
Annals of Pure and Applied Logic 136 (2005) 284–296

www.elsevier.com/locate/apal

κ-bounded exponential-logarithmic power series
fields

Salma Kuhlmanna,∗, Saharon Shelahb

aResearch Unit Algebra and Logic, University of Saskatchewan, Mc Lean Hall, 106 Wiggins Road, Saskatoon,
SK S7N 5E6, Canada

bDepartment of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

Received 1 October 2004; received in revised form 17 April 2005; accepted 17 April 2005
Available online 3 June 2005

Communicated by A.J. Wilkie

Abstract

In [F.-V. Kuhlmann, S. Kuhlmann, S. Shelah, Exponentiation in power series fields, Proc. Amer.
Math. Soc. 125 (1997) 3177–3183] it was shown that fields of generalized power series cannot
admit an exponential function. In this paper, we construct fields of generalized power series with
bounded supportwhich admit an exponential. We give a natural definition of an exponential, which
makes these fields into models of real exponentiation. The method allows us to construct for every
κ regular uncountable cardinal, 2κ pairwise non-isomorphic models of real exponentiation (of
cardinality κ), but all isomorphic as ordered fields. Indeed, the 2κ exponentials constructed have
pairwisedistinct growth rates. This method relies on constructing lexicographic chains with many
automorphisms.
© 2005 Elsevier B.V. All rights reserved.

MSC:primary 06A05; secondary 03C60

Keywords: Models of real exponentiation; Iterated lexicographic power of a chain; Logarithmic rank

∗ Corresponding author.
E-mail addresses:skuhlman@math.usask.ca (S. Kuhlmann), shelah@math.huji.ac.il (S. Shelah).

0168-0072/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2005.04.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82017327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/apal


S. Kuhlmann, S. Shelah / Annals of Pure and Applied Logic 136 (2005) 284–296 285

1. Introduction

In [9], Tarski proved his celebrated result that the elementary theory of the ordered field
of real numbers admits elimination of quantifiers, and gave a recursive axiomatization
of its class of models (the class of real closed fields). He asked whether analogous
results hold for the elementary theoryTexp of (R, exp) (the ordered field of real numbers
with exponentiation). Addressing Tarski’s problem, Wilkie [10] established that Texp is
model complete and o-minimal. Due to these results, the problem of constructing non-
archimedean models ofTexp gained muchinterest.

Non-archimedean real closed fields are easy to construct; for example, any field of
generalized power series (seeSection 2) R((G)) with exponents in adivisible ordered
abelian groupG �= 0 is such a model. However, in [7] it was shown that fields of
generalized power series cannot admit an exponential function, so different methods were
needed to construct non-archimedean real closed exponential fields. In [3], van den Dries,
Macintyre and Marker construct non-archimedean models (the logarithmic-exponential
power series fields) ofTexp with many interesting properties. In [6], the exponential-
logarithmic power series fields are constructed, providing yet another class of models.
Although the two construction procedures are different (and produce different models, see
[8]), both logarithmic-exponential or exponential-logarithmic series models are obtained
as countable increasing unions of fields of generalized power series. In both cases, a partial
exponential (logarithm) is constructed on every member of this union, and the exponential
on the union is given by an inductive definition.

In this paper, we describe a different construction, which offers several advantages. The
procedure is straightforward: we start with any non-empty chainΓ0. For a given regular
uncountable cardinalκ , we form the (uniquely determined)κ-th iterated lexicographic
power(Γκ , ικ ) of Γ0 (seeSection 4). We takeGκ andR((Gκ))κ to be the corresponding
κ-bounded Hahn group andκ-bounded power series field respectively (seeSection 2).
The logarithm on the positive elements ofR((Gκ))κ is now defined by a uniform
formula (18). Under the additional hypothesis thatκ = κ<κ , R((Gκ))κ is a model of
cardinalityκ .

As an application, we construct 2κ pairwise non-isomorphic models ofTexp (of
cardinality κ), but all isomorphic as real closed fields. This answers a question of
D. Marker, and establishes an exponential analogue to the main result of [1].

