

Discrete Mathematics 275 (2004) 375-383

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

The chromatic uniqueness of certain complete t-partite graphs^{\approx}

Hui Wen Zou^{a,b}

^aGlorious Sun School of Business & Management, Donghua University, Shanghai 200052, People's Republic of China ^bDepartment of Mathematics, East China Institute of Technology (North Area), Fuzhou 344000, People's Republic of China

Received 9 August 2000; received in revised form 2 June 2003; accepted 5 June 2003

Abstract

Let G be a simple graph and $P(G, \lambda)$ denote the chromatic polynomial of G. Then G is said to be chromatically unique if for any simple graph H, $P(H, \lambda) = P(G, \lambda)$ implies that H is isomorphic to G. A class \mathscr{L} of graphs is called a class of chromatically normal graphs if, for any $Y, G \in \mathscr{L}, P(Y, \lambda) = P(G, \lambda)$ implies that Y is isomorphic to G. Let $K(n_1, n_2, ..., n_t)$ denote a complete *t*-partite graph and $\mathscr{L}_t = \{K(n_1, n_2, ..., n_t) \mid 0 < n_1 \leq n_2 \leq \cdots \leq n_t\}$. The main results of the paper are as follows.

Let $G = K(n_1, n_2, ..., n_t) \in \mathcal{L}_t$, $t \ge 3$, $\mathcal{Q}(G) = \{Y | P(Y, \lambda) = P(G, \lambda)\}$ and $a_t = \left(\sum_{1 \le i < j \le t} (n_i - n_j)^2 / (2t)\right)^{1/2}$. If $\sum_{i=1}^t n_i > ta_t^2 + \sqrt{2t(t-1)}a_t$, (*)

then $\mathscr{Q}(G) \subseteq \mathscr{L}_t$. Furthermore, if \mathscr{L}_t is also a class of chromatically normal graphs, then G is chromatically unique. In particular, if G satisfies the condition (*) and one of the following conditions:

(i) $n_1 = n_2 = \dots = n_t$, (ii) $n_1 < n_2 < \dots < n_t$, (iii) t = 3, (iv) t = 4,

then G is chromatically unique.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Complete t-partite graph; Chromatically unique graph; Chromatically normal graphs; Partition into color classes

0012-365X/\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2003.06.014

 $[\]stackrel{\text{tr}}{\to}$ Project supported by Jiangxi Education Bureau Science & Technology Foundation (2002-01) and Shanghai Higher Learning Science & Technology Development Foundation (02DK08).

1. Introduction

We consider only finite, undirected and simple graphs. Notation and terminology that are not defined here may be found in [1,2,7,8].

Let $P(G, \lambda)$ denote the chromatic polynomial of a graph G. Two graphs H and G are said to be *chromatically equivalent* (in notation: $H \sim G$) if $P(H, \lambda) = P(G, \lambda)$. A graph G is said to be *chromatically unique* if, for any graph H, $H \sim G$ implies that $H \cong G$.

The notion of chromatic uniqueness was first introduced and studied by Chao and Whitehead in 1978 [4]. Koh and Teo, in their expository paper [7,8], gave a survey of most of the work done before 1997.

In this paper, let $K(n_1, n_2, ..., n_t)$ denote a complete *t*-partite graph with partite sets N_i such that $|N_i| = n_i$ for i = 1, 2, ..., t, and let $K(n_1, n_2, ..., n_t) - A$ denote the *t*-partite graph obtained by deleting a set A of edges from the graph $K(n_1, n_2, ..., n_t)$.

When t = 2, the beautiful results are that K(m,n) (for $2 \le m \le n$) and $K(m,n) - \{e\}$ (for $3 \le m \le n$) are chromatically unique [10]. On the chromatic uniqueness of $K(n_1, n_2, ..., n_t)$ for $t \ge 3$, the authors pointed out in [3,5–9] that the following graphs (under certain conditions) are chromatically unique:

K(n, n, n+k) (for $n \ge 2$ and $0 \le k \le 3$), K(n-k, n, n) (for $n \ge k+2$ and $0 \le k \le 3$), K(n-k, n, n+k) (for $n \ge 5$ and $0 \le k \le 2$) [5]; $K(n_1, n_2, ..., n_t)$ (for $|n_i - n_j| \le 1$ where $1 \le i \le t$ and $1 \le j \le t$) [3]; K(n-1, n, ..., n, n+1) and $K(n, n, ..., n) - \{e\}$ (for $n \ge 3$) [6]; $K(1, n_2, ..., n_t)$ (if and only if max $\{n_2, ..., n_t\} \le 2$) [9].

