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Abstract

We prove that the F-signature of an affine semigroup ring of positive characteristic is always a
rational number, and describe a method for computing this number. We use this method to determine
the F-signature of Segre products of polynomial rings, and of Veronese subrings of polynomial rings.
Our technique involves expressing the F-signature of an affine semigroup ring as the difference of
the Hilbert-Kunz multiplicities of two monomial ideals, and then using Watanabe'’s result that these
Hilbert-Kunz multiplicities are rational numbers.
© 2004 Elsevier B.V. All rights reserved.

MSC:13A35; 13D40; 14M12

1. Introduction

Let (R, m) be a Cohen—Macaulay local or graded ring of characteristid, such that
the residue fieldR /m is perfect. We assume thRtis reduced and F-finite. Throughomt
shall denote a power ¢f, i.e.,q = p° fore € N. Let

RY1 ~ R o M,

where M, is anR-module with no free summands. The numhbgris unchanged when
we replaceR by its m-adic completion, and hence is well-defined by the Krull-Schmidt
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theorem. IN7] Huneke and Leuschke define tResignatureof R as

R) = lm —2_

s(R) = M gImE’

provided this limit exists. In this note we study the F-signature of normal monomial rings,
and our main result is

Theorem 1. Let K be a perfect field of positive characterisaod R be a normal subring of

a polynomial ringK [x1, . . ., x,] which is generatedas a K-algebraby monomials in the

variablesxi, ..., x,. Then the F-signature(R) exists and is a positive rational number
Moreover s(R) depends only on the semigroup of monomials generating R and not on

the characteristic of the perfect field K

We also develop a general method for computiag) for monomial rings, and use it to
determine the F-signature of Segre products of polynomial rings, and of Veronese subrings
of polynomial rings.

In general, it seems reasonable to conjecture that the difRi} exists and is a ratio-
nal number. Huneke and Leuschke proved that the limit exid&sisfa Gorenstein ring,

[7, Theorem 11]They also proved that a rifgis weakly F-regular whenever the limit is
positive, and this was extended by Aberbach and Leuschj&.in

Theorem 2. (Huneke and Leuschk&], Aberbach and LeuschK&]). Let (R, m) be an
F-finite reduced Cohen—Macaulay ring of characterigtis 0. Then R is strongly F-regular
if and only if

. a
Ilgn%ilo,lp qdiﬁ >0.

Further results on the existence of the F-signature are obtained by Aberbach and Enescu
in the recent preprinfl]. Also, the work of Watanabe and Yoshifle?] and Yao[13] is
closely related to the questions studied here.

We mentioned that a grad®dmodule decomposition &/4 was used by Peskine—Szpiro,
Hartshorne and Hochster, to construct small Cohen—Macaulay modulBsrighe case
whereRis anN-graded ring of dimension three, finitely generated over a fgldf char-
acteristicp > 0, seg5, Section 5 F] The relationship between tiRemodule decomposition
of RY4 and the singularities d® was investigated by Smith and Van den Bergfoih

2. Semigroup rings

The semigroup of nonnegative integers will be denoted\by et x4, ..., x,, be vari-
ables over a fiel&K. By amonomialin the variablexq, .. ., x,, we will mean an element
xi’l .- -x,/f” € K[x1,...,x,] whereh; € N. We frequently switch between semigroups
of monomials inx, ..., x, and subsemigroups d¥", where we identify a monomial
xi’l . -x,ﬁ’" with (h1, ..., h,) € N". A semigrougV of monomials i;xormalif it is finitely

generated, and wheneverb andc are monomials i such that:b* = c* for some positive
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integerk, then there exists a monomiak M with of =a. It is well-known that a semigroup
M of monomials is normal if and only if the subring[M] C K[x1, ..., x,] IS a normal
ring, seg3, Proposition 1]

A semigroupM of monomials isfull if whenevera, b andc are monomials such that
ab=candb, c € M, thena € M. By Hochstel3, Proposition 1]a normal semigroup of
monomials is isomorphic (as a semigroup) to a full semigroup of monomials in a possibly
different set of variables.