The structure of the paper is as follows. InSection 2, we recall some preliminary
notions and facts. InSection 3, we state and prove the Main Lemma: it provides sufficient
conditions on a chainΓ , which allow a uniform definition of a logarithm onR((Gκ))κ .
In Section 4, we give a canonical procedure to obtain chains satisfying the conditions
of the Main Lemma. InProposition 4, an additional sufficient condition, which allows
us to obtain logarithms satisfying the growth axiom scheme, is given. InSection 5, we
complete the construction of the model (Theorem 7). In Section 6, we introduce the
logarithmic rank, which isan isomorphism invariant for the logarithm.Theorem 8relates
the logarithmic rank of our model to the orbital behaviour of automorphisms of our initial
chainΓ0. In Section 7, we construct chains with many automorphisms,which in turn allows
the construction of models ofTexp with many logarithms (Theorem 9).
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2. Preliminaries

We first need some definitions and general facts. LetΓ be achain (that is, a totally
ordered set). LetX, Y be subsets ofΓ . We write X < Y if x < y for all x ∈ X andy ∈ Y.
A Dedekind cut inΓ is a pair(X, Y) of disjoint nonempty convex subsets ofΓ whose
union isΓ andX < Y. A Dedekind cut is agap in Γ if X has no last element andY has no
first element.Γ is said to be Dedekind complete if there are no gaps inΓ . We denote byΓ
the Dedekind completion of a chainΓ . We say that a pointα ∈ Γ hasleft character ℵ0 if
{α′ ∈ Γ ; α′ < α} has cofinality ℵ0, anddually for right character. Similarly, the characters
of a gaps in a chainΓ are those of s considered as a point inΓ . If both characters areℵ0,
we shall call it anℵ0ℵ0-gap.

Given chainsΓ andΓ ′, we denote byΓ ��Γ ′ the chainobtained by lexicographically
ordering the Cartesian productΓ ×Γ ′. In other words,weobtain the ordered sum of chains
Γ ��Γ ′ � ∑

γ∈Γ Γ ′
γ (whereΓ ′

γ denotes theγ -th copy ofΓ ′).
Let G be a totally ordered abelian group. The archimedean equivalence relation onG is

defined as follows:

For x, y ∈ G \ {0} : x
+∼ y if ∃n ∈ N s.t.n|x| ≥ |y| andn|y| ≥ |x|

where|x| := max{x,−x}. We setx � y if for all n ∈ N, n|x| < |y|. We denote by[x] is
the archimedean equivalence class ofx. We totally order the set of archimedean classes as
follows: [y] < [x] if x � y.

Let (K ,+, ·, 0, 1,<) be an ordered field. Using the archimedean equivalence relation
on the ordered abelian group(K ,+, 0,<), we can endowK with thenatural valuation
v: for x, y ∈ K , x, y �= 0 definev(x) := [x] and [x] + [y] := [xy]. We call
v(K ) := {v(x) | x ∈ K , x �= 0} the value group, Rv := {x | x ∈ K andv(x) ≥ 0}
the valuation ring, Iv := {x | x ∈ K andv(x) > 0} the valuation ideal (the unique
maximal ideal ofRv), U>0

v := {x | x ∈ Rv, x > 0, v(x) = 0} the group of positive
units of Rv . Theresidue field is K := Rv/Iv . For x, y ∈ K >0 \ Rv we say thatx andy

aremultiplicatively-equivalent and writex
·∼ y if: ∃n ∈ N s.t.xn ≥ y andyn ≥ x. Note

that

x
·∼ y if andonly if v(x)

+∼ v(y). (1)

An ordered fieldK is anexponential field if there exists a map

exp : (K ,+, 0,<) −→ (K >0, ·, 1,<)

such that exp is an isomorphism of ordered groups. A map exp with these properties will be
called anexponential on K . A logarithm on K is the compositional inverse log= exp−1

of an exponential. Without loss of generality, we shall always require the exponentials
(logarithms) under consideration to bev-compatible: exp(Rv) = U>0

v or log(U>0
v )

= Rv.
We are mainly interested in exponentials satisfying thegrowth axiom scheme:

(GA) x ≥ n2 �⇒ exp(x) > xn (n ≥ 1).
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Note that because of the hypothesisx ≥ n2, (GA) is only relevant forv(x) ≤ 0. Let us
consider the casev(x) < 0. In this case, “x > n2” holds for alln ∈ N if x is positive.
Restricted toK \ Rv , axiom scheme(GA) is thus equivalent to the assertion

∀n ∈ N : exp(x) > xn for all x ∈ K >0 \ Rv. (2)

Applying the logarithm log= exp−1 on both sides, we find thatthis is equivalent to

∀n ∈ N : x > log(xn) = nlog(x) for all x ∈ K >0 \ Rv. (3)

Via thenatural valuationv, this in turn is equivalent to

v(x) < v(log(x)) for all x ∈ K >0 \ Rv. (4)

A logarithm log will be called a(GA)-logarithm if it satisfies (4). For more details about
ordered exponential fields and their natural valuations see [6].