Thus, $K(1, n_2, ..., n_t)$ is not chromatically unique if $\max\{n_2, ..., n_t\} \ge 3$.

The authors in [5,7] also put forward the following problem and conjecture:

Problem A (Koh and Teo [7]). For each $t \ge 2$, is the graph $K(n_1, n_2, ..., n_t)$ chromatically unique if $|n_i - n_j| \le 2$ where $1 \le i \le t$ and $1 \le j \le t$, and if $\min\{n_1, n_2, ..., n_t\}$ is sufficiently large?

Conjecture B (Chia et al. [5]; Koh and Teo [7]). The graph K(n-k,n,n) is chromatically unique for all n, k with $n \ge k + 2$.

In this paper, we discuss the chromatic uniqueness of more general graphs $K(n_1, n_2, ..., n_t)$ (for $t \ge 3$) and give a partial solution to the above problem and conjecture.

2. The main results

First, we define a class of graphs as follows.

A class \mathscr{L} of graphs is called a class of *chromatically normal graphs* if, for any $Y, G \in \mathscr{L}, Y \sim G$ implies that $Y \cong G$.

Clearly, if a graph G is chromatically unique, then $\mathcal{Q}(G) = \{Y \mid Y \sim G\}$ is a class of chromatically normal graphs. Thus the following property holds.

Property 1. A graph G is chromatically unique if and only if there exists a class \mathscr{L} of chromatically normal graphs such that $\mathscr{Q}(G) \subseteq \mathscr{L}$.

Let $\mathscr{L}_t = \{K(n_1, n_2, \ldots, n_t) \mid 0 < n_1 \leq n_2 \leq \cdots \leq n_t\}.$

Property 2 (Zou [15]). \mathcal{L}_3 and \mathcal{L}_4 are classes of chromatically normal graphs.

Our main results are as follows.

Theorem 1. Let $G = K(n_1, n_2, ..., n_t) \in \mathcal{L}_t$, $t \ge 3$, $a_t = \left(\sum_{1 \le i < j \le t} (n_i - n_j)^2 / (2t)\right)^{1/2}$ and $\mathcal{Q}(G) = \{Y \mid Y \sim G\}$. If

$$\sum_{i=1}^{t} n_i > ta_t^2 + \sqrt{2t(t-1)}a_t, \tag{*}$$

then $\mathcal{Q}(G) \subseteq \mathcal{L}_t$.

Furthermore, if \mathcal{L}_t is also a class of chromatically normal graphs, then G is chromatically unique.

Corollary 1. Let $G = K(n_1, n_2, ..., n_t) \in \mathscr{L}_t$ where $t \ge 3$. If G satisfies condition (*) of Theorem 1 and also satisfies one of the following conditions:

(i) $n_1 = n_2 = \dots = n_t$, (ii) $n_1 < n_2 < \dots < n_t$, (iii) t = 3, (iv) t = 4,

then G is chromatically unique.

Theorem 2. Let G = K(m, n, r) where $m \le n \le r$ and $r - m = u \ge 0$. If $m > (u + u^2)/3$, then G is chromatically unique.

Theorem 3. If $n > k + k^2/3$ and $k \ge 0$, then K(n - k, n, n) is chromatically unique.

Theorem 4. Let G = K(h,m,n,r) where $h \le m \le n \le r$ and $r - h = u \ge 0$. If $h > (2\sqrt{3} - 1)u/4 + u^2/2$, then G is chromatically unique.

Remark 1. 1. Theorems 2 and 4 give a partial solution to Problem A for t = 3 and 4, respectively. Theorem 3 gives a partial solution to Conjecture B. When k = 4, Conjecture B is true [11].

2. Let $K(n_1, n_2, n_3) = K(n - k, n, n + i)$, where k and i are non-negative integers. By Theorem 2 if $3n > k - i + (k^2 + i^2 + ki) + 2(k^2 + i^2 + ki)^{1/2}$, then K(n - k, n, n + i) is chromatically unique. In [5,7,8], it was shown that K(n - k, n, n + i) is chromatically unique for some particular cases such as k=0, $0 \le i \le 3$ and $n \ge 2$; or i=0, $0 \le k \le 3$ and $n \ge k + 2$; or $0 \le i = k \le 2$ and $n \ge 5$ (see also Section 1).

