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The manipulation of plant seed oil composition so as to deliver

enhanced fatty acid compositions suitable for feed or fuel has

long been a goal of metabolic engineers. Recent advances in

our understanding of the flux of acyl-changes through different

key metabolic pools such as phosphatidylcholine and

diacylglycerol have allowed for more targeted interventions.

When combined in iterative fashion with further lipidomic

analyses, significant breakthroughs in our capacity to generate

plants with novel oils have been achieved. Collectively these

studies, working at the interface between metabolic

engineering and synthetic biology, demonstrate the positive

fundamental and applied outcomes derived from such

research.
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Introduction
Plant seeds play a vital role in human life, providing

multiple sources of food and fuel. This is predominantly

derived from the storage compounds (oil, protein and

carbohydrate) that the developing seed accumulates as

energy reserves for catabolism during germination. The

ability to harness and use these storage compounds has

historically underpinned the transition from hunter-

gather to agricultural-based society, and now continues

to feed the ever-increasing global population. The pre-

dominant storage oil in seeds are neutral lipids such as

triacylglycerol and given their significance for nutrition

and industry, considerable effort has focussed on the
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desire to improve both the composition and yield of

vegetable oils. However, the apparent simplicity of a

seed (as the inert container of useful storage reserves) is

misleading, since there is still much to learn about how

these compounds are co-ordinately synthesized and

compartmentalised. On the other hand, our ability to

manipulate and tailor the composition of these reserves

is steadily increasing, driven forward by advanced plant

metabolic engineering/synthetic biology and informed

by detailed metabolite analyses. The adoption of such

multidisciplinary approaches has extended our under-

standing of seed lipid metabolism and, as will be dis-

cussed below, generated new specialized platforms for

oil production. Indeed, progress in vegetable oil pro-

duction is now extending beyond the seed and exciting

insights are emerging about the possibility of oil pro-

duction in vegetative tissue. Given the pressures on the

carbon economy, exemplified by an increased demand

and a declining supply of conventional fossil oil, pro-

gress in meeting the requirements for vegetable oil is

timely. In this article, we will focus on the synthesis and

manipulation of one specific type of storage reserve —

triacylglycerol – since this represents one of the best

examples of complex metabolic engineering in trans-

genic plants.

Development of crop metabolic engineering
platforms for translation of specialty oil traits
Over the last two decades, the challenge for researchers

has been the accumulation of novel fatty acids, which

have beneficial functional groups or properties, into oil-

seeds with good agronomical traits. Although, metabolic

engineering of oil-related traits has largely relied princi-

pally upon Arabidopsis as a host to test individual genes

and gene combinations for modifying seed oils and more

recently for engineering of oil production in vegetative

tissues as described below. As proof of principal has been

established in Arabidopsis, interest has grown in trans-

lation of these oil traits in established oilseed crops. For

specialty oils, including those enriched in fish oil-type

long chain polyunsaturated fatty acids (LC-PUFAs) and

industrially valuable unusual fatty acid structures, atten-

tion has centred on non-food oilseed crops to mitigate the

unintended mixing of food and specialized oil traits.

Camelina (Camelina sativa) has emerged as a particularly

attractive metabolic engineering host because it can be

readily transformed using an Agrobacterium-based floral

infiltration method [1]. With a relatively short-life cycle,
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complex metabolic engineering involving the stacking of

numerous pathway genes is therefore feasible in Came-

lina [2�], as described below for LC-PUFA engineering.

To facilitate genetic improvement of Camelina, a devel-

oping seed transcriptome was recently generated, and its

utility was demonstrated by its use for engineering a high

oleic acid oil trait for improved oil oxidative stability [2�].
This was achieved by the seed-specific RNAi suppression

of FAD2 (Fatty Acid Desaturase 2) that controls D12

desaturation of oleic acid and FAE1 (fatty acid elongase

1) that mediates oleic acid elongation to C20 and C22

chain lengths [2�]. In addition to the use of Camelina,

interest has arisen in Crambe (Crambe abyssinica) as a

dedicated industrial oil crop, and the recent development

of an Agrobacterium-mediated transformation system has

enabled its use for metabolic engineering of seed oil traits

[3]. As proof-of-principal efforts progress to engineer oil

production in Arabidopsis leaves, the need for transform-

able biomass crops, such as sweet sorghum, will be

required for translation of this trait.