In this paper, we will mainly work with ordered abelian groups and ordered fields of the
following form: let Γ be any totally ordered set andR any ordered abelian group. Then
RΓ will denote the Hahn product with index setΓ and componentsR. Recall that this is
the set of all mapsg from Γ to R such that thesupport {γ ∈ Γ | g(γ ) �= 0} of g is
well-ordered inΓ . Endowed with the lexicographic order and pointwise addition,RΓ is an
ordered abelian group, called theHahn group.

We want a convenient representation for the elementsg of the Hahn groups. Fix a
strictly positive element 1∈ R (if R is a field, we take 1 to be the neutral element for
multiplication). For everyγ ∈ Γ , we will denote by 1γ the map which sendsγ to 1 and
every other element to 0 (1γ is the characteristic function of the singleton{γ }). Hence,
everyg ∈ RΓ can be written in the form

∑
γ∈Γ gγ 1γ (wheregγ := g(γ ) ∈ R). Notethat

g
+∼ g′ if and only if min supportg = min supportg′.
For G �= 0 an ordered abelian group,k an archimedean ordered field,k((G)) will

denote the (generalized)power series field with coefficients ink and exponents inG. As
an ordered abelian group, this is just the Hahn groupkG. When we work in K = k((G)),
we will write tg instead of 1g . Hence, every seriess ∈ k((G)) can be written in the form∑

g∈G sgtg with sg ∈ k and well-ordered support{g ∈ G | sg �= 0}. Multiplication is given
by the usual formula for multiplying series.

The natural valuation onk((G)) is given byv(s) = min supports for any seriess ∈
k((G)). Clearly the value group is (isomorphic to)G and the residue field is (isomorphic
to) k. The valuation ringk((G≥0)) consists of the series with non-negative exponents, and
the valuation idealk((G>0)) of the series with positive exponents. Theconstant term of
a seriess is the coefficients0. The units of k((G≥0)) are the series ink((G≥0)) with a
non-zero constant term.

Given any series, we can truncate it at its constant term and write it as the sum of two
series, one with strictly negative exponents, and the other with non-negative exponents.
Thus a complement in(k((G)),+) to the valuation ring is the Hahn groupkG<0

. We call
it the canonical complement to the valuation ring and denote it byNeg k((G)) or by
k((G<0)). Note that Negk((G)) is in fact a (non-unital) subring, and ak-algebra.

Given s ∈ k((G))>0, we can factor out the monomial of smallest exponentg ∈ G
and writes = tgu with u a unit with a positive constant term. Thus a complement in
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(k((G))>0, ·) to the subgroupU>0
v of positive units is the group consisting of the (monic)

monomialstg. We call it thecanonical complement to the positive units and denote it by
Mon k((G)).

Throughout this paper,fix a regular uncountable cardinal κ . We areparticularly
interested in theκ-bounded Hahn group (RΓ )κ , the subgroup ofRΓ consisting of all
maps of which support has cardinality< κ . Similarly, we consider theκ-bounded power
series field k((G))κ , the subfield ofk((G)) consisting of all series of which support has
cardinality< κ . It is a valuedsubfield ofk((G)). We denote byk((G≥0))κ its valuation
ring. A subfieldF of k((G)) is said to betruncation closed if whenevers ∈ F , then
all truncations (initial segments) ofs belong toF as well. If F is truncation closed, then
Neg(F) := Negk((G)) ∩ F is a complement to the valuation ring ofF . If F contains the
subfieldk(tg ; g ∈ G) generated by the monic monomials, then Mon(F) = {tg ; g ∈ G}
is a complement to the group of positive units in(F>0, ·). Note thatk((G))κ is truncation
closed and containsk(tg ; g ∈ G). We denote Negk((G))κ by k((G<0))κ .