3. If $n_1+n_2+n_3 \leq 3a_3^2+2\sqrt{3}a_3$, then $K(n_1,n_2,n_3)$ might not be chromatically unique. For example, K(1,n,n) is not chromatically unique if $n \geq 3$ (see [9] or Section 1), where $a_3 = (n-1)/\sqrt{3}$ and $n_1+n_2+n_3 = 2n+1 < n^2-1 = 3a_3^2+2\sqrt{3}a_3$ if $n \geq 3$. But the condition of Theorem 2 for t = 3 is only a sufficient condition, since K(2,4,6) is chromatically unique [12] while the condition is not satisfied.

3. Some preliminary lemmas

Let G be a graph and let $m_r(G)$ denote the number of distinct partitions of V(G)into r color classes.

Lemma 1 (Zou [14]; Zou and Shi [17]). For any two graphs G and Y, $Y \sim G$ if and only if |V(Y)| = |V(G)| and $m_r(Y) = m_r(G)$ for r = 1, 2, ..., |V(G)|.

Lemma 2. Let $G = K(n_1, n_2, ..., n_t) \in \mathscr{L}_t$. Then $m_{t+1}(G) = 2^{n_1-1} + 2^{n_2-1} + \cdots + 2^{n_t-1} - t$.

Proof. Let (N_1, N_2, \ldots, N_t) denote the t-partition of V(G), where $|N_i| = n_i$ for i = 01,2,...,t. Since any two vertices which lie in different partite sets of (N_1,N_2,\ldots,N_t) are adjacent in G, a partition of V(G) into t+1 color classes must be obtained from (N_1, N_2, \dots, N_t) by partitioning one of the N_i $(i = 1, 2, \dots, t)$ into two color classes. For each $i = 1, 2, \dots, t$, let D_i denote the number of ways of partitioning N_i into two color classes. Clearly

$$D_i = \sum_{j=1}^{n_i-1} \binom{n_i}{j} / 2 = 2^{n_i-1} - 1$$
 for $i = 1, 2, \dots, t$.

Thus

$$m_{t+1}(G) = D_1 + D_2 + \dots + D_t = 2^{n_1 - 1} + 2^{n_2 - 1} + \dots + 2^{n_t - 1} - t.$$

Lemma 3 (Zou [13,16]). Let $G = K(n_1, n_2, ..., n_t) \in \mathcal{L}_t$ where $t \ge 3$, and let J be the set of integers, R the set of real numbers and R^t the t-dimensional cartesian product of R. Suppose that Y is a graph such that $Y \sim G$. Then

 $Y = K(n_1 + \alpha_1, n_2 + \alpha_2, \dots, n_t + \alpha_t) - A,$

where $|A| = \sum_{1 \leq i < j \leq t} \alpha_i \alpha_j + \sum_{1 \leq i < j \leq t} (n_i \alpha_j + n_j \alpha_i) \ge 0$, $\sum_{i=1}^t \alpha_i = 0$, $\alpha_i \in J$ and $n_i + \alpha_i > 0$ for $i = 1, 2, \dots, t$.

Moreover, let
$$\alpha = (\alpha_1, \alpha_2, ..., \alpha_t) \in \mathbb{R}^t$$
, $s(\alpha) = s = |A| \ge 0$, $a_t = \left(\sum_{1 \le i < j \le t} (n_i - n_j)^2 / (2t)\right)^{1/2}$, $d_{t-1} = \sqrt{2(t-1)/t}$ and $c = (c_1, c_2, ..., c_t)$ where $c_i = \left(\sum_{j=1}^{i-1} (n_j - n_i) + \sum_{j=i+1}^{t} (n_j - n_i)\right) / t$ for $i = 1, 2, ..., t$. Then

- (i) $\alpha \in D = \{ \alpha \mid c_i d_{t-1}a_t \leq \alpha_i \leq c_i + d_{t-1}a_t, i = 1, 2, \dots, t; \sum_{i=1}^t \alpha_i = 0 \}$ and s = 0 $s(\alpha) = 0$ if each inequality is an equality;
- (ii) $\max_{\alpha \in D} \{s(\alpha)\} = s(c) = a_t^2;$ (iii) Let $w = \sum_{i=1}^t n_i/t d_{t-1}a_t$. If $s = s(\alpha) > 0$, then $w \le n_i$ and $w < n_i + \alpha_i$ for i = 1, 2, ..., t.

Lemma 4. Let $H = K(r_1, r_2, ..., r_t) \in \mathcal{L}_t$, Y = H - A, where A is a nonempty set of s edges of H and $\eta = m_{t+1}(Y) - m_{t+1}(H)$. If $\min\{r_1, r_2, ..., r_t\} > s$, then $s \leq \eta \leq 2^s - 1$.

