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Abstract

Let G be a simple graph and P(G; �) denote the chromatic polynomial of G. Then G is
said to be chromatically unique if for any simple graph H , P(H; �) = P(G; �) implies that H is
isomorphic to G. A class L of graphs is called a class of chromatically normal graphs if, for
any Y; G ∈L, P(Y; �)=P(G; �) implies that Y is isomorphic to G. Let K(n1; n2; : : : ; nt) denote a
complete t-partite graph and Lt = {K(n1; n2; : : : ; nt) | 0¡n16 n26 · · ·6 nt}. The main results
of the paper are as follows.

Let G = K(n1; n2; : : : ; nt)∈Lt ; t¿ 3; Q(G) = {Y |P(Y; �) = P(G; �)} and at =(∑
16i¡j6t(ni − nj)2=(2t)

)1=2
. If

t∑
i=1

ni ¿ ta2t +
√

2t(t − 1)at ; (∗)

then Q(G) ⊆ Lt . Furthermore, if Lt is also a class of chromatically normal graphs, then G
is chromatically unique. In particular, if G satis7es the condition (*) and one of the following
conditions:

(i) n1 = n2 = · · ·= nt ; (ii) n1 ¡n2 ¡ · · ·¡nt; (iii) t = 3; (iv) t = 4;

then G is chromatically unique.
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1. Introduction

We consider only 7nite, undirected and simple graphs. Notation and terminology
that are not de7ned here may be found in [1,2,7,8].
Let P(G; �) denote the chromatic polynomial of a graph G. Two graphs H and G

are said to be chromatically equivalent (in notation: H ∼ G) if P(H; �) = P(G; �). A
graph G is said to be chromatically unique if, for any graph H , H ∼ G implies that
H ∼= G.

The notion of chromatic uniqueness was 7rst introduced and studied by Chao and
Whitehead in 1978 [4] . Koh and Teo, in their expository paper [7,8], gave a survey
of most of the work done before 1997.
In this paper, let K(n1; n2; : : : ; nt) denote a complete t-partite graph with partite sets

Ni such that |Ni | =ni for i=1; 2; : : : ; t, and let K(n1; n2; : : : ; nt)−A denote the t-partite
graph obtained by deleting a set A of edges from the graph K(n1; n2; : : : ; nt).

When t = 2, the beautiful results are that K(m; n) (for 26m6 n) and K(m; n) −
{e} (for 36m6 n) are chromatically unique [10]. On the chromatic uniqueness of
K(n1; n2; : : : ; nt) for t¿ 3, the authors pointed out in [3,5–9] that the following graphs
(under certain conditions) are chromatically unique:

K(n; n; n+k) (for n¿ 2 and 06 k6 3), K(n−k; n; n) (for n¿ k+2 and 06 k6 3),
K(n − k; n; n + k) (for n¿ 5 and 06 k6 2) [5]; K(n1; n2; : : : ; nt) (for | ni − nj | 6 1
where 16 i6 t and 16 j6 t) [3]; K(n − 1; n; : : : ; n; n + 1) and K(n; n; : : : ; n) − {e}
(for n¿ 3) [6]; K(1; n2; : : : ; nt) (if and only if max{n2; : : : ; nt}6 2) [9].
Thus, K(1; n2; : : : ; nt) is not chromatically unique if max{n2; : : : ; nt}¿ 3.
The authors in [5,7] also put forward the following problem and conjecture:

Problem A (Koh and Teo [7]). For each t¿ 2, is the graph K(n1; n2; : : : ; nt) chromat-
ically unique if | ni−nj | 6 2 where 16 i6 t and 16 j6 t, and if min{n1; n2; : : : ; nt}
is suKciently large?

Conjecture B (Chia et al. [5]; Koh and Teo [7]). The graph K(n− k; n; n) is chromat-
ically unique for all n; k with n¿ k + 2.

In this paper, we discuss the chromatic uniqueness of more general graphs K(n1;
n2; : : : ; nt) (for t¿ 3) and give a partial solution to the above problem and conjecture.

2. The main results

First, we de7ne a class of graphs as follows.
A class L of graphs is called a class of chromatically normal graphs if, for any

Y; G ∈L, Y ∼ G implies that Y ∼= G.
Clearly, if a graph G is chromatically unique, then Q(G) = {Y |Y ∼ G} is a class

of chromatically normal graphs. Thus the following property holds.

Property 1. A graph G is chromatically unique if and only if there exists a class L
of chromatically normal graphs such that Q(G) ⊆ L.
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Let Lt = {K(n1; n2; : : : ; nt) | 0¡n16 n26 · · ·6 nt}.

Property 2 (Zou [15]). L3 and L4 are classes of chromatically normal graphs.

Our main results are as follows.

