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Abstract

Let G be a simple graph and P(G,Z) denote the chromatic polynomial of G. Then G is
said to be chromatically unique if for any simple graph H, P(H, 1) = P(G, ) implies that H is
isomorphic to G. A class % of graphs is called a class of chromatically normal graphs if, for
any Y,G € %, P(Y,2)=P(G, 1) implies that Y is isomorphic to G. Let K(ni,na,...,n;) denote a
complete z-partite graph and &, = {K(ni,n2,...,n)|0 <ni <ny <--- < ny}. The main results
of the paper are as follows.

Let G = K(ni,na,...,m)EZL, t=3, 2AG) = {Y|P(,.) = P(G,2)} and a =

5 1/2
(Zlgfq‘gt(”i —ny) /(20) CIf
t
> ni>ta; + /20t = Dai, )
i=1

then 2(G) C %;. Furthermore, if %, is also a class of chromatically normal graphs, then G
is chromatically unique. In particular, if G satisfies the condition (*) and one of the following
conditions:

W)m=m=---=n, A)nm<m<---<mn, @i)t=3 (iv)t=4,

then G is chromatically unique.
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1. Introduction

We consider only finite, undirected and simple graphs. Notation and terminology
that are not defined here may be found in [1,2,7,8].

Let P(G, ) denote the chromatic polynomial of a graph G. Two graphs H and G
are said to be chromatically equivalent (in notation: H ~ G) if P(H,1) = P(G,1). A
graph G is said to be chromatically unique if, for any graph H, H ~ G implies that
H=G.

The notion of chromatic uniqueness was first introduced and studied by Chao and
Whitehead in 1978 [4] . Koh and Teo, in their expository paper [7,8], gave a survey
of most of the work done before 1997.

In this paper, let K(ny,n,,...,n,;) denote a complete z-partite graph with partite sets
N; such that |N;| =n; for i=1,2,...,t, and let K(ny,nz,...,n,) —A denote the ¢-partite
graph obtained by deleting a set A of edges from the graph K(nj,ns,...,n;).

When ¢ =2, the beautiful results are that K(m,n) (for 2 < m < n) and K(m,n) —
{e} (for 3 < m < n) are chromatically unique [10]. On the chromatic uniqueness of
K(ny,ny,...,n,) for t = 3, the authors pointed out in [3,5-9] that the following graphs
(under certain conditions) are chromatically unique:

K(n,n,n+k) (forn>2and 0 <k <3), K(n—k,n,n) (forn = k+2 and 0 < k < 3),
K(n—knn+k) (for n >5 and 0 <k <2) [5]; K(ni,n2,...,n;) (for |n; —n;| <1
where 1 <i<tand 1 <j<¢) [3); K(n—1,n,...,n,n+ 1) and K(n,n,...,n) — {e}
(for n = 3) [6]; K(1,n,,...,n,) (if and only if max{n,,...,n} < 2) [9].

Thus, K(1,n5,...,n,) is not chromatically unique if max{n,,...,n} = 3.

The authors in [5,7] also put forward the following problem and conjecture:

Problem A (Koh and Teo [7]). For each ¢ > 2, is the graph K(n,n,,...,n;) chromat-
ically unique if |n;—n;| <2 where 1 <i<tand 1 <j <¢, and if min{n;,n,...,n}
is sufficiently large?

Conjecture B (Chia et al. [5]; Koh and Teo [7]). The graph K(n—k,n,n) is chromat-
ically unique for all n,k with n >k + 2.

In this paper, we discuss the chromatic uniqueness of more general graphs K(n,
na,...,ny) (for t = 3) and give a partial solution to the above problem and conjecture.

2. The main results

First, we define a class of graphs as follows.

A class & of graphs is called a class of chromatically normal graphs if, for any
Y,Ge ¥, Y ~ G implies that ¥ = G.

Clearly, if a graph G is chromatically unique, then 2(G)={Y |Y ~ G} is a class
of chromatically normal graphs. Thus the following property holds.

