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Introduction

Let R be a commutative Artin ring an#{ a hereditary abeliaR-category
which is Ext-finite, that is Homy (X, Y) and Exf,;[(X, Y) are finitely generated
R-modules for allX andY in H. Assume also thak{ has a tilting object, that
is, some objecf such that Exi((T, T) = 0, and whenever Ho(f', X) = 0=
Ext}, (T, X) for X in , thenX = 0.

Such hereditary categories with tilting object were the basis for the definition
of the class of quasitilted algebras in [HRS], generalizing the classes of tilted and
canonical algebras, as well as containing other classes of algebras. The quasitilted
algebras are those of the form Bpd)°P, whereT is a tilting object in an
Ext-finite hereditary abeliaR-category. Equivalently, an ArtiR-algebraA is
quasitilted if and only if the global dimension of is at most two, and for any
indecomposable finitely generatgdmodule either the projective or the injective
dimension is at most one [HRS].
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The main examples of Ext-finite hereditary abeligrcategories are mad
for an Artin R-algebraH and also the category c&hof coherent sheaves over
a weighted projective lin& in the sense of Geigle-Lenzing, in the case when
R =k is an algebraically closed field [GL]. Actually, in this case it was shown
in [H2] that any connected Ext-finite hereditary abeliaicategory is derived
equivalent to some mal or to some cokX, in particular to some noetherian
hereditary abelian category. It was already shown in [L] that the Fhadid colX
are the only noetherian examples.

In this paper we generalize this result franbeing an algebraically closed
field to the case of an arbitrary commutative Artin ring, which actually easily can
be reduced to the case Bfbeing a field. Since there is at present no “geometric”
definition available for coherent sheaves on a weighted projective line over an
arbitrary field, the formulation of our main result will be somewhat different from
the formulation for an algebraically closed fietd We prove that an Ext-finite
hereditary abeliarR-category with tilting object is derived equivalent to midd
for a hereditary ArtinR-algebraH or to modA for a canonical ArtinR-algebraA.

Note that over algebraically closed fields the derived equivalence classes of the
canonical algebras and the categoriesXare known to coincide [GL]. For the
canonical algebras there is a definition over arbitrary figlflR2]. Also a related

class of algebras, called squid algebras, are defined in the general case [R2]. The
canonical algebras and squid algebras belong to the same derived equivalence
class [R2]. We also show that an Ext-finite hereditary abefiazategoryH with

tilting object is derived equivalent to a noetherian hereditary abelian category.

Most of the results for Ext-finite hereditary abelian categories with tilting
object over an algebraically closed field carry over to the case of arbitrary fields,
and some are already formulated in the more general setting in the literature.
In [H2] the main classification result cited above is reduced to considering three
main cases:

(i) H has some directing object;
(i) H has some simple object;
(iii) there exists an indecomposable exceptional obfeot infinite length, which
is a factor of a finite number of copies of a tilting object, such that the
perpendicular categorg ' is equivalent to mod for a tame hereditary
algebraH .

For the reduction to these three cases we can use the work in [H2], together
with proving that Hongr E, E) = 0 whenE is quasisimple exceptional of infinite
length. Case (i) is taken care of using [HRel], where the desired result is already
proved in the generality we want. For (i) the relevant result is taken from [HReZ2].
The first four sections of [HReZ2], dealing witH with simple objects, remain
valid in the larger generality. When showing that the derived equivalence class
of someH with simple objects contains motifor a canonicak-algebraA, the
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assumption that is algebraically closed is used in an essential way. So here

we take a completely different approach, which is also more streamlined than
the proof in the algebraically closed case, taking advantage of results from [H2].
For case (iii) we extend the proof from the algebraically closed case to the more
general setting, and here some additional work has to be done.

We now describe the content of this paper section by section. In Section 1
we recall some background material, and in Section 2 we consider the case of
‘H having nonzero objects of finite length (and no directing objects). Without
loss of generality we can assume that there is no nonzero map from an object
of finite length to an indecomposable object of infinite length. We prove that then
‘H is derived equivalent to a noetherian hereditary abelian category, and also to
the category of finitely generated modules for a canonical algebra or hereditary
algebra and for a squid algebra or hereditary algebra. In Section 3 we prove the
lemma giving the basis for getting the same reduction to the three cases as in [H2],
and provide the proof of case (iii).

1. Preliminaries

Let H be a hereditary abelian category over a commutative Artin Kingnd
assume that{ is Ext-finite and has a tilting object. In this section we give some
background material on such categories.

We start by pointing out that without loss of generality we can assume that the
commutative Artin ringR is a fieldk. The idea of proof is taken from [AP], and
we include the proof for the convenience of the reader.

Lemma 1.1. Let’H be a connecte@xt-finite hereditary abeliarR-category with
tilting object, for a commutative Artin rin@. ThenH is anExt-finite hereditary
abeliank-category for a fieldk.

Proof. Let T be a tilting object inH. Then by definitionA = Endy (T)°P
is a quasitilted algebra, which is indecomposable sikcés connected. Here
we use thatH can be constructed from [HRS]. Since the quiver ofA has
no oriented cycles [HRS], it follows that EpndP) is a division algebra for
any indecomposable projectivé-module P. Since A is indecomposable, the
centerZ(A) of A is a local ring, and it is known thatl is an Artin Z(A)-
algebra. Let be a nonzero element in(A), and consider th&-homomorphism
f: A — A which is multiplication byc. Since the mapf is nonzero, there is
some indecomposable projectiveemodule P, where A = P & P’, such that
flp # 0. Sincef is multiplication byc, we clearly havef (P) c P, and since
End(P) is a division ring,f : P — P is an isomorphism. Hence it follows that
is invertible inZ(A), and consequentlif(A) is a fieldk. HenceA is ak-algebra,
and so the bounded derived categ@¥(modA) is a k-category. Then als@{
is ak-category, since mod andH are derived equivalent, arid is Ext-finite
overk. O
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Denote byHp the full subcategory of{ consisting of the objects of finite
length, and byH, the full subcategory where the indecomposable summands
of all objects have infinite length. For future reference we collect the following
known basic properties (see [H1,L]).