Lemma 3. Let A = K[x1, ..., x,] be a polynomial ring over a field Kand R € A be

a subring generated by a full semigroup of monomiakst m denote the homogeneous
maximal ideal of Rand assume that R contains a monomiah which each variable;
occurs with positive exponerfor positive integers,tet a, denote the ideal of R generated
by the monomials in R which do not divide

(1) The idealsa, are irreducible andm-primary, and the image ofi’ generates the socle
of the ringR/q;.

(2) The idealsy; form a non-increasing sequenee 2 az 2 a3 2 ... which is cofinal with
the sequencet > m2 > mé D ...

(3) Let M be a finitely generated R-module with no free summarrtteEng’ M C a, M for
allr > 0.

(4) LetK be a perfect field of characteristic> 0, and RY4 ~ R% @ M, be an R-module
decomposition okRY/¢ whereM, has no free summandEhen

R
ag =L\ —7—— | foralz>0.
a:gpta

Proof. (1) It suffices to consider=1 anda = a;. Every non-constant monomial Rhas a
suitably high power which does not divigiesoa is m-primary. Ifo. € R is any monomial of
positive degree, thenu € a, and som C a:gu. Also i ¢ a, so we conclude that g u = m.
Sincea is a monomial ideal, the socle &f/a is spanned by the images of some monomials.
If 6 € R is a monomial whose image is a nonzero element of the so@¢aftheny = 6
for amonomialf € R. If f € mthenu € m0 C a, a contradiction. Consequently we must
havef =1, i.e.,0 = p.

(2) Since each; occurs inu € R with positive exponent anR is generated by a full
semigroup of monomials, we see that

a C Ot ThANR.

It follows that{a,},cn is cofinal with the sequence of idedls’}, ..

(3) For an arbitrary elememi € M, consider the homomorphisi: R — M given by
r — rm. Since the modul& has no free summandg,is not a split homomorphism. By
Hochstel4, Remark 2] there existsy € N such thap®m € a,,M, equivalently, such that
the induced map

d)to . R/ato — M/a,OM
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is not injective. If@ : R/a; — M/a;M is injective for some >1g, then it splits since
R/a, is a Gorenstein ring of dimension zero; however this implies that the map

by : R/at®R/ﬂtR/ato - M/atM®R/atR/ato
splits as well, which is a contradiction. Consequenflyu’) = 0, and hence/m € a,M
for all # > tp. The moduleM is finitely generated, and so we must ha¥as < a, M for

allr > 0.
(4) For any ideab C R, we have

R4 R\“ M
o~ = o) 49
bRY/4 (bR) bM,

and so

zR—eRl/q—zR qu
o) = \orte ) =" \5 ) T \om, )

Using this for the ideals, anda, + u’ R and taking the difference, we get
R R M, M,
ag |t =) —t(——= )| +¢ | ——
a; a + WR aM, aMy 4+ 1M,
R R R
=0 77) ¢\ 1@ =\ T
a o’ + waR aflipptd

By (3) u'M,; < a;M, for all > 0, and the result follows. (]

Lemma 4. Let K be a perfect field of characteristje> 0, and R be a subring oA =
K[x1, ..., x,] generated by a full semigroup of monomials with the property that for every
i with 1<i <n, there exists a monomial € A in the variablesxy, ..., x;, ..., x, such
thata; /x; = ; /n; for monomialsy;, ; € R. Let ug € R be a monomial in which each
occurs with positive exponergnd setu = uguq - - - ,. For t > 1, let a; be the ideal of R
generated by monomials in R which do not divideThen for every prime poweg = p°¢

and integer > 1, we have

aEq]:R,u’q = mE;” NR

wherentg = (x1, . .., x,) A is the maximal ideal of Af RY4 ~ R% @ M, is an R-module
decomposition okRY/¢ whereM, has no free summangien

R R e
aqu NI =/ T~ fora"qu and t > 1.
a ' gpta m{ ' NR

Proof. By Lemma 3(4), it suffices to prove that

aE‘”:Ru‘q = m[f] NR forallg=p°andr>1
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Given a monomiat € aE’”:R,u’q, there exists a monomiale R which does not divide/

for whichrp'? € #R. Sincey! /i is an element of the fraction field &which is not inR,

we must havel /n ¢ A and sonpA: 41 € my. Taking Frobenius powers over the regular
ring A, we get

nlA: 414 C mf]

and hence € mEf] N R. This shows thaﬁgq]:Rﬂ“I c m[jl NR.
For the reverse inclusion, consider a monorbi:eﬁ € R whereb € A. Then