Our goal is to define an exponential (logarithm) onk((G))κ (for appropriate choice of
G). From the above discussion, we get the following useful result:

Proposition 1. Set K= k((G))κ . Then(K ,+, 0,<) decomposes lexicographically as the
sum:

(K ,+, 0,<) = k((G<0))κ ⊕ k((G≥0))κ . (5)

Similarly, (K >0, ·, 1,<) decomposes lexicographically as the product:

(K >0, ·, 1,<) = Mon(K ) × U>0
v . (6)

Moreover,Mon(K ) is order isomorphic to G through the isomorphism(−v)(tg) = −g.

Proposition 1allows us to achieve our goal in two main steps; by defining the logarithm
first on Mon(K ) (Lemma 2) and then onU>0

v (Proposition 6).

3. The Main Lemma

We are interested in developing a method to construct aleft logarithm on R((G))κ ,
that is, an isomorphism of ordered groups from MonR((G))κ onto NegR((G))κ =
R((G<0))κ . Moreover, we want a criterion to obtain a(GA)-left logarithm, that is, a
left logarithm which satisfiestg > log((tg)n) = n log(tg) for all n ∈ N andg ∈ G<0.

Lemma 2. LetΓ be a chain. Set

G := (R
Γ

)κ and K := R((G))κ .

Every isomorphism of chains

ι : Γ → G<0

lifts to an isomorphismof ordered groups

ι̂ : (G,+) → (Neg(K ),+)
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given by

ι̂


∑

γ∈Γ

gγ 1γ


 :=

∑
γ∈Γ

gγ t ι(γ ) (7)

for g = ∑
γ∈Γ gγ 1γ ∈ G. Furthermore, setting

log(tg) := ι̂(−g) =
∑
γ∈Γ

−gγ t ι(γ ) (8)

defines a leftlogarithm on K , which satisfies

v(log tg) = ι(min supportg). (9)

Moreover,log is a (GA)-left logarithm if and only if

ι(min supportg) > g for all g ∈ G<0. (10)

Proof. The map̂ι is well defined (because of the condition imposed simultaneously on the
supports of elements ofG and ofK ). It is straightforward to verify that̂ι is an isomorphism
of ordered groups and that (8) defines a left logarithm. Also (10) follows from (4). �

Remark 3. If ι is only an embedding, one would still obtain by (7) an embeddingι̂, and
by (8) an embedding of Mon(K ) into Neg(K ) (a so-called leftpre-logarithm). The mapŝι
and log are surjective (isomorphisms) if and only ifι is surjective. This observation is used
to construct pre-logarithms on Exponential-Logarithmic Power Series fields in [6]. In this
paper, we will not make use of pre-logarithms.

4. The κ-th iterated lexicographic power of a chain

LetΓ0 �= ∅ be a given chain. We shall construct canonically overΓ0 a chainΓκ together
with an isomorphism of ordered chains

ικ : Γκ → G<0
κ

whereGκ := (R
Γκ )κ . Wecall the pair(Γκ , ικ ) theκ-th iterated lexicographic power of

Γ0.
We shall construct by transfinite induction onµ ≤ κ a chainΓµ together with an

embedding of ordered chains

ιµ : Γµ → G<0
µ

whereGµ := (R
Γµ)κ . We shall haveΓν ⊂ Γµ andιν ⊂ ιµ if ν < µ.

For µ = 0, setG0 = (R
Γ0)κ and ι0 : Γ0 → G<0

0 be defined byγ �→ −1γ .

Now assume that for allα < µ we have already constructedΓα , Gα := (R
Γα )κ , and the

embedding

ια : Γα → G<0
α .
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First assume thatµ = α +1 is a successor ordinal. SinceΓα is isomorphic to a subchain of
G<0

α throughια, wecan takeΓα+1 to be a chain containingΓα as a subchain and admitting
an isomorphismια+1 ontoG<0

α which extendsια . More precisely,

Γα+1 := Γα ∪ (G<0
α \ ια(Γα)),

endowed with thepatch ordering: if γ1, γ2 ∈ Γα+1 both belong toΓα , compare them
there; similarly if they both belong toG<0

α . If γ1 ∈ Γα but γ2 ∈ G<0
α we setγ1 < γ2 if

and only ifια(γ1) < γ2 in Gα . Thenια+1 is defined in the obvious way:ια+1|Γα
:= ια and

ια+1|(G<0
α \ια(Γα)) := the identity map. Note that

ια+1(Γα+1) = G<0
α . (11)

Thusια+1 is an embedding ofΓα+1 into G<0
α+1.

If µ is a limit ordinal we set

Γµ :=
⋃
α<µ

Γα, ιµ :=
⋃
α<µ

ια and Gµ := (R
Γµ)κ .