Nutritional enhancement of seed lipids —
omega-3 polyunsaturated fatty acids
Virtually all plant seeds contain storage lipids in the form

of triacylglycerol (TAG). As the terminal point in seed oil

biosynthesis, TAG is comprised of a glycerol backbone

onto which three fatty acids are sequentially esterified.

Plant oils are rich in C18 fatty acids, including the

essential fatty acids linoleic acid (18:2D9,12,n�6; LA)

and a-linolenic acid (18:3D9,12,15,n�3; ALA), but are

devoid of LC-PUFAs, such as arachidonic acid

(20:4D5,8,11,14, n�6; ARA), eicosapentaenoic acid

(20:5D5,8,11,14,17,n�3; EPA) and docosahexaenoic acid

(22:6D4,7,10,13,16,19,n�3; DHA), which typically only

enter the human diet as oily fish. The health benefits of

the omega-3 LC-PUFAs EPA and DHA are now well-

established [4], and the omega-6 ARA is important for

infant nutrition [5]. Given the desire for a sustainable

supply of LC-PUFA, efforts have focussed on enhancing

the composition of vegetable oils to include the essential

LC-PUFAs. The omega-3 forms, specifically EPA and

DHA, have been targeted with the ultimate goal of

producing a terrestrial plant-based source of these so-

called fish oils. Although historically considerable effort

has been expended towards this goal (e.g. [6–10],

reviewed in [11,12�]), efficient modification of seed oil

profiles to include these non-native fatty acids has until

recently met with limited success. This is despite the

early functional characterisation of all the genes required

for the primary biosynthesis of EPA and DHA from a

range of lower eukaryotes such as algae, diatoms and

oomycetes [12�,13]. Latterly, two different approaches

have shown important advances, both focussed on over-

coming the inherent metabolic bottlenecks previously

identified as rate-limiting in the heterologous reconstitu-

tion of this pathway in transgenic plants [12�]. Petrie et al.
[14] first developed a leaf-based transient expression
www.sciencedirect.com 
system to identify a set of omega-3 LC-PUFA biosyn-

thetic genes with high enzyme activities and desired

substrate (acyl-CoA) preference. They also co-expressed

the master seed regulator WRI1, resulting in the ectopic

expression of seed-specific metabolic pathways and the

synthesis of seed storage reserves such as TAG, but also

facilitating the expression of these omega-3 LC-PUFA

transgenes under the control of seed-specific promoters.

The utility of this approach allowed for the rapid vali-

dation of seed-specific constructs, which would otherwise

be dependent on stable transformation [14]. With this

knowledge the authors were then able to assemble a large

T-DNA construct for stable seed-specific transformation

of Arabidopsis, and reported a high level of DHA (but not

EPA) in seed oil [15�]; a similar approach yielded lines

accumulating significant ARA [16]. In an alternative

approach to the identification of optimal enzyme activi-

ties, Sayanova et al. [17] used heterologous yeast expres-

sion combined with acyl-CoA profiling to select efficient

activities, which were then validated by stable expression

in Arabidopsis and camelina. A systematic study was then

carried out to identify preferential combinations of bio-

synthetic enzymes (desaturases and elongases), resulting

in the evaluation of 12 different constructs (of 3–7 trans-

genes) in Arabidopsis [18�]. The efficacy of each enzyme

combination was validated using lipidomic analysis to

inform each subsequent iteration. Using this approach,

the authors were able to show a 10-fold increase in the

accumulation of EPA [15�]. Collectively, these recent

studies demonstrate that in the case of the model Arabi-

dopsis, accumulation of significant (meaning similar to

that found in fish oils) levels of EPA or DHA is now

achievable. Recently, Camelina seed oil was engineered

to accumulate EPA and DHA [19��] — in this study, the

authors report the highest levels of C20+ omega-3 LC-

PUFAs in a recognised oilseed crop — 31% EPA or 25%

EPA plus DHA. This represents not only a new source of

fish oils, but a significant demonstration of the power of

plant metabolic engineering to overwrite endogenous

lipid metabolism.