Proof. It is clear that any partition of V(H) into t + 1 color classes is a partition of V(Y) into t + 1 color classes. Therefore η is the number of partitions of V(Y) into t + 1 color classes which are not partitions of V(H).

Let $(R_1, R_2, ..., R_t)$ denote the *t*-partition of V(H), where $|R_i| = r_i$ for i = 1, 2, ..., t, and let V' denote the set of end vertices of the edges in A.

We next prove the following:

Claim. A necessary and sufficient condition for P to be a partition of V(Y) into t+1 color classes but not a partition of V(H) is that P be a partition of V(Y) into t+1 color classes of which one is the set V_0 of end vertices of the edges in some fixed nonempty subset of A and the remaining t are the sets $R_i - V_0$ where i = 1, 2, ..., t.

(*Necessity*). If *P* is a partition of V(Y) into t+1 color classes but not a partition of V(H), then there exists at least one color class (say V_0) of the t+1 color classes of *P* which contains some vertices of different partite sets of $(R_1, R_2, ..., R_t)$. Since any two vertices of V_0 are not adjacent in *Y*, V_0 contains the end vertices of some i ($0 < i \le s$) edges of *A*.

Because $\min\{r_1, r_2, ..., r_t\} > s$, we conclude that none of $R_i - V'(\subset R_i - V_0)$, i = 1, 2, ..., t, is null. Clearly, $R_i - V'$, i = 1, 2, ..., t, must be contained, respectively, in t different color classes of P of which none contains vertices of different partite sets of $(R_1, R_2, ..., R_t)$. But there are only t + 1 color classes. Therefore, the t + 1 color classes must be V_0 and $R_i - V_0$, i = 1, 2, ..., t.

(*Sufficiency*). If one of the t + 1 color classes of P contains vertices of different partite sets of (R_1, R_2, \ldots, R_t) , it is clear that P is not a partition of V(H) into t + 1 color classes.

Now we complete the proof of the lemma.

Since η is equal to the number of partitions *P* described in the claim and *P* is determined by V_0 , we can easily see that

$$s = \binom{s}{1} \leqslant \eta \leqslant \sum_{j=1}^{s} \binom{s}{j} = 2^{s} - 1.$$

4. Proofs of the theorems and corollary

4.1. Proof of Theorem 1

Let J be the set of integers and let J^t be the t-dimensional cartesian product of J. Suppose that $Y \in \mathcal{Q}(G)$. Then, by Lemmas 1 and 3, we have

$$m_{t+1}(Y) = m_{t+1}(G),$$
 (1)

$$Y = K(n_1 + \alpha_1, n_2 + \alpha_2, \dots, n_t + \alpha_t) - A,$$

$$\tag{2}$$

where $|A| = s = s(\alpha) = \sum_{1 \le i < j \le t} \alpha_i \alpha_j + \sum_{1 \le i < j \le t} (n_i \alpha_j + n_j \alpha_i) \ge 0$, $\alpha \in D \cap J^t$ and $n_i + \alpha_i > 0$ for i = 1, 2, ..., t. (See Lemma 3(i) for the definition of *D*.)

We first show that $s = s(\alpha) = 0$.

Let $H = K(n_1 + \alpha_1, n_2 + \alpha_2, ..., n_t + \alpha_t)$ and $\eta = m_{t+1}(Y) - m_{t+1}(H)$. By Lemma 2, we obtain $m_{t+1}(G) = \sum_{i=1}^{t} 2^{n_i - 1} - t$ and $m_{t+1}(H) = \sum_{i=1}^{t} 2^{n_i + \alpha_i - 1} - t$. It follows that

$$m_{t+1}(G) - m_{t+1}(Y) = \sum_{i=1}^{t} 2^{n_i - 1} - \sum_{i=1}^{t} 2^{n_i + \alpha_i - 1} - \eta.$$
(3)

Suppose that $s = s(\alpha) > 0$. We shall deduce that $m_{t+1}(G) - m_{t+1}(Y) \neq 0$. By Lemma 3, we have

$$s \leq \max_{\alpha \in D} \{s(\alpha)\} = a_t^2 = \sum_{1 \leq i < j \leq t} (n_i - n_j)^2 / (2t).$$
 (4)