Note that by construction and (11)

ιµ(Γµ) =
⋃
α<µ

G<0
α (12)

and
⋃

α<µ Gα ⊂ Gµ.

This completes the construction ofΓκ := ⋃
α<κ Γα , ικ := ⋃

α<κ ια andGκ := (R
Γκ )κ .

We now claim that

Gκ =
⋃
α<κ

Gα

(Once the claim is established, we conclude from (12) that ικ : Γκ → G<0
κ is an

isomorphism, as required). Letg ∈ Gκ andκ > δ := card(supportg). Now support
g := {γµ ; µ < δ} ⊂ Γκ , so for everyµ < δ chooseαµ < κ suchthatγµ ∈ Γαµ . Clearly
card({αµ ; µ < δ}) ≤ δ < κ so {αµ ; µ < δ} cannot be cofinal inκ (sinceκ is regular),
therefore it is bounded above by someα ∈ κ . It follows that supportg ⊂ Γα, sog ∈ Gα as
required.

Proposition 4. Assume thatσ ∈ Aut (Γκ ) is such thatσ |Γµ
∈ Aut (Γµ) for all µ ∈ κ and

σ(γ ) > γ for all γ ∈ Γ0. Then the isomorphism

l := ικ ◦ σ : Γκ → G<0
κ

satisfies(10).

Proof. Let g ∈ G<0
κ andγµ := min supportg ∈ Γµ for the least suchµ ∈ κ . We prove

that (10) holds by transfinite induction onµ. If µ = 0, thenγ0 ∈ Γ0 so

l (γ0) = ι0 ◦ σ(γ0) = −1σ(γ0) > g.

Now assume that the assertion holds for allα < µ. Since

ικ ◦ σ(Γα+1) = ια+1(Γα+1) = G<0
α ,
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by (11) and forµ limit

ικ ◦ σ(Γµ) = ιµ(Γµ) =
⋃
α<µ

G<0
α

by (12), we have in any case that

l (γµ) ∈ G<0
α for someα < µ. (13)

Setl (γµ) := g′ ∈ G<0
α . We have to show thatg < g′; for this it is enough to show that

min supportg < min supportg′, or equivalently that:

l (min supportg) < l (min supportg′).

But the last inequality holds since by induction assumption we have thatg′ <

l (min supportg′). �

Proposition 5. Let σ0 ∈ Aut (Γ0). Thenσ0 can be extended toσ ∈ Aut (Γκ) satisfying
σ |Γµ

∈ Aut (Γµ) for all µ ∈ κ . In particular, if σ0 ∈ Aut (Γ0) satisfiesσ0(γ ) > γ for all
γ ∈ Γ0, thenσ satisfies the hypothesis ofProposition4.

Proof. We first note that anyσµ ∈ Aut (Γµ) lifts to σ̂µ ∈ Aut (Gµ) as follows. For
g = ∑

γ∈Γµ
gγ 1γ ∈ Gµ, set:

σ̂µ


∑

γ∈Γµ

gγ 1γ


 :=

∑
γ∈Γµ

gγ 1σµ(γ ). (14)

Observe that ifα < µ andσµ ∈ Aut (Γµ) extendsσα ∈ Aut (Γα), then alsoσ̂µ extends
σ̂α . By induction onµ ≤ κ , we now constructσµ ∈ Aut (Γµ) satisfying the following two
properties:

(i) σ̂µ ◦ ιµ = ιµ ◦ σµ and (ii) σµ ⊃ σβ for all β ≤ µ. (15)

Note that (15) part (i) implies that

for all g ∈ G<0
µ : σ̂µ(g) ∈ ιµ(Γµ) if andonly if g ∈ ιµ(Γµ). (16)

It is readily verified thatσ0 satisfies (15). Assume that forα < µ, σα has been constructed
satisfying (15).