Making industrial oils in seeds
A long-term goal of oilseed metabolic engineering has been

the generation of fatty acid traits targeted for industrial

applications. A particular focus has been the transfer of

biosynthetic and metabolic pathways for unusual fatty

acids, such as hydroxy and epoxy fatty acids (used for

lubricants, nylon precursors, and plasticizers) from non-

agronomic plant species to existing oilseed crops. After

more than a decade of gene discovery efforts and numerous

basic and translational breakthroughs [20], many chal-

lenges remain for achieving levels of unusual fatty acid

accumulation in engineered oilseeds that approach the

high levels typically found in seeds of non-agronomic gene

source species. This is particularly true for metabolic path-

ways involving the production of unusual fatty acids from

functionally divergent D12 desaturases (or, FAD2). The
Current Opinion in Plant Biology 2014, 19:68–75
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most studied of these is the pathway for production of

ricinoleic acid (12 OH-18:1D9) and related C18-C22

omega-6 hydroxylated fatty acids. These fatty acids are

generated by variant FAD2 hydroxylases that principally

use oleic acid (18:1D9) bound to phosphatidylcholine as a

substrate. Castor bean (Ricinus communis), which has lim-

ited commercial cultivation because of the high content of

ricin toxins in it seeds, accumulates ricinoleic acid to 90% of

the fatty acids of its seed oil through this pathway. To date,

the transfer of the castor FAD2-related hydroxylase

together with specialized castor acyltransferases, including

the castor diacylglycerol acyltransferase 2 (DGAT2) and

phospholipid-diacylglycerol acyltransferase 1 (PDAT1),

have yielded only 20–30% ricinoleic acid and other deriva-

tive hydroxy fatty acids in transgenic Arabidopsis seeds

[21,22]. Results from recent labeling studies of Arabidopsis

seeds engineered to express the castor bean hydroxylase

indicated an inefficiency in diacylglycerol (DAG) flux

through phosphatidylcholine (PC) following oleate

hydroxylation for the formation triacylglycerol containing
Figure 1
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hydroxylated fatty acids (summarised in Figure 1) [23�].
Consistent with this, the Arabidopsis rod1 mutant defec-

tive in phosphatidylcholine:diacylglycerol cholinepho-

sphotransferase (PDCT)-mediated flux of DAG through

PC, displayed reduced hydroxy fatty acid synthesis in

seeds engineered for castor bean hydroxylase expression

[24]. The substitution of Arabidopsis PDCT with the

castor bean PDCT in this background yielded increased

hydroxy fatty acid accumulation, demonstrating that a

specialized castor bean PDCT activity is necessary for

high level hydroxy fatty acid accumulation [24].

Defective flux of acyl chains from PC to TAG in engin-

eered seeds appears to be a common bottleneck for the

accumulation of unusual fatty acids. This was previously

noted for conjugated fatty acid accumulation in Arabi-

dopsis and soybean seeds engineered to express FAD2-

related fatty acid conjugases that convert either the D9 or

D12 double bond of linoleic acid linked to PC into two

conjugated double bonds, which enhances the drying
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properties of vegetable oils [25]. More recently, studies

with the Escherichia coli cyclopropane synthase illustrated

how the transgenic expression of this enzyme in Arabi-

dopsis seeds effectively converted the D9 double bond of

oleic acid into a cyclopropane ring, a result which confers

vegetable oils with a wide range of industrial functional-

ities [26]. This reaction uses oleic acid bound primarily to

the sn-1 position of PC as a substrate [26]. The seed-

specific co-expression of the E. coli cyclopropane synthase

with a lysophosphatidic acid acyltransferase (LPAT) from

Sterculia foetida seeds, which naturally accumulate high

levels of cyclopropane fatty acids, resulted in small

increases in cyclopropane fatty acid accumulation. LPAT

catalyzes the acylation of the sn-2 position of the glycerol

backbone in the TAG biosynthetic pathway. Consistent

with this activity, increased amounts of cyclopropane

fatty acids in TAG in the engineered Arabidopsis seeds

was due primarily to enhanced accumulation at the TAG

sn-2 position [26]. Despite this, cyclopropane fatty acid

levels were disproportionately high in PC, accounting for

>40% of the PC fatty acids compared to �9% of the TAG

fatty acids [26]. These results underscore the significance

of the metabolic bottleneck for flux of unusual fatty acids

into TAG following their synthesis on PC as a major

limitation for producing industrial fatty acids in engin-

eered oilseeds.