Let $w = \sum_{i=1}^{t} n_i/t - \sqrt{2t(t-1)}a_t/t$. Also by Lemma 3, we find that

$$w \leq n_i$$
 and $w < n_i + \alpha_i$ for $i = 1, 2, \dots, t.$ (5)

From the hypothesis of Theorem 1, we see that

$$w > a_t^2 \ge s. \tag{6}$$

From (5) and (6), we have

$$\max_{\alpha \in D \cap J'} \{ n_1 + \alpha_1, n_2 + \alpha_2, \dots, n_t + \alpha_t \} > w > s.$$

$$\tag{7}$$

Thus, by Lemma 4, we arrive at

$$0 < s \leqslant \eta \leqslant 2^s - 1. \tag{8}$$

Now, from (5) and (6), we have $n_i - 1 \ge s$ and $n_i + \alpha_i - 1 \ge s$, i = 1, 2, ..., t. Thus the following expression is divisible by 2^s :

$$\sum_{i=1}^{t} 2^{n_i-1} - \sum_{i=1}^{t} 2^{n_i+\alpha_i-1}.$$

But $0 < \eta < 2^s$. Hence $m_{t+1}(G) - m_{t+1}(Y)$ is not divisible by 2^s and, of course, not equal to 0, a contradiction.

Thus $s = s(\alpha) = 0$ and $Y = H = K(n_1 + \alpha_1, n_2 + \alpha_2, ..., n_t + \alpha_t)$.

Let $r_i = n_i + \alpha_i$ for i = 1, 2, ..., t. We might as well assume that $r_1 \leq r_2 \leq \cdots \leq r_t$. Then $Y = H = K(r_1, r_2, ..., r_t) \in \mathscr{L}_t$. Hence $\mathscr{Q}(G) \subseteq \mathscr{L}_t$.

If \mathscr{L}_t is a class of chromatically normal graphs, then, from Property 1, G is chromatically unique.

4.2. Proof of Corollary 1

Follow the proof of Theorem 1.

(i)
$$n_1 = n_2 = \cdots = n_t$$
.

By Lemma 3, we have $a_t = 0$, $\alpha = c = 0$ and $s = s(\alpha) = 0$. Then, from (2), we obtain $Y = K(n_1, n_2, ..., n_t) \cong G$, i.e., G is chromatically unique. (ii) $n_1 < n_2 < \cdots < n_t$.

380

From (1), Lemma 2 and $Y = K(r_1, r_2, ..., r_t) \in \mathcal{L}_t$, we deduce that

$$\sum_{i=1}^{t} 2^{n_i - 1} = \sum_{i=1}^{t} 2^{r_i - 1}.$$
(9)

Let N and M denote respectively the set consisting of the exponents of the non-zero terms in the binary expansion of $\sum_{i=1}^{t} 2^{n_i-1}$ and of $\sum_{i=1}^{t} 2^{r_i-1}$. (For example, for $2+2^2+2^2+2^3=2+2^4$ we see that $N = \{1,4\}$.) Then, from (9), we have N = M. Since $n_1 < n_2 < \cdots < n_t$, $N = \{n_1 - 1, n_2 - 1, \dots, n_t - 1\}$ and |M| = |N| = t. Therefore $M = \{r_1 - 1, r_2 - 1, \dots, r_t - 1\}$ and hence $\{n_1, n_2, \dots, n_t\} = \{r_1, r_2, \dots, r_t\}$.

Therefore, $Y \cong G$, i.e., G is chromatically unique. (iii) t = 3 and (iv) t = 4.

Since $\mathscr{Q}(G) \subseteq \mathscr{L}_t$, from Properties 1 and 2, G is chromatically unique.

4.3. Proof of Theorem 2

From Theorem 1 and Corollary 1, we need only prove that

$$m + n + r > 3a_3^2 + 2\sqrt{3}a_3$$
.

Since $m \le n \le r$ and r - m = u, $m + n + r \ge 3m + u$. Let n - m = i. Then $0 \le i \le u$. Therefore $i^2 + (u - i)^2 = 2i(i - u) + u^2 \le u^2$. Hence

$$a_3^2 = ((n-m)^2 + (r-m)^2 + (r-n)^2)/6 = (i^2 + u^2 + (u-i)^2)/6 \le u^2/3,$$

i.e., $u^2 \ge 3a_3^2$ and $u \ge \sqrt{3}a_3.$

From the assumption that $m > (u + u^2)/3$, we deduce that

$$m+n+r \ge 3m+u > 2u+u^2 \ge 3a_3^2 + 2\sqrt{3}a_3.$$

4.4. Proof of Theorem 3

From Theorem 1 and Corollary 1, we need only prove that

$$3n-k > 3a_3^2 + 2\sqrt{3}a_3$$
.