Proposition 1.2. Let H be a connected hereditary abeli&xt-finite k-category
with tilting object, for any field, and assume tha&t is not equivalent tanod H
for a finite-dimensional hereditakalgebraH .

Then we have the following statements.

(a) H has no nonzero projective objects.

(b) The AR-quiver of Hg is a union of stable tubes, with all but a finite number
of rank one.

(c) Each tube corresponds to a uniserial abelian category.

(d) The tubes are pairwise orthogonal.

(e) The quasisimple objects of a tube of rank greater than one are pairwise
orthogonal.

The following normalization result from [HRe2] for the case wheres an
algebraically closed field holds with the same proof for any field

Proposition 1.3. Let’H be anExt-finite hereditary abeliark-category with tilting

object, for any fieldk. Assume thafg # (0) and that is not equivalent
to modA for a finite-dimensional hereditarg-algebra A. Then up to derived
equivalence we can assurtieg, H~) = 0.

A central class of objects in our categorigsare the exceptional objects.
We say that an objecE in H is exceptionalif it is indecomposable and
Extqli(E, E) =0. The indecomposable summands of a tilting object are examples
of exceptional objects. We say that an objetbrsionablef it is a factor object of
a finite direct sum of copies of some tilting object. Associated with an exceptional
object E is the perpendicular categoty, the full subcategory of{ whose
objects are th&l in H with Hom(E, X) = 0= Ext'(E, X).

We have the following result from [HReZ2], where the proof is valid for any
field k.

Proposition 1.4. Let’H be anExt-finite hereditary abeliak-category with tilting
object, not equivalent tmmod A for a finite-dimensional hereditar-algebra A.
AssuméeHp # 0, and (Ho, Heo) = 0. Let E be an exceptional torsionable object
in H, and let0 > tE - M — E — 0 be the almost split sequence with
right hand termk.
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(a) The perpendicular categoy is anExt-finite hereditary abeliak-category
with tilting object.

(b) If M is indecomposable, ther- is connected.

(c) If E+ is equivalent tonodH for some finite-dimensional basic hereditary
k-algebraH, thenT = H & E is a tilting object inH, and Endy (T)°P ~
H[M], the one-point extension algebra

EndE)P 0
M H)

(d) If X C E for somer > 0andX isin EL, thenX is projective inE~L.
(e) LetZ beinH, and letf: E' — Z be a minimal rightaddE -approximation.
ThenKer f is a projective object irE .

The next result is stated and proved in [HRe2] without the assumption
that M is indecomposable. However, the proof is much simpler whens
indecomposable, and, combined with the results from [H2], it is the only case
needed. This represents a simplification also in the case of algebraically closed
fields. We include the proof (taken from [HReZ2]). We say that an oldject is
guasisimple if the middle term of the almost split sequence with right hand term
E is indecomposable.

Proposition 1.5. Let H be a connecte&xt-finite hereditary abeliark-category
with tilting object, such thatHo, H) = 0 and H has no nonzero projective
objects. LetE' be an exceptional torsionable quasisimple objectin .

Then the perpendicular categoB- is equivalent tamodH for some finite-
dimensional hereditarg-algebraH, andHom(E, R) # 0 if R is a tube inHp.

Proof. SinceE is in H, there is some proper epimorphidgin— Z with Z #£0
andZ indecomposable. Let: E' — Z be a minimal right add'-approximation.
Theng is an epimorphism because there already is some epimorphisnZ
andE is in addE. Then P = Kerg is nonzero, and is a projective object iit-
by Proposition 1.4(e). Since the middle temhin the almost split sequence-8
TE - M — E — 0 is indecomposablé;* is connected by Proposition 1.4(b).
Hence it follows thatE~+ is equivalent to mod! for some finite-dimensional
hereditaryk-algebraH (see [H1, Theorem 4.2]).

Let nowR be a tube irfHg, and assume that Hai, R) = 0. SinceE € Hoo,
we have Ex}, (E, R) ~ DHom(t 'R, E) =0 for R € R, whereD = Hom (-, k)
(see [ARS]). Hence we geR c EL, and clearlyR is a tube also inE-L.
Therefore, the heredita-algebraH must be tame (see [DR]). We then know
that each tube is sincere, that is, there is a nonzero maR twom each
indecomposable projectivH -module. In particular, we have Hqm, R) # 0.
Consider again the exact sequence-0P — E' — Z — 0. Note thatZ ¢ R,
sinceR C E+ and Z ¢ E*. Hence it follows that HortiR, Z) = 0. Consider
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the induced exact sequenceOHom(Z, R) — Hom(E!, R) — Hom(P, R) —
Ext}(Z, R) ~ DHom(R, Z). Since HoniR, Z) = 0 and HoniP, R) # 0, we
conclude that HoitE', R) # 0, and we are done.O

The proof of the following result from [HS] is valid for any field

Proposition 1.6. Let’H be anExt-finite hereditary abeliark-category with tilting
object and with no directing object. Lét be an exceptional torsionable object
of infinite length. Le0 - tE — M — E — 0 be the associated almost split
sequence, and léf be the basic hereditarg-algebra such that ' is equivalent
tomodH.