If µ = α + 1, defineσα+1 onΓα+1 = Γα ∪ (G<0
α \ ια(Γα)) by setting:σα+1|Γα

:= σα

andσα+1|(G<0
α \ια(Γα)) := σ̂α . Sinceσ̂α satisfies (16), σα+1 is well-defined. It easily follows

from thedefinition of σα+1 thatσα+1 ⊃ σα , and thatσα+1 is a bijection satisfying (15). It
remains to verify thatσα+1(γ1) < σα+1(γ2) for γ1 < γ2, γ1, γ2 ∈ Γα+1. We only verify
this whenγ1 ∈ Γα andγ2 ∈ G<0

α (the verification in the other cases is straightforward).
Fromια(γ1) < γ2 in Gα it follows that σ̂α(ια(γ1)) < σ̂α(γ2) in Gα . By (15), we therefore
haveια(σα(γ1)) < σ̂α(γ2) in Gα . That is,ια(σα+1(γ1)) < σα+1(γ2) in Gα, or equivalently
σα+1(γ1) < σα+1(γ2) in Γα+1 as required.

Finally, if µ is a limit ordinal, setσµ := ⋃
α<µ σα . Thenσ := σκ is the required

σ ∈ Aut (Γκ ). �
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5. κ-bounded models

We now extend the definition of the logarithm to the positive units. Below, forr ∈ R,
r > 0 we denote by logr the natural logarithm ofr .

Proposition 6. Let G be any divisible ordered abelian group, and set K:= R((G))κ . For
u ∈ U>0

v write u = r (1 + ε) (with r ∈ R, r > 0 andε ∈ Iv infinitesimal). Then

log(u) := logr (1 + ε) = logr +
∞∑

i=1

(−1)(i−1) ε
i

i
(17)

defines an isomorphism of ordered groups from U>0
v onto Rv .

Proof. The formal sum given in (17), and more generally, any formal sum
∑∞

i=0 r i ε
i

(with r i ∈ R), is a well-defined element ofR((G)): it has well-ordered support, since
supportε ⊂ G>0. Also, the map defined by (17) is a bijective, order preserving group
homomorphism; cf. [4]. It remains to verify that

card(supportε) < κ �⇒ card

(
support

∞∑
i=0

r i ε
i

)
< κ.

Note that

supportr i ε
i ⊂ ⊕i supportε := {g1 + · · · + gi | gj ∈ supportε for all j = 1, . . . , i },

and clearly, card(⊕i supportε) < κ for all i , socard(∪i (⊕i supportε)) < κ . Now observe
that support

∑∞
i=0 r i ε

i ⊂ ∪i (⊕i supportε). �

We can now define the logarithm on the positive elements ofR((Gκ))κ making
R((Gκ))κ into a model of Texp := the elementary theory of the reals with
exponentiation. Below, Tan := the theory of the reals with restricted analytic functions
andTan,exp := the theory of the reals with restricted analytic functions and exponentiation
(see [2] for axiomatizations of these theories).

Theorem 7. Letκ be a regular uncountable cardinal,Γ0 a chain,Γκ theκ-th lexicographic

iterated power ofΓ0, and Gκ = (R
Γκ )κ . Letσ ∈ Aut (Γκ) and

l : Γκ → G<0
κ

be as inProposition4. For positive a ∈ R((Gκ))κ , write a = tgr (1 + ε), with g =∑
γ∈Γκ

gγ 1γ ∈ Gκ , r ∈ R
>0, andε infinitesimal. Then

log(a) := log(tgr (1 + ε)) =
∑
γ∈Γ

−gγ t l(γ ) + logr +
∞∑

i=1

(−1)(i−1) ε
i

i
(18)

defines a logarithm onR((Gκ))>0
κ makingR((Gκ))κ into a model of Texp.

Proof. By Lemma 2, Proposition 4, and Proposition 6, (18) defines a (GA)-logarithm.
Using the Taylor expansion of any analytic function, one can endowR((Gκ))κ with a
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natural interpretation of the restricted analytic functions (as we did inProposition 6for the
logarithm). This makesR((Gκ))κ into a substructure of theTan modelR((Gκ)) (cf. [2]).
From the quantifier elimination results of [2], we get thatR((G))κ is a model ofTan. Since
log is a(GA)-logarithm, it follows (from the axiomatization given in [2]) thatR((G))κ is
a model ofTan,exp. �

6. Growth rates

Let Γ be a chain andσ ∈ Aut (Γ ). Assume that

σ(γ ) > γ for all γ ∈ Γ . (19)

An automorphism satisfying (19) will be called an increasing automorphism. By induction,
we define then-th iterate of σ : σ 1(γ ) := σ(γ ) andσ n+1(γ ) := σ(σ n(γ )). We define an
equivalence relation onΓ as follows. Forγ, γ ′ ∈ Γ , set

γ ∼σ γ ′ if andonly ∃n ∈ N suchthatσ n(γ ) ≥ γ ′ and σ n(γ ′) ≥ γ. (20)

The equivalence classes[γ ]σ of ∼σ are convex and closed under application ofσ . By the
convexity, the order ofΓ induces anorder onΓ/∼σ suchthat [γ ]σ < [γ ′]σ if γ < γ ′.
The order type ofΓ/∼σ is therank of (Γ , σ ).