Clearly, $a_3^2 = k^2/3$. From the assumption that $n > k + k^2/3$, we deduce that

$$3n-k > 2k+k^2 = 3a_3^2 + 2\sqrt{3}a_3$$

4.5. Proof of Theorem 4

From Theorem 1 and Corollary 1, we need only prove that

$$h + m + n + r > 4a_4^2 + 2\sqrt{6a_4}$$

Since $h \leq m \leq n \leq r$ and r - h = u, $h + m + n + r \geq 4h + u$.

Let
$$m - h = i$$
 and $n - h = j$. Then $0 \le i \le u$ and $0 \le j \le u$. Thus

$$i^{2} + (u-i)^{2} \leq u^{2}, \quad j^{2} + (u-j)^{2} \leq u^{2}, \quad (j-i)^{2} \leq u^{2}.$$

Hence

$$a_4^2 = ((m-h)^2 + (n-h)^2 + (r-h)^2 + (n-m)^2 + (r-m)^2 + (r-n)^2)/8$$
$$= (i^2 + j^2 + u^2 + (j-i)^2 + (u-i)^2 + (u-j)^2)/8 \le u^2/2,$$

i.e., $u^2 \ge 2a_4^2$ and $u \ge \sqrt{2}a_4$.

From the assumption that $h > (2\sqrt{3} - 1)u/4 + u^2/2$, we deduce that

$$h + m + n + r \ge 4h + u > 2\sqrt{3u + 2u^2} \ge 4a_4^2 + 2\sqrt{6a_4}.$$

Acknowledgements

The author is very grateful to the referees for their very helpful comments, and to his supervisor Professor Shi Yongbing and Professor Zeng Guangxing for their great help.

References

- [1] N.L. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, MacMillan, New York, 1976.
- [3] C.Y. Chao, G.A. Novacky Jr., On maximally saturated graphs, Discrete Math. 41 (1982) 139-143.
- [4] C.Y. Chao, E.G. Whitehead Jr., On chromatic equivalence of graphs, Theory and Applications of Graphs, Springer Lecture Notes in Mathematics, Vol. 642, Sprinper, Berlin, 1978, pp. 121–131.
- [5] G.L. Chia, B.H. Goh, K.M. Koh, The chromaticity of some families of complete tripartite graphs, SCIENTITA, Ser. A: Math. Sci. 2 (1998) 27–37.
- [6] R.E. Giudici, M.A. López, Chromatic uniqueness of $\overline{sK_n}$, Report No. 85-03, Dept. Math., Univ. Simón Bolivar, 1985.
- [7] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259-285.
- [8] K.M. Koh, K.L. Teo, The search for chromatically unique graphs—II, Discrete Math. 172 (1997) 59–78.
- [9] N.Z. Li. R.Y. Liu, The chromaticity of the complete *t*-partite graph $K(1, p_2, \ldots, p_t)$, J. Xinjiang Uni. 7 (3) (1990) 95–96.
- [10] C.P. Teo, K.M. Koh, The chromaticity of complete bipartite graphs with at most one edge deleted, J. Graph Theory 14 (1990) 89–99.
- [11] H.W. Zou, On the chromaticity of the complete tripartite graph K(n 4, n, n), J. Shanghai Teachers Univ. 27 (1) (1998) 37–43.
- [12] H.W. Zou, On the chromaticity of the complete tripartite graph K(2,4,6), J. Shanghai Teachers Univ. 27 (4) (1998) 14–17.
- [13] H.W. Zou, On the chromatic equivalence of complete *t*-partite graphs, J. Fuzhou Teachers College 18 (2) (1998) 104–109.
- [14] H.W. Zou, On the chromatic uniqueness of complete tripartite graphs $K(n_1, n_2, n_3)$, J. Systems Sci. Math. Sci. 20 (2) (2000) 181–186.

- [15] H.W. Zou, Classes of chromatically normal graphs of complete t-partite graphs, Jiangxi Sci. 19 (2) (2001) 71–75.
- [16] H.W. Zou, The property of a graph chromatically equivalent to the complete *t*-partite graphs, Higher Math. Bull. 41 (1) (2002) 1–6.
- [17] H.W. Zou, Y.B. Shi, On the chromaticity of the complete tripartite graph K(n k, n, n), J. Shanghai Teachers Univ. 28 (4) (1999) 15–22.