Then M is either indecomposable or the direct sum of two indecomposable
objects. In the second case one of the indecomposable summands is a projective
H-module.

The central role of the quasisimple objects amongst the exceptional torsionable
objects is given by the following [H2].

Proposition 1.7. Let’H be anExt-finite hereditary abeliark-category with tilting
object and no directing object. Then any torsionable exceptional object of infinite
length has a filtration by quasisimple torsionable exceptional objects.

We shall also need some background material related to canonical algebras.

Recall that for an algebraically closed figtda canonical algebra is defined
on the basis of a finite set of positive integéys, ..., p;) with t > 3 and a
corresponding set of distinct elemerits,, .. ., A,) from P1(k). The associated
canonical algebra is given by the quiver

<~

w- : -0
\ = e .. /
with r arms fromo to w, each havings, ..., p; arrows, respectively, and with

relations depending on thie (see [R1]).

In [R2] a definition is given also for the case whérés an arbitrary field, in
which case it is much more complicated. The starting point is a tame bimodule
rMg, thatis,F andG are division algebras ovérand(dimy M)(dimg M) = 4.

The objects of the category re@gMs) of representations of M are triples
(A, B, f) whereA is in modG, B isinmodF and f: M ®s A — B isamapin
modF. Whenk is algebraically closedy = k2 is the only choice. Then rejpf)

is equivalent to mo#I”, wherer” is the Kronecker quiver= - . The elements
(M1, ..., A) in the definition of a canonic&lalgebra correspond to distinct tubes
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(which are all of rank one), and hence also to simple regular modulesifor
In the general case a canonical algebra is defined on the basis of a finite set
of positive integergp1, ..., p;) and a setN1, ..., N;) of quasisimple regular
representations of the tame bimodul&/;.

Thereis a related class of algebras,shaidalgebras, whose precise definition
for an arbitrary field is more easily explained [R2]. We start with the same data.
ThenF; = EndN;)°Pis a division algebra ovéy, fori =1, ..., t. The associated
squid algebra is then the tensor algebra associated with
11

Lp1-1 _ <
Z \
(t,p;—l) DR (tgl)
where the tensor algebra @fM is associated with the vertex the division
algebras F; are associated with verticeg, j) for j = 1,...,p; — 1, the

bimodule N; with the arrow. < Gpi—1)’ and the bimoduler, (F;)f, with the
arrows(l,,-j i) forl<j < p; ~1.

It is proved Iin [R2] that for any squid algebra there is some (co)tilting
module T such that End(T)°P is a canonical algebra, and consequently the
derived equivalence classes of squid algebras and canonical algebras are the same.

Also recall from [GL] that the category céh of coherent sheaves over
a weighted projective lin¥ is defined, whe# is algebraically closed, depending
on points(i1, ..., A;) and associated integ€igs, . . ., p;) wherep; > 1. For each
cohX there is some tilting objedt such that Endr')°P is a canonical algebra, and
all canonical algebras occur this way. In particular, the derived equivalence classes
of the cohX and of the categories of finitely generated modules over canonical
algebras coincide, whéehnis an algebraically closed field.

For a canonical algebra over a fieldk there is the following structure of the
indecomposable modules [R2]. They are divided into three grdapg andZ,
where HoniQ, P) = 0 = Hom(Z, Q@) = Hom(Z, P), Q is a family of (stable)
tubes, and any mag: P — I with P in P andI in Z factors through any
tube in Q. Consider the additive subcategofygenerated by and 0, andR
generated by. Then(R, £) is a split torsion pair, and when tilting with respect
to this torsion pair, we obtain a hereditary abelian categgrywhich is derived
equivalent to modi [HRS]. Whenk is an algebraically closed field, it follows
by using [GL,HRS] thaC, is equivalent to col for the associated weighted
projective lineX. HenceC, is the natural replacement for cghin the general
case. When starting wittd tame hereditary, we define the hereditary abelian
categoryC, in the same way as above.

<«
)
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2. The case with objectsof finitelength

Let as usual{ be a connected Ext-finite hereditary abeliacategory with
tilting object, over an arbitrary field. Whenk is algebraically closed, we know
that H is noetherian if and only if1{ is equivalent to some category chof
coherent sheaves on a weighted projective line or to some category rfavch
finite-dimensional hereditakyalgebraA [L]. Further anyH is derived equivalent
to some colX or to some modi [H2].

In this section we characterize ti¢ which are noetherian wheh is an
arbitrary field, and we show that whéfihas some simple object, theniitis derived
equivalent to some mad where A is a finite-dimensional hereditary algebra or
squid algebra (or equivalently to a hereditary abekiazategoryC, where A is
canonical or to modi for a finite-dimensional hereditakyalgebra).

For these questions it is no restriction to assume thas not equivalent to
modA for some finite-dimensional hereditatyalgebraa. Then we know that if
the subcategor¥{o of objects of finite length is nontrivial, it is given by a union
of tubes (Lemma 1.2), and up to derived equivalence we can also assume that
(Ho, Heo) = 0 by Proposition 1.3.

Rank functions have also previously played an important role in the investiga-
tion of hereditary abelian categories with tilting object, when there are nonzero
objects of finite length [GL,L,HRe2]. Here they are important for getting criteria
for H to be noetherian. We follow the idea from [L] for the definition.

