ≤ i ≤ r).

The ξ1, . . . , ξr are nonvanishing zeros of the associated parametric polynomial of degree r given by

Qr(t) =
r∑
j=0

sr−j
j∑

`=0

{
j
`

}
(a)`(t)`(λ− t)r−`,

where the sr−j (0 ≤ j ≤ r) are determined by the generating relation

(f1 + x) . . . (fr + x) =
r∑
j=0

sr−jxj.

Note that when all of the fj = f , then sr−j =
(
r
j

)
f r−j.
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Setting r = 1, f1 = f , ξ1 = ξ in Corollary 1 we have λ = b − a − 1, s0 = 1, s1 = f and so the associated parametric
polynomial is

Q1(t) = (a− f )t + f (b− a− 1), (3.8a)

where a 6= f and b− a− 1 6= 0. Thus we deduce the summation formula for Clausen’s series of unit argument

3F2

(
−n, a, f + 1

b, f

∣∣∣∣ 1) = (b− a− 1)n
(b)n

(1+ ξ)n
(ξ)n

,

where

ξ =
f (1+ a− b)
a− f

(3.8b)

is the nonvanishing zero of Q1(t). This result has previously been obtained [7] by other methods.
It is evident from Eq. (3.4c) that Qr(t)will always have the form

Qr(t) = (−1)r(f1 − a) . . . (fr − a)t r + Rr−1(t)+ f1 . . . fr(λ)r ,

where λ = b − a − r and Rr−1(t) is some polynomial of degree r − 1 such that Rr−1(0) = 0 for all r ≥ 1. Thus when
r = 1, R0(t) = 0 and we immediately have Eq. (3.8a) where f1 = f . When r = 2 and f1 = f , f2 = g , then employing the
representation for Qr(t) in Corollary 1 yields

Q2(t) = αt2 − ((α + β)λ+ β)t + fgλ(λ+ 1),

where

λ = b− a− 2
α = (f − a)(g − a)
β = fg − a(a+ 1).

Moreover, it is apparent that the intermediate coefficients of Qr(t) as functions of the parameters of r+2Fr+1(1) become ever
more complex as r increases.
We conclude this section by proving that Minton’s summation theorem given by Eq. (1.2) is a consequence of Lemma 5.

To this end we write Eqs. (3.4a) and (3.4b) for nonnegative integer n and positive integers (mr) as

r+2Fr+1

(
−n, a, (fr +mr)

b, (fr)

∣∣∣∣ 1) = 1
(b)n

1
(f1)m1 . . . (fr)mr

×

m1∑
j1=0

. . .

mr∑
jr=0

s(1)m1−j1 . . . s
(r)
mr−jr

j∑
`=0

{
j
`

}
(a)`(−n)`

(λ)n(n+ λ)m−`
(λ)m

, (3.9)

where λ = b− a−m, m = m1 + · · · +mr , j = j1 + · · · + jr . However, we have
(λ)n(n+ λ)m−`

(λ)m
=

0(λ+ n)
0(λ+m)

0(n+ λ+m− `)
0(λ+ n)

=
0(b− a+ n− `)

0(b− a)
=
0(b− a+ n)
0(b− a)

(b− a+ n)−`

= (−1)`
(b− a)n

(1+ a− b− n)`
.

Thus Eq. (3.9) yields the following lemma upon recalling the generating Eq. (3.7).

Lemma 6. For nonnegative integer n and positive integers (mr)

r+2Fr+1

(
−n, a, (fr +mr)

b, (fr)

∣∣∣∣ 1) = (b− a)n
(b)n

1
(f1)m1 . . . (fr)mr

×

m1∑
j1=0

. . .

mr∑
jr=0

s(1)m1−j1 . . . s
(r)
mr−jr

j∑
`=0

(−1)`
{
j
`

}
(a)`(−n)`

(1+ a− b− n)`
, (3.10a)

where j = j1 + · · · + jr and s
(i)
mi−ji

are generated by the relations

(fi + x)mi =
mi∑
ji=0

s(i)mi−jix
ji (1 ≤ i ≤ r). (3.10b)
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Now suppose n ≥ m1 + · · · +mr . Thus

n ≥ m ≥ j ≥ `

and so (−n)` 6= 0. Furthermore if b = a+ 1, Eq. (3.10a) reduces to

r+2Fr+1

(
−n, a, (fr +mr)
a+ 1, (fr)

∣∣∣∣ 1) = n!
(a+ 1)n

1
(f1)m1 . . . (fr)mr

m1∑
j1=0

. . .

mr∑
jr=0

s(1)m1−j1 . . . s
(r)
mr−jr

j∑
`=0

(−1)`
{
j
`

}
(a)`.

But by Eq. (2.1b)

j∑
`=0

(−1)`
{
j
`

}
(a)` = (−a)j, (3.11)

where j = j1 + · · · + jr and by Eq. (3.10b)
m1∑
j1=0

s(1)m1−j1(−a)
j1 . . .

mr∑
jr=0

s(r)mr−jr (−a)
jr = (f1 − a)m1 . . . (fr − a)mr

and so we have finally Minton’s result given by Eq. (1.2).
In [8] we provide a simpler more direct derivation of Minton’s summation formula which essentially utilizes elementary

properties of Stirling numbers of the second kind, Eq. (3.11) and a hypergeometric identity that may be proved by induction.