Similarly, let K be a real closed field and log a(GA)-logarithm onK >0. Define an
equivalence relation onK >0 \ Rv:

a ∼log a′ if andonly if ∃n ∈ N such that logn(a) ≤ (a′) and logn(a′) ≤ a (21)

(where logn is then-th iterate of the log). Again, the log-equivalence classes are convex
and closed under application of log. The order type of the chain of equivalence classes is
the logarithmic rank of (K >0, log). Note that if x and y are archimedean-equivalent or
multiplicatively-equivalent (cf. (1)), thenthey are a fortiori log-equivalent.

We now compute the logarithmic rank of the models described inTheorem 7. Below,
setσ0 := σ |Γ0.

Theorem 8. The logarithmic rank of(R((Gκ))>0
κ , log) is equal to the rank of(Γ0, σ0).

Proof. Let a ∈ K >0\ Rv , write a = tgu (with u aunit, g ∈ G<0
κ ). Sincea is archimedean-

equivalent totg, it is log-equivalent to it. So it is enough to consider monomialstg

with g = ∑
γ∈Γκ

gγ 1γ ∈ G<0
κ . Set γµ := min supportg ∈ Γµ for the least such

µ ∈ κ . We show by transfinite induction onµ that there existsg0 ∈ G<0
κ such that

γ0 := min supportg0 ∈ Γ0 andtg is log-equivalent totg0.
If µ = 0 there isnothing to prove. Assume that the assertion holds for allα < µ.

Now

log(tg) =
∑
γ∈Γ

−gγ t l(γ ) (22)

is archimedean-equivalent (cf. (9)), so log-equivalent tot l(γµ). By (13) and induction
hypothesis, the assertion holds fort l(γµ), and thus fortg by transitivity.
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Now we determine the logarithmic equivalence class oftg for g ∈ G<0
κ such that

γ0 := min supportg ∈ Γ0. Now tg is multiplicatively-equivalent, so log-equivalent to
t−1γ0 , so it is enough to consider monomials of the formt−1γ with γ ∈ Γ0. We claim that

for all γ, γ ′ ∈ Γ0 : t−1γ ∼log t−1γ ′ if andonly if γ ∼σ γ ′.

We first find a formula for logn(t−1γ ). Using (22) we compute: log(t−1γ ) = t l(γ ) =
t ι0◦σ(γ ) = t ι0(σ (γ )) = t−1σ(γ ) (sinceσ(γ ) ∈ Γ0). By induction, we see that for alln ∈ N:

logn(t−1γ ) = t−1σn(γ ) .

We conclude:γ ∼σ γ ′ ⇐⇒ ∃n ∈ N suchthat σ n(γ ) ≥ γ ′ andσ n(γ ′) ≥ γ ⇐⇒
1σn(γ ) ≤ 1γ ′ and 1σn(γ ′) ≤ 1γ ⇐⇒ −1γ ′ ≤ −1σn(γ ) and−1γ ≤ −1σn(γ ′) ⇐⇒

t−1γ ′ ≥ t−1σn(γ ) = logn(t−1γ ) andt−1γ ≥ t−1σn(γ ′) = logn(t
−1γ ′ ),

if andonly if t−1γ ∼log t−1γ ′ as required. �

Theorem 9. Let κ be a regular uncountable cardinal withκ = κ<κ . LetΓ0 be any chain
of cardinality κ which admits a familyA = {σα

0 | α ∈ 2κ} ⊂ Aut (Γ0) of increasing
automorphisms of pairwise distinct ranks. LetΓκ be theκ-th iterated lexicographic power

of Γ0, Gκ := (R
Γκ )κ the correspondingκ-bounded Hahn group, and K= R((Gκ))κ

the correspondingκ-bounded power series field of cardinalityκ . Then Kadmits a family
{expα | α ∈ 2κ} of 2κ exponentials. For everyα ∈ 2κ , (K , expα) is a model of real
exponentiation. The2κ exponentials are of pairwise distinct exponential rank, but all agree
on the valuation ring of K .