Let H be as usual, witlH not equivalent to some matl with A hereditary,
and(Ho, He) = 0 andHp # 0. Note that by Proposition 1.2 there is only a finite
number of tubes it of rank greater than one. For each tuben Hg let S
be the sum of the quasisimple objectsZin The subgroup generated by thig
in Ko(H) is finitely generated, by a finite number of tl§e-, including theS;
when 7 has rank greater than one. Denote $yheir direct sum. Denote by
r:H — 7Z the function given by (X) = dim; Hom(X, S) — dimy Ext}(X, ) for
X in ‘H. This gives an additive function oH, thatis, if0—- X -Y - Z —> 0
is an exact sequence M, thenr(Y) = r(X) + r(Z). Hence there is induced
a group homomorphism: Ko(H) — Z. SincetS ~ S, we have Ext(X, §) ~
D Hom(S, X), and hence ExtX, S) =0 for X in Hu. In particular,r(X) > 0
for X € H~o, and itis also easy to see tha&) > 0 for X in Hg. We want to show
thatin factr(X) > 0 whenX is indecomposable of infinite length. It is convenient
to first note the following special case.

Proposition 2.1. Assume that{ is not derived equivalent to sonmeodA for a
finite-dimensional hereditarg-algebra A, thatHg # 0 and that(Ho, Heo) = 0.
If E is an exceptional torsionable object of infinite length, théA) > 0.

Proof. If E is in addition quasisimple, we know from Proposition 1.5 that
Hom(E, T) # 0 for any tube7, and consequently(E) > 0. Since it follows
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from Proposition 1.7 thak has a filtration by quasisimple exceptional torsionable
objects, the proof is done.

In order to extend this result beyond the case of exceptional objects, we need
to investigate the case with all tubes having rank one more closely. The idea of
the proof is taken from [HRe3].

Proposition 2.2. Assume that{ is not equivalent to sommodA for a finite-
dimensional hereditaryk-algebra A, that Ho # 0, and that (Ho, Hoo) = O.
Assume in addition that all tubes g have rank one. Therk Ko(H) = 2, and
‘H is derived equivalent tonodA, where A is a finite-dimensional hereditary
k-algebra associated with a tame bimodule.

Proof. Assume thatH contains no directing object. Lef be an exceptional
torsionable objectif{. Since all tubes ifi{o have rank one, no exceptional object
lies in Hp, and consequentlf has infinite length. Then by Proposition 1.4 the
perpendicular categor§ is equivalent to mod for a basic finite-dimensional
hereditary-algebraH , andT = H & E is a tilting object inH. We have-(E) > 0
by Proposition 2.1, and we assume th@) = a > 0 is smallest possible amongst
the exceptional torsionable objects.

Consider the almost split sequenceX0t E — M — E — 0 in ‘H. SinceT =
E & H with E indecomposable, we haveKklg(H) = n = rk Ko(modH) + 1. For
the H-moduleM we then havéM] = 1[S1] + - + t,_1[S,_1] In Ko(ModH),
wheresSs, ..., S,—1 are the nonisomorphic simpk-modules.

SinceH is not derived equivalent to any madfor A a finite-dimensional
hereditaryk-algebra, the quasitilted algebf[M] is not tilted, and hencé/
is a sincereH-module [H1, Proof of Theorem 7.10]. It follows that all are
positive. Eacls; is an exceptional -module, and is hence an exceptional object
in H. Furthers; is clearly torsionable irH, sinceH & E is a tilting object inH.
Then we haver(S;) >a fori =1,...,n — 1, and since clearly (M) = 2a,
we get 22 > ta + -+ + tp—1a = (n — Da. It follows thatn < 3. Since the
quiver of a quasitilted algebra has no oriented cycles [HRS)M] would be
hereditary ifn < 2, contradicting the fact th&t/, which is derived equivalent to
modH [M], is not derived equivalent to matfor a finite-dimensional hereditary
k-algebraA. If n = 3, the inequalities@ > r1a +toa > 2a givet; =t = 1. Hence
we have an exact sequence0S - M — T — 0 whereS andT are the two
nonisomorphic simplegd-modules ands is projective. Since(M) = 2a and S
andT are exceptional torsionable objects (of infinite lengttfinwe have-(S) =
r(T) = r(E) = a, by the minimality ofr(E) = a. Applying (S, -) to the exact
sequences® S > M - T — 0and O— tE - M — E — 0, we obtain the
exact sequences-8 (S,S) — (S, M) — (§,T) and 0— (S,TE) — (S, M) —
(S, E) — Ext{(S,tE). Since (S,T) =0, (S,7E) ~ DExtY(E,S) =0 and
Extl(S,TE) ~ D(E, S) = 0, we have isomorphismés, $)= (S, M) (S, E).
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Since Ext(E, S) = 0, we know that any nonzero map:S — E is either
a monomorphism or an epimorphism [HRI].

If f:S — E is an epimorphism, we have an exact sequence & —

S — E — 0. Applying (S, -) to this exact sequence, we get the exact sequence
0— (S,K) = (S5.5) = (S, E) — Ext}(S, K) — Ext}(S, §) =0, and hence we
see thak isin S+ since(S, S) — (S, E) is an isomorphism. Thek is projective

in S+ by Proposition 1.4(d), an& is hence torsionable and exceptional. Since
alsoK has infinite length, it follows from Proposition 2.1 thaik) > 0. But this
contradicts(K) =r(S) —r(E)=a —a =0.

Assume now thatf : S — E is a monomorphism. Then we apply, Q) to
the exact sequence-8 S — E — Q — 0 to get the exact sequencg, Q) —
Extl(Q, 0) — Ext(E, Q). Then Ext(E, Q) = 0 since EXX(E, E) =0, and it
follows from the exact sequence-8 (S, $)=(S, E) — (S, Q) — ExtL(S, S)
that (S, Q) = 0. Hence we have EXtQ, Q) = 0, so thatQ is exceptional. Since
Q is a factor of E, it is clearly torsionable. Becaus@ has infinite length, it
follows thatr (Q) > 0 by Proposition 2.1, contradictingQ) =r(E) —r(S) =0.
Hencen = 3 is also impossible. Then we conclude thahas a directing object,
so that’H is derived equivalent to mad for a finite-dimensional hereditary
algebraa.