4. Reduction and transformation formulas

The Kampé de Fériet function is a generalized hypergeometric function in two variables that may be defined by double
infinite series (see e.g. [9])

Fp:r;uq:s;v

(
(ap) : (cr) ; (fu)
(bq) : (ds) ; (gv)

∣∣∣∣ x, y) ≡ ∞∑
m=0

∞∑
n=0

((ap))m+n
((bq))m+n

((cr))m
((ds))m

((fu))n
((gv))n

xm

m!
yn

n!
.

When one of the independent variables x = 0 or y = 0, the latter reduces respectively to a generalized hypergeometric
function in one variable

p+uFq+v

(
(ap), (fu)
(bq), (gv)

∣∣∣∣ y) , p+rFq+s

(
(ap), (cr)
(bq), (ds)

∣∣∣∣ x) .
In [7] we showed that

Fp:r+1;0q:s+1;0

(
(ap) : (cr+1) ; ——
(bq) : (ds+1) ; ——

∣∣∣∣− y, y) = ∞∑
n=0

((ap))n
((bq))n

r+2Fs+1

(
−n, (cr+1)
(ds+1)

∣∣∣∣ 1) ynn! ,
where the horizontal line indicates an empty parameter sequence. In the above result setting s = r , cr+1 = a, dr+1 = b,
(cr) = (fr + 1), (dr) = (fr)we obtain

Fp:r+1;0q:r+1;0

(
(ap) : a, (fr + 1) ; ——
(bq) : b, (fr) ; ——

∣∣∣∣− y, y) = ∞∑
n=0

((ap))n
((bq))n

r+2Fr+1

(
−n, a, (fr + 1)

b, (fr)

∣∣∣∣ 1) ynn!
which we use together with Corollary 1 to obtain the following.

Theorem 2. Suppose a 6= fi (1 ≤ i ≤ r) and (b − a − r)r 6= 0. Then we have the reduction formula for the Kampé de Fériet
function

Fp:r+1;0q:r+1;0

(
(ap) : a, (fr + 1) ; ——
(bq) : b, (fr) ; ——

∣∣∣∣− y, y) = p+r+1Fq+r+1

(
b− a− r, (ap), (ξr + 1)

b, (bq), (ξr)

∣∣∣∣ y) . (4.1)

The (ξr) are nonvanishing zeros of the associated parametric polynomial of degree r given by

Qr(t) =
r∑
j=0

sr−j
j∑

`=0

{
j
`

}
(a)`(t)`(b− a− r − t)r−`,

where the sr−j (0 ≤ j ≤ r) are determined by the generating relation

(f1 + x) . . . (fr + x) =
r∑
j=0

sr−jxj .
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In addition upon letting y 7→ −y in Eq. (4.1), the specialization p = q = 0 of the latter reduces to the transformation formula

r+1Fr+1

(
a, (fr + 1)
b, (fr)

∣∣∣∣ y) = eyr+1Fr+1 (b− a− r, (ξr + 1)b, (ξr)

∣∣∣∣− y) . (4.2)

Eq. (4.2) provides the generalized analogue of Kummer’s first transformation formula for the confluent hypergeometric
function

1F1

(
a
b

∣∣∣∣ y) = ey1F1 (b− ab
∣∣∣∣− y) .

The specialization r = 1 of Eq. (4.2) with f1 = f , ξ1 = ξ given by Eq. (3.8b) has previously been obtained by Miller [7] and
Paris [10].

References

[1] R.L. Graham, D.E. Knuth, O. Pastashnik, Concrete Mathematics, second ed., Addison-Wesley, Reading, 1994.
[2] B.M. Minton, Generalized hypergeometric function of unit argument, J. Math. Phys. 11 (1970) 1375–1376.
[3] P.W. Karlsson, Hypergeometric functions with integral parameter differences, J. Math. Phys. 12 (1971) 270–271.
[4] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, vol. 3, Gordon and Breach, New York, 1990.
[5] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, Dover, New York, 1972.
[6] I.J. Schwatt, An Introduction to the Operations with Series, second ed., Chelsea, New York, 1924.
[7] A.R. Miller, A summation formula for Clausen’s series 3F2(1)with an application to Goursat’s function 2F2(x), J. Phys. A 38 (2005) 3541–3545.
[8] A.R. Miller, Karlsson–Minton summation theorems for the generalized hypergeometric series of unit argument, 2008 (unpublished).
[9] H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chichester, 1985.
[10] R.B. Paris, A Kummer-type transformation for a 2F2 hypergeometric function, J. Comput. Appl. Math. 173 (2005) 379–382.


	Certain summation and transformation formulas for generalized hypergeometric series
	Introduction
	Preliminary results
	Summation theorems
	Reduction and transformation formulas
	References