17\ 4
bx?ﬂm:mg(ﬂ> ,
K

whereba? andy'n; /u; are elements oR. It remains to verify thal'n; /i; € a,, i.e., that
it does not divideu” in R. Since

t

_r
Wi/ xi
this follows immediately. [

aj

Lemma 5. Let R’ be a normal monomial subring of a polynomial ring over a fieldKen
R’ isisomorphicto a subring R of a polynomial ridg= K [x1, . . ., x,] where Ris generated
by a full semigroup of monomialand for everyl <i <n, there exists a monomia} € A
in the variablescy, ..., x;, ..., x,, for whicha; /x; is an element of the fraction field of R

Proof. Let M € N’ be the subsemigroup corresponding to the inclusion of rRigs
K[y1,...,y]. Let W € Q" denote theQ-vector space spanned by, and W* =
Homg (W, Q) be its dual vector space. Then

U={w*"eW":w*(m)>0 forallme M}

is a finite intersection of half-spaces Wi*. Let wi, ..., w; € U be a minimalQ_-
generating set fod, whereQ,. denotes the nonnegative rationals. Replacing egchy
a suitable positive multiple, we may ensure théi(m) € N for all m € M, and also that
w¥(M)ZaZ for any integew > 2. It is established if8, Section 2}that the mag’ : W —
Q" given by

T=wi,...,w

takesM to an isomorphic copy’ (M) < N", which is a full subsemigroup di". Let
R € A=K]x1, ..., x,] be the monomial subring correspondingitoM) < N".

Fix i with 1<i <n. Sincew}(M)ZaZ for any integera >2, the fraction field ofR

contains an elemem;’l . ~xf,‘" such thatiq, ..., h, € Z andh; = —1. Also, there exists

m € M such thatw; (m) = 0 andw;?(m) # 0 for all j # i. Consequentl\R contains a
monomialx = xj* - - - x," with s; = 0 ands; > 0 for all j # i. For a suitably large integer
t>1, the element

hy

Xt xngl = a; /x;
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belongs to the fraction field oR wherea; € A is a monomial in the variables
X1y ovos XiyonuyXp. O

Proof of Theorem 1. By Lemma 5, we may assume thBtis a monomial subring
of A = K|[x1, ..., x,] satisfying the hypotheses of Lemma 4. For the choicg af in

Lemma 4, the idealsEq]:Ru“f do not depend one N. Settinga = a; we get

=/ R =/ R 14 —R
4q = a[q]:R’uq - m N alal 4+ ‘u‘IR ’

i.e.,aq,asafunction of = p¢, is a difference of two Hilbert—Kunz functions. Lét=dim R.
By Monsky[8] the limits

= lim 1£ R nd R) = Iim 1£—R
€HK(C1)—q_)OO q_d m a eHK(0+H )_q—>oo q_d ald] +#qR

exist, and by Watanaljé1] they are rational numbers. Consequently the limit

lim a—z = eqk (a) — eqk (a + pR)
q—© ¢q
exists and is arational number. The rRRgs F-regular, so the positivity af R) follows from
the main result of2]; as an alternative proof, we point out thag a*, and consequently
ek (a) > epk (a + uR) by Hochster and HuneKé, Theorem 8.17]
By Watanab¢l1] the Hilbert—Kunz multiplicitiegnk (a) andepyk (a+pR) do not depend
on the characteristic of the field, and so the same is true fofR). 0O

Remark 6. Let (R, m, K) be a local or graded ring of characteristic- 0, and lety €
ER(K) be a generator of the socle of the injective hulkofin [12] Watanabe and Yoshida
define the minimal relative Hilbert—Kunz multiplicity &tto be

L(R/anmg (F€(1)))
de ’

myk (R) = lim inf
e— 00 p
whered = dim R. They computenyk (R) in the caséRis the Segre product of polynomial
rings[12, Theorem 5.8]Their work is closely related to our computationsgR) in the
example below.