Theorem 1. Let G = K(n1; n2; : : : ; nt)∈Lt ; t¿ 3; at =
(∑

16i¡j6t (ni − nj)2=(2t)
)1=2

and Q(G) = {Y |Y ∼ G}. If
t∑

i=1

ni ¿ ta2t +
√
2t(t − 1)at ; (∗)

then Q(G) ⊆ Lt .
Furthermore, if Lt is also a class of chromatically normal graphs, then G is

chromatically unique.

Corollary 1. Let G = K(n1; n2; : : : ; nt)∈Lt where t¿ 3. If G satis<es condition (*)
of Theorem 1 and also satis<es one of the following conditions:

(i) n1 = n2 = · · ·= nt ; (ii) n1 ¡n2 ¡ · · ·¡nt; (iii) t = 3; (iv) t = 4;

then G is chromatically unique.

Theorem 2. Let G=K(m; n; r) where m6 n6 r and r−m=u¿ 0. If m¿ (u+u2)=3,
then G is chromatically unique.

Theorem 3. If n¿k + k2=3 and k¿ 0, then K(n− k; n; n) is chromatically unique.

Theorem 4. Let G = K(h; m; n; r) where h6m6 n6 r and r − h = u¿ 0. If h¿
(2
√
3− 1)u=4 + u2=2, then G is chromatically unique.

Remark 1. 1. Theorems 2 and 4 give a partial solution to Problem A for t = 3 and
4, respectively. Theorem 3 gives a partial solution to Conjecture B. When k = 4,
Conjecture B is true [11].
2. Let K(n1; n2; n3) =K(n− k; n; n+ i), where k and i are non-negative integers. By

Theorem 2 if 3n¿k − i+ (k2 + i2 + ki) + 2(k2 + i2 + ki)1=2, then K(n− k; n; n+ i) is
chromatically unique. In [5,7,8], it was shown that K(n − k; n; n + i) is chromatically
unique for some particular cases such as k=0; 06 i6 3 and n¿ 2; or i=0; 06 k6 3
and n¿ k + 2; or 06 i = k6 2 and n¿ 5 (see also Section 1).

3. If n1+n2+n36 3a23+2
√
3a3, then K(n1; n2; n3) might not be chromatically unique.

For example, K(1; n; n) is not chromatically unique if n¿ 3 (see [9] or Section 1),
where a3 = (n− 1)=

√
3 and n1 + n2 + n3 =2n+1¡n2− 1=3a23 +2

√
3a3 if n¿ 3. But

the condition of Theorem 2 for t = 3 is only a suKcient condition, since K(2; 4; 6) is
chromatically unique [12] while the condition is not satis7ed.
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3. Some preliminary lemmas

Let G be a graph and let mr(G) denote the number of distinct partitions of V (G)
into r color classes.

Lemma 1 (Zou [14]; Zou and Shi [17]). For any two graphs G and Y , Y ∼ G if and
only if |V (Y ) | = |V (G) | and mr(Y ) = mr(G) for r = 1; 2; : : : ; |V (G) | .

Lemma 2. Let G=K(n1; n2; : : : ; nt)∈Lt . Then mt+1(G)=2n1−1+2n2−1+· · ·+2nt−1−t.

Proof. Let (N1; N2; : : : ; Nt) denote the t-partition of V (G), where |Ni | = ni for i =
1; 2; : : : ; t. Since any two vertices which lie in diMerent partite sets of (N1; N2; : : : ; Nt)
are adjacent in G, a partition of V (G) into t + 1 color classes must be obtained from
(N1; N2; : : : ; Nt) by partitioning one of the Ni (i=1; 2; : : : ; t) into two color classes. For
each i= 1; 2; : : : ; t, let Di denote the number of ways of partitioning Ni into two color
classes. Clearly

Di =
ni−1∑
j=1

(
ni

j

)/
2 = 2ni−1 − 1 for i = 1; 2; : : : ; t:

Thus

mt+1(G) = D1 + D2 + · · ·+ Dt = 2n1−1 + 2n2−1 + · · ·+ 2nt−1 − t:

Lemma 3 (Zou [13,16]). Let G=K(n1; n2; : : : ; nt)∈Lt where t¿ 3, and let J be the
set of integers, R the set of real numbers and Rt the t-dimensional cartesian product
of R. Suppose that Y is a graph such that Y ∼ G. Then

Y = K(n1 + �1; n2 + �2; : : : ; nt + �t)− A;

where |A | =∑
16i¡j6t �i�j +

∑
16i¡j6t (ni�j + nj�i)¿ 0;

∑t
i=1 �i = 0; �i ∈ J and

ni + �i ¿ 0 for i = 1; 2; : : : ; t.
Moreover, let �=(�1; �2; : : : ; �t)∈Rt; s(�)=s= |A | ¿ 0; at=