Proof. For everyσα
0 , let σ (α) ∈ Aut (Γκ) be the corresponding extension (Proposition 5).

Setlα := ικ ◦ σ (α), and let logα be the corresponding logarithm (obtained by replacing in
l by lα in Eq. (18)). Now applyTheorem 8. �

In the next section, we give an explicit construction of chains satisfying the hypothesis
of this theorem.

7. Chains with 2κ automorphisms of distinct ranks

Lemma 10. Letβ be an ordinal, and consider the chainΓ0 := β ��Q . For everyα ∈ β,
let Qα be theα-th-copy ofQ. Fix τα and τ ′

α ∈ Aut (Qα) increasing automorphisms of
rank1 andZ respectively. For every S⊂ β defineτS as follows:

τS|Qα
:=
{
τα if α ∈ S
τ ′
α otherwise.

Then the rank ofτS = ∑
α∈β δS(α), where

δS(α) :=
{

1 if α ∈ S
Z otherwise.

Lemma 10is a consequence of the following more general observation:
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Proposition 11. Let I be a chain, and{(Γi , τi ) | i ∈ I } a collection of chainsΓi endowed
with an increasing automorphismτi . Set

Γ :=
∑
i∈I

Γi andτ :=
∑
i∈I

τi ,

(that is,τ |Γi = τi ). Then the rank of(Γ , τ ) is equal to
∑

i∈I rank(Γi , τi ).

The proof is straightforward and we omit it.

Remark 12. (i) In [5], other arithmetic operations on chains are studied; it may be
interesting, for future work, to study the behaviour of automorphism ranks with respect
to these operations.

(ii) Automorphismsτα andτ ′
α ∈ Aut (Qα) suchas inLemma 10exist: for example,

setτ (q) := q + 1, τ ∈ Aut (Q) is of rank 1. To produceτ ′ ∈ Aut (Q) of rankZ, note
that by Cantor’s TheoremQ � Z ��Q. Defineτ ′ piecewise as follows: forz ∈ Z we let
τ ′|Qz

∈ Aut (Qz) be the translation automorphismτ ′(q) = q + 1 for q ∈ Qz, thenτ ′ is
defined by patching, and has clearly rankZ as required.

(iii) If β is an infinite cardinal, then card(β ��Q) = β.

We now state and prove the main result of this section. Below, we keep the notation of
Lemma 10.

Proposition 13. Letβ be an ordinal and s⊂ β. Set

∆S :=
∑
α∈β

δS(α).

Then

∆S � ∆S′ if and only if S= S′.

Proof. Fix an isomorphismϕ : ∆S � ∆S′ . We show by induction onα ∈ β that

ϕ(δS(α)) = δS′(α). (23)

(The proposition is proved once (23) is established: it follows from (23) thatδS(α) = 1 if
and only ifδ′

S(α) = 1, i.e.S = S′.) Let α = 0. Assume thatδS(0) = 1. Then necessarily
δS′(0) = 1 and (23) holds (sinceϕ has to map the least element of∆S to the least element
of ∆S′). Assume now thatδS(0) = Z, then necessarilyδS′(0) = Z. We claim that (23)
holds in this case too. Clearly, sinceδS(0) is an initial segment of∆S, ϕ(δS(0)) is an initial
segment of∆S′. It thus suffices to show thatϕ(δS(0)) ⊂ δS′(0). Assume for a contradiction
thatϕ(δS(0)) ∩ δS′(1) �= ∅. There are two cases to consider. IfδS′(1) = 1, then 1 has left
characterℵ0. This is impossible since no such element exists inδS(0). If δS′(1) = Z, then
ϕ(δS(0)) has anℵ0ℵ0-gap. This is impossible since no such gap exists inZ. The claim is
established.

Now assume that (23) holds for allα < µ < β, we show itholds forµ. From induction
hypothesis we deduce that

ϕ

(∑
α<µ

δS(α)

)
=
∑
α<µ

δS′(α), (24)
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therefore

ϕ

(∑
ν≥µ

δS(ν)

)
=
∑
ν≥µ

δS′(ν). (25)

With the help of (24) and (25), the same argument as the one used for the induction begin
(with µ andµ + 1 instead of 0 and 1) applies now to establish (23) for µ. �

Corollary 14. The chain Γ0 = κ ��Q admits of family of 2κ increasing automorphisms,
of pairwise distinct ranks.
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