3. Examples

Example 7. LetK be a perfect field of positive characteristic, and consider integers 2.

Let R be the Segre product of the polynomial rinjéxs, ..., x,] andK [y, ..., ysl, i.e.,
Ris subring ofA = K[x1,...,x,, ¥1,..., ¥s] generated oveK be the monomials;y;

for 1<i<r and 1< j <s. Itis well-known thatR is isomorphic to the determinantal ring
obtained by killing the size two minors of anx s matrix of indeterminates, and that the
dimension of the rindRisd =r + s — 1. Lemma 4 enables us to compute not just the
F-signatures(R), but also a closed-form expression for the numiagrs
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The ringsR C A satisfy the hypotheses of Lemma 4, and so
R Klx1,....x:] |, Kly1,..., sl
aq =/ [q]— =/ 7 7 # q
mA ﬂR (xlv"'axr) (ylv"'ays)
where # denotes the Segre product. The Hilbert—Poincaré series of these rings are

o Klxa, .o x] @A —u?) o Ky1, ..., ys] CA—v)
HIIb((xilw--vxg) ,u)— 1-w"’ HIIb((yil,...,yg) ’U>_ 1-v)°

and saq, is the sum of the coefficients af v’ in the polynomial
(L—u?) (1-v?)
1-—w) (1-v)°
Thereforen, equals the constant term of the Laurent polynomial

A—u?) L—u)"9)°* _u'(l- ud)’ s VAl
1—-uw" (]__u—l)s - qu(l_u)r+s € /lu,u

€ Zlu, v].

and hence the coefficient of @D in
A—uyt [ (rEs) g d+n\ ,
A | V) o e
i=0 n=>0

Consequently we get

iy = Z(_l)i <;+S> <Z+S(q—1)—iQ)
i=0

_ Z(_l),- <§1+1) (qu(s—i)+d—s>’
i=0

where we follow the convention tha(t’Z) = 0 unless & n<m. This shows that the
F-signature oRis
ag 1 d —l— 1 ~d
s(R) = qILm prie d'IXE,( 1’ ( )( —0)°.
We point out thak (R) = A(d, s)/d! where the numbers

Al =Y (1) (‘” 1) (s — i)

i=0

are theEulerian numbersi.e., the number of permutations@bbjects withs — 1 descents
more preciselyA(d, s) is the number of permutations= ajaz - - - a4 € S; whosedescent
set

D(m) ={i : a; > aj11}
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has cardinality — 1, se€10, Section 1.3]These numbers satisfy the recursion

Ad,s)=sAd—-1,5)+(d—-s+1Ad—-1,s—1) whereA(1,1) =1

Example 8. LetK be a perfect field of positive characteristic. For integeesl andd > 2,
letRbe thenth Veronese subring of the polynomial ridg= K [x1, . . ., x4], i.€.,Ris subring
of A which is generated, askxalgebra, by the monomials of degreeln the casel = 2
and pfn, the F-signature ofR is s(R) = 1/n, as worked out if7, Example 17]
It is readily seen that the ring® C A satisfy the hypotheses of Lemma 4, and therefore

¢ R
ag = .
7 mf]ﬂR

Consequently,, equals the sum of the coefficients oft1, 2. in
H K LA ] 1 - tq d
Hilb H,t =%=(1+t+t2+-~-+tq_l)d.
(X1, ..., xg) 1-1

Let f(m) be the sum of the coefficients of powersbfin
A+14+2 4 mhHd,

A routine computation using, for example, induction dyrgives usf (n) = n?1, and it
follows that

fkn) =k? f(n) = k%n?2.

To obtain bounds for, = f(q), choose integers; with k1n <g <kon where 0<|g —
kin|<n — 1. Thenf (kin) < f(¢) < f(kon), and hence

d d
—-n+1 +n—-1
(_q " ) nd=1 gkfn“hl <ay gkgndfl < <—q . > nd=1,

Consequently,

d
a; =L + 0™,
n

ands(R)=1/n.
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