Since there are tubes i, and hence imP(H) ~ DP(modA), we conclude
that A must be tame. It follows from the classification of tame hereditary
algebras in [DR] that since all the tubes have rank one, there are exactly two
nonisomorphic simpleA-modules. Hence we must have Kk(+) = 2, and
consequently is given by a tame bimodule.O

Now we are in the position to prove the desired result on positivity of the rank.

Proposition 2.3. Assume that{ is not equivalent to sommodA for a finite-
dimensional hereditar-algebra A, that Hg £ 0 and that(Ho, Heo) = 0. Then
r(X) > 0for any indecomposable objekt of infinite length inH.

Proof. Assume first that all tubes (g have rank one. Then it follows from
Proposition 2.2 that is derived equivalent to mad for a finite-dimensional
tame hereditary-algebraA. From the structure of such algebras we know
that the indecomposabla-modules which are not in a tube are preprojective
or preinjective [DR]. Further there is a nonzero map from any indecomposable
preprojective module to any tube, and from any tube to any nonzero preinjective
module. From this it is easy to see th&X) > 0 whenX is in Heo.

We shall prove our claim by induction on= (11 — 1) + - - - + (¢, — 1), where
f1,...,t are the ranks of the tubes of rank greater than one. Thencase has
already been taken care of, so assunieO.

Let X be an indecomposable object iH.. We have thatr(X) > O,
and we want to show that(X) > 0. Assume to the contrary thatX) =
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0= dim; Hom(X, §) — dimy Ext}(X, S) = dimy Hom(X, S). Then Ext(S, X) ~
DHom(X, §) =0 and HongS, X) = 0. Let E be an exceptional quasisimple
objectin a tub& of Hp. By our assumption off, we have thaf7, and hence,

is a summand o§, and hence EXE, X) =0=Hom(E, X). ThenX is in EL,
which is an Ext-finite hereditary abelidgacategory with tilting object. The tubes
in Ho different from7 all lie in E+, and 7 is replaced by a tubg” in E+
with rankz — 1, wherer is the rank of the tub& . The quasisimple objects in
T aret?E,<3E,...,v' 1 E, F, whereF is given by a nonsplit exact sequence
0— tE — F — E — 0. The other indecomposable objectsif have infinite
length in7, and we claim that they also have infinite length#irr. To see this,
assume tha¥ is of infinite length in, such thatZ lies in E+ and has finite
length inE--. ThenZ has a proper quotieit which is of infinite length iri{ and
does not lie inE+. Hence ExX(E, Y) # 0 since HondE, Y) = 0, but then also
Extl(E, Z) + 0, a contradiction.

Since rkKo(E+) = rk Ko(H) — 1, the induction assumption giveg. (X) > 0.
Then there is some quasisimple objécttin a tube of E- of objects of finite
length such that HoiX, V) £ 0. If V is in a tube different froni7”’, we have
a contradiction tor(X) = 0. If V is in 7', we get by considering the structure
of the quasisimple objects i’ that Hom(X,7) # 0. So in any case we get
a contradiction, and we are doneQ

As a consequence of the above we get the following result on noetherianness.

Proposition 2.4. Let’H be anExt-finite hereditary abeliark-category with tilting
object, and assume thafg £ 0 and (Ho, Heo) = 0. Then is noetherian.

Proof. We can clearly assume thaf is not equivalent to mod for a finite-
dimensional hereditar-algebraA.

Let X be an indecomposable object #i.,. We want to show thaiX is
noetherian by induction om(X), which is positive by Proposition 2.3. So
assume first that(X) is smallest possible. Assume thég C X1 C--- C X; C
.-+ C X is an infinite proper chain of subobjects ¥f Since(Hp, Hoo) = 0, all
indecomposable summands ¥f have infinite length, for all. Hencer (X;) =
r(X) for all i, so that(X/ X;) = 0. Since we have seen that 0, it follows that
r(Y;) = 0 for each indecomposable summandf X/ X;, and henceX/ X; has
finite length by Proposition 2.3. Sincé/Xo —» X/ X1 — - —> X/X; — ---is
an infinite chain of proper epimorphisms, we get a contradiction, and hénge
noetherian.

Assume now thak is an indecomposable object i, wherer(X) =a is
not minimal, and assume thatXf is indecomposable it with r(X") < r(X),
then X’ is noetherian. Assume thalp C X1 C---C X; C--- C X is a proper
ascending chain of subobjects ¥f If there is someg such that-(X;) = r(X)
foralli > ig, it follows as above thaX is noetherian. If there is no suéf) there is
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somei1 and some with 0 < b < a such that(X;) = b forall i > i1. We have the
proper ascending chaiXi;, +1/ X;;, C Xi;4+2/ X, C --- C X/ X;, of subobjects of
X/Xi,. Thenr(X/X;,) =a—b < a, sothatX/X;, is noetherian by the induction
assumption, and we have a contradictiom

We shall give a characterization of the noetheftaat the end of the section.
Before we go on we point out the following consequence.

Corollary 2.5. Let H be anExt-finite hereditary abeliark-category with tilting
object. If Hp # (0), then is derived equivalent to a noetherian hereditary
abeliank-category.

Proof. We can clearly assume th&f is not equivalent to mod for some
finite-dimensional hereditarg-algebraA. Then up to derived equivalence we
can assumeHo, Hoo) = 0 by Proposition 1.3, and hence we are done by
Proposition 2.4. O

Now we get our main result in the case tidthas some simple object, or
equivalentlyHg # 0.