(∑
16i¡j6t (ni − nj)2=

(2t)
)1=2

; dt−1=
√
2(t − 1)=t and c=(c1; c2; : : : ; ct) where ci=

(∑i−1
j=1 (nj − ni) +

∑t
j=i+1

(nj − ni)
)
=t for i = 1; 2; : : : ; t. Then

(i) �∈D =
{
� | ci − dt−1at6 �i6 ci + dt−1at ; i = 1; 2; : : : ; t;

∑t
i=1 �i = 0

}
and s =

s(�) = 0 if each inequality is an equality;
(ii) max�∈D {s(�)}= s(c) = a2t ;
(iii) Let w =

∑t
i=1 ni=t − dt−1at . If s = s(�)¿ 0, then w6 ni and w¡ni + �i for

i = 1; 2; : : : ; t.

Lemma 4. Let H =K(r1; r2; : : : ; rt)∈Lt ; Y =H −A, where A is a nonempty set of s
edges of H and "=mt+1(Y )−mt+1(H). If min{r1; r2; : : : ; rt}¿s, then s6 "6 2s − 1.
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Proof. It is clear that any partition of V (H) into t + 1 color classes is a partition of
V (Y ) into t + 1 color classes. Therefore " is the number of partitions of V (Y ) into
t + 1 color classes which are not partitions of V (H).
Let (R1; R2; : : : ; Rt) denote the t-partition of V (H), where |Ri | = ri for i=1; 2; : : : ; t,

and let V ′ denote the set of end vertices of the edges in A.
We next prove the following:

Claim. A necessary and su=cient condition for P to be a partition of V (Y ) into t+1
color classes but not a partition of V (H) is that P be a partition of V (Y ) into t +1
color classes of which one is the set V0 of end vertices of the edges in some <xed
nonempty subset of A and the remaining t are the sets Ri − V0 where i = 1; 2; : : : ; t.
(Necessity). If P is a partition of V (Y ) into t+1 color classes but not a partition of

V (H), then there exists at least one color class (say V0) of the t+1 color classes of P
which contains some vertices of diMerent partite sets of (R1; R2; : : : ; Rt). Since any two
vertices of V0 are not adjacent in Y , V0 contains the end vertices of some i (0¡i6 s)
edges of A.
Because min{r1; r2; : : : ; rt}¿s, we conclude that none of Ri − V ′(⊂ Ri − V0), i =

1; 2; : : : ; t, is null. Clearly, Ri − V ′; i = 1; 2; : : : ; t, must be contained, respectively, in t
diMerent color classes of P of which none contains vertices of diMerent partite sets of
(R1; R2; : : : ; Rt). But there are only t+1 color classes. Therefore, the t+1 color classes
must be V0 and Ri − V0; i = 1; 2; : : : ; t.
(Su=ciency). If one of the t + 1 color classes of P contains vertices of diMerent

partite sets of (R1; R2; : : : ; Rt), it is clear that P is not a partition of V (H) into t + 1
color classes.
Now we complete the proof of the lemma.
Since " is equal to the number of partitions P described in the claim and P is

determined by V0, we can easily see that

s=

(
s

1

)
6 "6

s∑
j=1

(
s

j

)
= 2s − 1:

4. Proofs of the theorems and corollary

4.1. Proof of Theorem 1

Let J be the set of integers and let J t be the t-dimensional cartesian product of J .
Suppose that Y ∈Q(G). Then, by Lemmas 1 and 3, we have

mt+1(Y ) = mt+1(G); (1)

Y = K(n1 + �1; n2 + �2; : : : ; nt + �t)− A; (2)

where |A | = s= s(�) =
∑

16i¡j6t �i�j +
∑

16i¡j6t (ni�j + nj�i)¿ 0; �∈D ∩ J t and
ni + �i ¿ 0 for i = 1; 2; : : : ; t. (See Lemma 3(i) for the de7nition of D.)
We 7rst show that s= s(�) = 0.
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Let H = K(n1 + �1; n2 + �2; : : : ; nt + �t) and "= mt+1(Y )− mt+1(H). By Lemma 2,
we obtain mt+1(G) =

∑t
i=1 2ni−1 − t and mt+1(H) =

∑t
i=1 2ni+�i−1 − t. It follows that

mt+1(G)− mt+1(Y ) =
t∑

i=1

2ni−1 −
t∑

i=1

2ni+�i−1 − ": (3)

Suppose that s = s(�)¿ 0. We shall deduce that mt+1(G)− mt+1(Y ) = 0. By Lemma
3, we have

s6max
�∈D

{s(�)}= a2t =
∑

16i¡j6t

(ni − nj)2=(2t): (4)

Let w =
∑t

i=1 ni=t −
√

2t(t − 1)at=t. Also by Lemma 3, we 7nd that

w6 ni and w¡ni + �i for i = 1; 2; : : : ; t: (5)