Recent efforts to produce oils with industrial functionality

have also targeted pathways that use only acyl-CoA sub-

strates to produce novel oils, bypassing the intricacies of

unusual fatty acid biosynthetic pathways involving PC-

linked substrates. One such pathway is that for wax ester

biosynthesis. Wax esters lack diacylglycerol backbones

and consist of a fatty acid linked through an ester bond to

a fatty alcohol. These molecules are desirable for use as

high temperature lubricants and are synthesized in a two-

step biosynthetic pathway involving conversion of a fatty

acyl-CoA to a fatty alcohol via a fatty alcohol reductase

(FAR) and condensation of the fatty alcohol with an acyl-

CoA via a wax synthase (WS). Recently, Heilmann et al.
demonstrated the feasibility of co-expressing an endo-

plasmic reticulum (ER)-localized mouse WS with a

mouse peroxisomal FAR retargeted for ER localization

to generate wax esters in Arabidopsis seeds with princi-

pally C18 and C20 fatty acid and fatty alcohol components

[27]. By linking theses enzymes at their amino-termini to

oleosin, an oil body structural protein, and fluorescent

protein tags, wax ester contents as high as 45 mg/mg seed

weight or �15% of the total seed oil were achieved [27].

In addition, wax esters highly enriched in oleoyl alcohol

and oleic acid moieties were obtained by expression of

the mouse enzymes in an Arabidopsis fad2/fae1 mutant

that has high levels of oleic acid in its seeds [27].

Metabolic engineering of very long-chain fatty acid pro-

duction also offers an opportunity for generating industrial

oils through acyl-CoA reactions that bypass PC-linked
www.sciencedirect.com 
biosynthetic pathways. Crambe seed oil is naturally

enriched in erucic acid (22:1; �60% of the total oil), a

C22 monounsaturated fatty acid [28�]. This fatty acid is a

precursor of erucamides, which are slip agents in polyeth-

ylene film. To address this need for high-erucic acid

vegetable oils, a newly developed transformation protocol

was used for introduction of three transgenes with seed-

specific promoters: FAD2 RNAi transgene to increase oleic

acid content; Brassica napus FAE1 to enhance elongation of

oleic acid to erucic acid; and a specialized Limnanthes
douglasii LPAT to increase erucic acid incorporation into

the sn-2 position of TAG [12�]. The result of this multi-

gene engineering effort was an increase in erucic acid of up

to 73% of the oil in the top performing lines [28�].
Additional analyses of these seeds using radiolabeling

indicated that compared to other oilseeds, including saf-

flower (Carthamus tictorius) seeds, Crambe seeds are

particularly effective at producing high levels of erucic

acid through acyl-CoA reactions, due to a low PDCT

activity that effectively precludes exchange of fatty acids

between DAG and PC [29�]. Labeling studies of the

engineered crambe seeds at different developmental

stages revealed that the majority of erucic acid is synthes-

ized at later stages of seed development. Based on this

finding, enhanced erucic acid production could be

achieved by engineering initiation of biosynthetic and

metabolic pathways for erucic acid at earlier seed devel-

opment stages [29�].

Oil production in green biomass: metabolic
engineering of high oilseed-like triacylglycerol
accumulation in vegetative tissues
The pressing need to produce more energy from plant

biomass has encouraged attempts to produce oil in vege-

tative tissues. Although seeds and some fruit pericarps

(e.g. oil palm, olive and avocado) are by far the largest

source of plant produced oils, many other tissues are

capable of synthesizing triacylglycerols and a number

of studies have reported the presence of cytosolic lipid

droplets in leaf mesophyll cells [30]. TAGs notably

accumulate during senescence in leaves, under stress

and in Arabidopsis mutants disrupted in ER to chloroplast

lipid trafficking. Nevertheless, the oil content of vegeta-

tive tissues is typically very low in the majority of plant

species [31��,32].

The possibility of producing TAGs for biodiesel in leaves

and other vegetative tissues has recently attracted con-

siderable interest [33]. A number of studies have demon-

strated that TAG accumulation can be increased by

ectopic expression of individual biosynthetic enzymes

such as acyl CoA:diacylglycerol acyltransferase (DGAT)

or monoacyglycerol acyltransferases MGAT [34,35�],
transcription factors such as LEAFY COTYLEDON1