Theorem 2.6. Let H be anExt-finite hereditary abeliark-category with tilting
object and assume thafo # (0) and (Ho, Hs) = 0.

(a) There is some tilting objedt in H such thatEndy (T)°P is a squid algebra
or a hereditary algebra.

(b) ‘H is derived equivalent to the category of finitely generated modules for
a squid algebra or a hereditary algebfand to some hereditark-category
Cx associated to a canonicat-algebra A or to modA for a finite-
dimensional hereditarg-algebraA).

Proof. We can clearly assume thatis not equivalent to mod for some finite-
dimensional hereditark-algebraA, so thatH is given by a union of tubes. Let
(1, ..., t,) be the ranks of the tubes Hp of rank greater than one. We claim that
‘H has a tilting object of the forrio & T1 & - - - & T, where addlp is in H~ and
End(Tp)°P is a tame hereditarg-algebra given by a tame bimodule. Further
hast; — 1 indecomposable summands foci < r and7; = Cl.(l) DD Cl.(’f’l),
where there is a chain of irreducible epimorphisffd’ — .- — ¢~ with
¢~V quasisimple.

‘H is derived equivalent to mad for some quasitilted algebra [HRS].
If Ko(H) ~ Ko(modA) had rank one,A would be a simple algebra, and
hence there would be no tubes faf. We prove the claim by induction on
rk Ko(H) =n > 2. If n = 2, then A is hereditary since the quiver of has
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no oriented cycles [HRS], and since there are tubesnust be tame. Since
rk Ko(modA) = 2, all tubes inHg have rank one, and we have a tilting object
T = Tp in Heo With End(Tp)°P ~ A.

Assume that: > 2, and letE be a quasisimple object in one of the tubes for
Ho of rank greater than 1, say the first one (of raf)k ThenE is exceptional, so
that £+ is a hereditary abeliak-category with tilting object, by Proposition 1.3,
and rkKo(E+) = rkKo(H) — 1. The family H; of objects of finite length in
E- consists of the same tubes &g except for the tube containing which
is replaced by a smaller tube of rank— 1. (See the proof of Proposition 2.3.)
We also still haveH,, H,,) = 0. By the induction assumption we have a tilting
objectT' =Ty ® T, ®---® T/, whereT is 0 if r; = 2, with the desired properties.
If necessary, replacg&’ by somerfEL T’ in order to have a chain of irreducible

epimorphismg? — ... - c{""? _ E in H. We know thatl”’ & E is a tilting
object, so we are done with the claim.

We now want to show that for our special choice of tilting obj&cin H
we have that En@)°P is a squid algebra or a hereditary algebra. We have that
End(7Tp)°P = H is a tame hereditary algebra given by a tame bimoduleM et
Hom(7o, Cl.(”'_l)), which is a H—D; bimodule, whereD; = End(Cl.(”'_l))Op is
a division algebra sincél.(”’l) is quasisimple. We have Hc(nﬁl.(”, Cl.(”l) ~ D;
as aD;-bimodule, and HoT;, 7;) = 0 for i, i’ not 0. Further Hor(;, To) =0
fori # 0. Hence we get a squid algebra given by

Di_ D1 _ D i D1

i
H

N

b, ~— D, = -
This finishes the proof of (a), and (b) is a direct consequence of @).

Observe also the following direct consequence of the above proof.

Corollary 2.7. Let H be a hereditary abeliafExt-finite k-category with tilting
object andHp # 0 andHo, # 0. Let (74, ..., 1) be the ranks of the tubes Mg
of rank greater than one. Thek Ko(H) =2+ Z?:l(ti —-1).

Using Theorem 2.6, we now obtain characterizations of noetherian Ext-finite
hereditary abeliak-categories with tilting object.

Theorem 2.8. Let H be a hereditary abeliafext-finite k-category with tilting
object. Then the following are equivalent.
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(a) H is noetherian.

(b) Ho #0and(Hp, Ho) =0.

(c) His equivalenttd 4, for some canonicat-algebraA, or to modA for some
finite-dimensional hereditary-algebra A.

Proof. (b) = (a). Follows from Proposition 2.4.

(b) = (c). SinceHp # 0, H is derived equivalent t6 4, where A is canonical
or tame hereditary, by Theorem 2.6 Hfis not equivalent to some matiwhere
A is hereditary, theft is given by a union of tubes, wittHg, Hoo) = 0. AlsoC 4
has the same property. Sin€g andH are derived equivalent, there is some split
torsion pair(7, F) in C 4, such that we obtaif{ when tilting with respect to this
pair in the sense of [HRS] (see [H1]). In view of the above propertieq aind
Proposition 2.3, it is easy to see that the gdir F) is trivial, so that{ andC 4
are equivalent.

(c) = (b). ForH = Cx we haveHg # 0 and (Ho, Hoo) = 0, and forH =
modA for a finite-dimensional hereditakyalgebraA we haveHo = H.

(&) = (b). When H is noetherian, then clearl{{o # 0. Assume that
(Ho, Hoo) # 0. Then there is some nonzero mgp X — Y with X in Hp
andY in H, and X andY indecomposable. We can clearly assume tkiat
is quasisimple. Iff was not a monomorphism, then Kgrhad smaller length
thanX, with Hom(Ker f, X) # 0, so there would be some quasisimple objeat
a tube, with HongY, X) # 0, which is impossible. Hencg is a monomorphism.
Consider the almost split sequence0X — E — t~1X — 0. ThenE is
indecomposable, and there is some nonzero fifag — Y extendingf. If f'is
not a monomorphism, there is a proper nonzero monomorphisni'kert—1X,
which is impossible since~1X is quasisimple. We can continue this way to get
a proper ascending chain of subobjecty ofo thatH is not noetherian. O

3. Themain result

In this section we finish the proof of the main result. We first show, as in [H2]
for the case of algebraically closed fields, that we can reduce to the three cases:

(1) ‘H has a simple object;

(2) H has a directing object;

(3) there exists an indecomposable torsionable exceptional abjedt,, with
E* tame hereditary.