From the hypothesis of Theorem 1, we see that

w¿a2t ¿ s: (6)

From (5) and (6), we have

max
�∈D∩J t

{n1 + �1; n2 + �2; : : : ; nt + �t}¿w¿s: (7)

Thus, by Lemma 4, we arrive at

0¡s6 "6 2s − 1: (8)

Now, from (5) and (6), we have ni − 1¿ s and ni + �i − 1¿ s; i=1; 2; : : : ; t. Thus
the following expression is divisible by 2s:

t∑
i=1

2ni−1 −
t∑

i=1

2ni+�i−1:

But 0¡"¡ 2s. Hence mt+1(G) − mt+1(Y ) is not divisible by 2s and, of course, not
equal to 0, a contradiction.
Thus s= s(�) = 0 and Y = H = K(n1 + �1; n2 + �2; : : : ; nt + �t).
Let ri = ni + �i for i = 1; 2; : : : ; t. We might as well assume that r16 r26 · · ·6 rt .

Then Y = H = K(r1; r2; : : : ; rt)∈Lt . Hence Q(G) ⊆ Lt .
If Lt is a class of chromatically normal graphs, then, from Property 1, G is chro-

matically unique.

4.2. Proof of Corollary 1

Follow the proof of Theorem 1.
(i) n1 = n2 = · · ·= nt .
By Lemma 3, we have at =0; �= c=0 and s= s(�)=0. Then, from (2), we obtain

Y = K(n1; n2; : : : ; nt) ∼= G, i.e., G is chromatically unique.
(ii) n1 ¡n2 ¡ · · ·¡nt .
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From (1), Lemma 2 and Y = K(r1; r2; : : : ; rt)∈Lt , we deduce that

t∑
i=1

2ni−1 =
t∑

i=1

2ri−1: (9)

Let N and M denote respectively the set consisting of the exponents of the non-zero
terms in the binary expansion of

∑t
i=1 2ni−1 and of

∑t
i=1 2ri−1. (For example, for

2 + 22 + 22 + 23 = 2 + 24 we see that N = {1; 4}.) Then, from (9), we have N =M .
Since n1 ¡n2 ¡ · · ·¡nt , N = {n1 − 1; n2 − 1; : : : ; nt − 1} and |M | = |N | = t.

Therefore M = {r1 − 1; r2 − 1; : : : ; rt − 1} and hence {n1; n2; : : : ; nt}= {r1; r2; : : : ; rt}.
Therefore, Y ∼= G, i.e., G is chromatically unique.
(iii) t = 3 and (iv) t = 4.
Since Q(G) ⊆ Lt , from Properties 1 and 2, G is chromatically unique.

4.3. Proof of Theorem 2

From Theorem 1 and Corollary 1, we need only prove that

m+ n+ r ¿ 3a23 + 2
√
3a3:

Since m6 n6 r and r − m= u; m+ n+ r¿ 3m+ u.
Let n−m= i. Then 06 i6 u. Therefore i2 + (u− i)2 = 2i(i− u) + u26 u2. Hence

a23 = ((n− m)2 + (r − m)2 + (r − n)2)=6 = (i2 + u2 + (u− i)2)=66 u2=3;

i:e:; u2¿ 3a23 and u¿
√
3a3:

From the assumption that m¿ (u+ u2)=3, we deduce that

m+ n+ r¿ 3m+ u¿ 2u+ u2¿ 3a23 + 2
√
3a3:

4.4. Proof of Theorem 3

From Theorem 1 and Corollary 1, we need only prove that

3n− k ¿ 3a23 + 2
√
3a3:

Clearly, a23 = k2=3. From the assumption that n¿k + k2=3, we deduce that

3n− k ¿ 2k + k2 = 3a23 + 2
√
3a3:

4.5. Proof of Theorem 4

From Theorem 1 and Corollary 1, we need only prove that

h+ m+ n+ r ¿ 4a24 + 2
√
6a4:



382 H.W. Zou /Discrete Mathematics 275 (2004) 375–383

Since h6m6 n6 r and r − h= u, h+ m+ n+ r¿ 4h+ u.
Let m− h= i and n− h= j. Then 06 i6 u and 06 j6 u. Thus

i2 + (u− i)26 u2; j2 + (u− j)26 u2; (j − i)26 u2:

Hence

a24 = ((m− h)2 + (n− h)2 + (r − h)2 + (n− m)2 + (r − m)2 + (r − n)2)=8

= (i2 + j2 + u2 + (j − i)2 + (u− i)2 + (u− j)2)=86 u2=2;

i:e:; u2¿ 2a24 and u¿
√
2a4:

From the assumption that h¿ (2
√
3− 1)u=4 + u2=2, we deduce that

h+ m+ n+ r¿ 4h+ u¿ 2
√
3u+ 2u2¿ 4a24 + 2

√
6a4:
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