(LEC1), LEC2 or WRINKLED1 (WRI1) [36,37,38] that

control seed development and maturation, or by mutating

genes involved in TAG and fatty acid turnover such as
Current Opinion in Plant Biology 2014, 19:68–75
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COMATOSE (CTS2), SUGAR DEPENDENT1 (SPD1)

or COMPARATIVE GENE IDENTIFICATION-58

(CGI58) [31��,39,40]. However, in most of these studies

increases in TAG leaf content was only very modest and/

or dependent on the supply of carbohydrates. Since key

enzymes for both oil synthesis and breakdown are

expressed in vegetative tissue it was suggested that

achieving substantial levels of storage lipid in leaf bio-

mass required the re-orientation of carbon flux into TAG,

as indicated by the additional effect observed when over-

expressing LEC2 in the cts2 b-oxidation mutant [39,41��].
Recently, several groups have reported improved oil

accumulation in leaves by modifying the expression of

gene pairs i.e. combinations of either WRI1 or LEC2
[32,34] or an engineered oleosin [42] with DGAT1 or

PDAT [43]. However, dramatically increased TAG levels
Figure 2
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(exceeding 15% of dry weight in vegetative tissue) have

only been achieved via integrated metabolic approaches

(so-called ‘Push, Pull and Protect’) enhancing fatty acid

and TAG synthesis while preventing lipolysis [31��,41��].
Latterly, the identification of non-seed proteins involved

in the binding and stabilization of lipid-rich particles in

the cytosol of plant cells [44] has identified a new aspect

of the cellular machinery regulating the packaging of

triacylglycerol’s in plant vegetative tissue.

It will be interesting to investigate whether oil accumu-

lation in green biomass can be further improved without

severely impacting photosynthesis and plant develop-

ment. One possibility for achieving this could be the

use of senescence induced promoters to engineer plants

in which TAG accumulation is initiated only after leaves
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have reached their maximum size [33]. Another might

directly connect carbon fixation to fatty acid biosynthesis;

introducing a functional glycolytic pathway converting 3-

phosphoglycerate to phosphenolpyruvate. Whichever

possibility is adopted, the goal of using photosynthetic

cells to accumulate very high levels of oil is attractive.

However, matching the accumulations seen in seeds able

to accumulate more than 35% TAG (% of dry weight)

remains a formidable metabolic engineering challenge.

Conclusions
The engineering of economically viable levels of LC-

PUFAs in camelina seeds and ‘ultra-high’ levels of erucic

acid in crambe seeds represent recent successes in the

translation of specialty fatty acid traits to oilseed crops.

The ability to achieve high amounts of unusual fatty acid

production by transfer of PC-linked biosynthetic and

metabolic pathways from seeds of non-agronomic species

to seeds of either the Arabidopsis model or existing

oilseed crops remains elusive to metabolic engineers.

Solving bottlenecks that limit the synthesis and accumu-

lation of these fatty acids will require more in-depth

understanding of fatty acid metabolic pathways in seeds

that naturally accumulate high levels of unusual fatty

acids. It will also be necessary to determine the relative

contributions of different enzymes specialized for these

pathways in the native species and to possibly down-

regulate non-productive, competing pathways in seeds of

host oilseeds- this is summarised in Figure 2. The inte-

grated approach of engineering transcription factors that

up regulate fatty acid synthesis and overexpression of

TAG biosynthetic enzymes to sequester the enhanced

fatty acid production coupled with downregulation of

TAG catabolic enzymes is proving to be an effective

strategy for generating substantial levels of oil in leaves

of model plants. Successful translation of these strategies

in existing biomass crops such as sweet sorghum will

likely also require the selection of promoters for trans-

genes that allow the persistence of accumulated oil

through leaf senescence. Future success of metabolic

engineering of specialty oil traits will likely rely on more

predictability of genetic modifications on fatty acid and

oil metabolism in seeds and other target tissues of crop

hosts by use of techniques, such as mass spectrometry-

based lipidomics that was essential for optimizing LC-

PUFA engineering in camelina seeds, as described by

Ruiz et al. [19��]. Similarly, emerging techniques such as

matrix-assisted laser desorption/ionization-mass spec-

trometry imaging (MALDI-MSI) as applied recently to

engineering of oil pathways in Camelina seeds [45�] and

tobacco leaves [32] are providing insights into spatial

heterogeneity of fatty acid compositions in specific lipid

classes among cell types in target tissues to enable for

more informed metabolic engineering. Ultimately, the

task of integrating a small number of transgene-derived

activities with a much greater number of endogenous

metabolic processes still remains an exciting challenge.
www.sciencedirect.com 
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