Then we consider each of the three cases.

Most of the proof in [H2] carries over with no change. It is important to
note that the result from [B] that if7 is a wild hereditary finite-dimensional
k-algebra and and N are indecomposable regulaf-modules, then there is
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someig such that HoraM, t/N) # 0 for i > ig, holds for an arbitrary field.
Also Proposition 1.6 (see [HS]) is used.

The following lemma, whose proof is trivial in the case of algebraically closed
fields, remains valid for arbitrary fields with some additional argument.

Lemma 3.1. Let E be a quasisimple exceptional object of infinite lengthn
and assume th&t! has no directing objects. Then we havem(z E, E) = 0.

Proof. SinceE is exceptional, EncE) = F is a division algebra. Assume that
there is some nonzero magp: tE — E. Since Ext(E, tE) ~ DHOom(E, E) ~
F, there is only one nontrivial extension8 tE —- L —- E — 0 up to
isomorphism, with the given end terms, and this is the almost split sequence
with right hand termE. If f is neither a monomorphism nor an epimorphism,
there is an exact sequence9tE — Im f & K — E — 0 [HRIi], which is
a contradiction.

So we can assume thgt: t E — E is a monomorphism or an epimorphism.
If f is an epimorphism, we get by the exactness of the funet@pimor-
phismst*1E — t'E for i > 1, and hence an epimorphisfi: 7/ E — E for
all j > 1. We then get by applying/ E, -) an epimorphism EX</E, 1/ E) —
Extl(z/E, E),and hence EX{z/E, E) = 0for j > 1. Since also EXE, E) =0,
we get Hon(E, T E) =0 fori > 1.

If f:tE — Eisamonomorphism,we getamonomorphiﬁjmt/'E — E for
j > 1. Applying (-, E) we get an epimorphism EXE, E) — Extl(z/E, E), so
that Ext(t/E, E) =0 for j > 1, since ExXx(E, E) = 0. Hence we conclude that
Hom(E, t'E) =0 for alli > 1. Then we know that in any case there is a chain of
irreducible epimorphismg; — --- — Eg= E between exceptional objects [H2,
proof of Corollary 2.11], which gives a contradiction by [H2, Lemma 2.1

We shall also need the following proposition.

Proposition 3.2. Let H be a tame hereditary-algebra, andM a simple
regular H-module. ThenA = H[M] is derived equivalent to a squid algebra
or a hereditary algebra.

Proof. It is not hard to see that there exists a tilting modiilén modH such

that Eng; (T)°P is a squid algebra or a hereditary algebra. One can here use
arguments similar to those given in the proof of Theorem 2.6. In particular
we use induction of the rank of Ko(modH). If n = 2, we have the tilting
module H, so thatH ~ End(H)°P is tame hereditary. Also note that in this
setting we choosdp to be preprojective (replacing that all summands are in
H in the proof of Theorem 2.6). Denote hythe extension vertex for the one-
point extension algebr& [M]. Let P(w) be the corresponding indecomposable
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projectiveA-module, and lef’ = T & P(w). We want to show thaf is a tilting
module in modA, and that Enél’)°P is a squid algebra (or a hereditary algebra).
We divide the investigation into two different cases. Assume first tat
lies in a tube of rank one. Since the indecomposable summands afe
preprojective or lie in tubes of rank greater than one, we havé(Exy) ~
DHom(M, DTrT) =0, and hencé/ is in Fag; T. We claim that EX&(T', P(w))
= 0. We have the exact sequencex0M — P(w) — S(w) — 0, whereS(w) is
the simpleA-module associated with the vertex Applying (7, -) to this exact
sequence we get the exact sequence

(T, S(w)) — ExtN(T, M) — Ext}(T, P(w)) — Ext(T, S(w)).

SinceS(w) is a simple injectivel-module, we have EXtT, S(w)) = 0, and since
M is in FacT, we have Ex&(T, M) = 0. It follows that Ex}(7, P(w)) = 0, and
hence clearly EXT, T) = 0.

We haveT =To @ T1 @ --- ® T, with End(7p)°P corresponding to a tame
bimodule and theT; corresponding to the: arms of the squid. We have
Hom(P(w), T) = 0 and HomiT, P(w)) = Hom(T, M). SinceM is in a homo-
geneous tube, we have Hofp, M) =0 fori =1, ..., r. Hence for the quiver of
End(T)°° we get a new arrow to the vertex corresponding to @p¥P, equipped
with the bimodule Hon(Ty, P(w)) = Hom(Tp, M), and EndM)®P is associated
with the new vertex. It follows that Eri@)°P is a squid algebra in this case.

Assume now thaiV is quasisimple in a tube of rank greater than one. By
possibly applying a power of we can assume thaf is a summand of", say
of T;, for somei with 1 <i < r. As before, letl = T ® P(w). The proof is as
above, observing that now BXf', M) = 0 sinceM is a summand of . We have
Hom(M, P(w)) = Hom(M, M), a division algebra, so we get a squid algebra
with the arm corresponding tf prolonged with one arrow. O

We shall also need the following lemma.

Lemma 3.3. Let E be an exceptional object ik, and let Eg be quasisimple
exceptional such that there is a chain of irreducible monomorphigins>
... — E.If EL is equivalent tamodH for H tame hereditary, thelEé is also
tame.

Proof. We have E- = modH’ x modA, where A is a hereditary algebra of
type A,, for somen. In fact, modA corresponds to the wing i determined
by the objectsEy, ..., E,—1 in the chain of irreducible monomorphisniy —
--»— E,_1 — E. For details we refer to [HS] or [H2]. We have th&}p is in
modA, and hence mod’ C Eé. Let S be simple regular in a homogeneous tube
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of modH, not containing\f, where 0— tE — M — E — 0 is almost split. We
then have an almost split sequence

0—>S—>§—>S—>O

in modH . We claim that this sequence is also almost spIiEHﬂ, henceEé is
tame.

To see this, lek: X — S be a nonisomorphism whet€ is indecomposable
in Eé. Consider the minimal right ad(E-approximationf:E —- X. We

have the exact sequende — X > C — 0. Then clearly HortE, C) ~
Extl(E, Im f) = 0 sinceE is exceptional and is hereditary. If EXX(E, C) =0,
then C is in EL. If Ext}(E,C) # 0, consider the universal extension—9

C - L — E'— 0, with E’ € addE. Then we have the exact sequence>0
(E,C) > (E,L) - (E,E") - Ext}(E,C) - Ext}(E, L) — Ext{(E,E') —

0, wherewa: (E, E') — Ext}(E, C) is an epimorphism by construction of the
universal extension. Then BXE, L) = 0 since Ext(E, E’) = 0. Since EndE)

is a division ring, becausg is exceptional, it follows thad is an isomorphism.
Then(E, L) =0 since(E, C) = 0. HenceL is in E+.

Applying (-, §) to the exact sequence-8 C S LLE >0 gives the
exact sequence & (E’,S) — (L, S) — (C, S) — Extl(E’, S). Here we have
Ext}(E’, S) =0 (and(E’, S) = 0). Since(E, §) = 0 we then have a commutative
diagram

X—Tsc—top

!
\L/ f//
S

We claim thatf”: L — S is not a split epimorphism.

Assume to the contrary that there is a homomorphysifi — L with f"g =
1s.

First we show thats, E) = 0. In fact, the almost split sequence9tE —
N @ E,_1 — E — 0 gives by applying(S, -), and using that§  E, rise to
the exact sequences-8 (S,7E) — (S,N) ® (S, E,—1) — (S, E) — 0 and
0 — Extl(S,TE) — Ext'(S, N) & Ext}(S, E,_1) — Ext}(S, E) — 0. SincesS
and E,_1 lie in different connected components 6f-, we have(s, E,_1) =
0 = ExtL(S, E,_1). SinceS and M lie in different tubes of mod/, we have
(S, M) =0=Ext}(S, M). Then it follows that S, E) = 0 and Ext(S, E) = 0.

Thus there is somg’:S — C with ig’ = g, and hencef’g’ = 15. The
exact sequence & Imf — X — C — 0 gives rise to the exact sequence
0— (S,Imf) — (S, X) = (S,C) - ExtL(S, Im f), where Ext(S,Im f) =0
since Ext(S, E) =0. Soif f”: L — S is a split epimorphism, thefi’: C — S is
a split epimorphism sincéS, E) =0, andh : X — S is a split epimorphism since
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Ext}(S, Im f) = 0. This is a contradiction, so we conclude thfdt. L — S is not
split epimorphism, and hence

0— S— i —-S—0
is almost splitinEy. O
The proof of the following crucial result is the same as in [H2].

Theorem 3.4. Let H be a hereditary abeliarExt-finite k-category with tilting
object. Then one of the following cases occurs.

(i) H has some simple object.
(i) H has some directing object.
(i) There exists a torsionable exceptional obj&cin H., with E+ equivalent
to modH for a finite-dimensional tame hereditakyalgebraH .

Putting things together we get the main result.

Theorem 3.5. Let H be a hereditary abeliafext-finite k-category with tilting
object. Thert is derived equivalent to the category of finitely generated modules
over a hereditary algebra or a squid algebra.

Proof. By Theorem 3.4 we only have to consider the cases (i)—(iif} ifas some
simple object, we use Theorem 2.6, and{ithas some directing object, théh

is derived equivalent to a hereditary algebra [HRel]. Assume now that cases (i)
and (ii) do not occur, and there is some indecomposable torsionable exceptional
object E in Hs with EL equivalent to mod for a finite-dimensional tame
hereditaryk-algebraH. By Lemma 3.3 we can assume thatis quasisimple.

We know thatT = H & E is a tilting object inH, and’H is derived equivalent to
modH [M] for the one-point extensioH [M], where 0— tE - M — E — 0

is an almost split sequence K. Since M is indecomposable an#/[M] is
quasitilted and not tiltedyf is a simple regulaff -module [HRS]. TheH [M], and
consequently, is derived equivalent to a squid algebra by Proposition 3(2.

In [H3] some consequences were drawn of the main theorem in the alge-
braically closed case. Most of these generalize to the case of arbitrary fields. Here
we just include a sample of these results.

For a quasitilted algebra, denote as usual bg the additive subcategory
of modA whose indecomposable objects have the property that all predecessors
have projective dimension at most one. Dudtlylenotes the additive subcategory
of modA whose indecomposable objects have the property that all successors
have injective dimension at most one.
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Corollary 3.6. For an arbitrary quasitilted algebrad we have thaind £ NindR
is not empty.

Corollary 3.7. Let A be a quasitilted algebra. Then there is always an
indecomposablel-moduleM such thatA[M] is quasitilted.
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