Property 1. A graph G is chromatically unique if and only if there exists a class ¥
of chromatically normal graphs such that 2(G) C %.
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Let &, ={K(ni,nz,....,n;)|0<n <m <--- <m}.
Property 2 (Zou [15]). #5 and 4 are classes of chromatically normal graphs.

Our main results are as follows.

1/2
Theorem 1. Let G = K(ni,na,....n) € Ly £ =3, a; = (Z,@.q@(m,— - n_,-)z/(zt))’
and 2(G)y={Y|Y ~ G}. If

t
Zn,- > ta,2 + +/2t(t — 1)ay, (%)
i=1

then 2(G) C &,.
Furthermore, if &%, is also a class of chromatically normal graphs, then G is
chromatically unique.

Corollary 1. Let G = K(ny,na,...,n) €L, where t = 3. If G satisfies condition (*)
of Theorem 1 and also satisfies one of the following conditions:

(i)n1:n2:"':nt7 (ii)nl<n2<"'<nt) (lll)t:39 (lv)t:4)
then G is chromatically unique.

Theorem 2. Let G=K(m,n,r) where m <n <r and r—m=u > 0. If m > (u+u*)/3,
then G is chromatically unique.

Theorem 3. If n > k + k?/3 and k > 0, then K(n — k,n,n) is chromatically unique.

Theorem 4. Let G = K(h,m,n,r) where h<m<n<r and r —h=u>0. If h >
(2V3 — Du/4 4+ u?/2, then G is chromatically unique.

Remark 1. 1. Theorems 2 and 4 give a partial solution to Problem A for t =3 and
4, respectively. Theorem 3 gives a partial solution to Conjecture B. When k = 4,
Conjecture B is true [11].

2. Let K(ny,ny,n3)=K(n—k,n,n+ i), where k and i are non-negative integers. By
Theorem 2 if 3n > k — i + (k* +i% + ki) + 2(k* + i + ki)', then K(n — k,n,n + i) is
chromatically unique. In [5,7,8], it was shown that K(n — k,n,n + i) is chromatically
unique for some particular cases such as k=0, 0 <i<3andn >2;0ri=0, 0 <k <3
andn>k+2;0or0<i=k<2and n =5 (see also Section 1).

3. If ny+ny+nz < 3a§+2\/§a3, then K(n1,ny,n3) might not be chromatically unique.
For example, K(1,n,n) is not chromatically unique if n > 3 (see [9] or Section 1),
where a3 =(n—1)/v/3 and ny +ny +n3=2n+1 < n* — 1 =3a3 +2v/3a;3 if n > 3. But
the condition of Theorem 2 for ¢+ =3 is only a sufficient condition, since K(2,4,6) is
chromatically unique [12] while the condition is not satisfied.
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3. Some preliminary lemmas

Let G be a graph and let m,(G) denote the number of distinct partitions of V' (G)
into 7 color classes.

Lemma 1 (Zou [14]; Zou and Shi [17]). For any two graphs G and Y, Y ~ G if and
only if |V(Y)| =1|V(G)| and m,(Y)=m.(G) for r =1,2,..., | V(G)].

Lemma 2. Let G=K(n,na,...,n,) € L,. Then my(G)=2""142m=14...pom=1_¢

Proof. Let (N1,MN,,...,N,) denote the ¢-partition of V(G), where |N;| =n; for i =
1,2,...,¢t. Since any two vertices which lie in different partite sets of (Ny,Na,...,N;)
are adjacent in G, a partition of V(G) into ¢ + 1 color classes must be obtained from
(N1, Ny, ...,N;) by partitioning one of the N; (i=1,2,...,¢) into two color classes. For
each i=1,2,...,¢, let D; denote the number of ways of partitioning N; into two color
classes. Clearly

ni—1 n;
Di=Y_ ( . 2=2""1—1 fori=12,...,t
=t \J

M (G)Y=Dy +Dy+---+D;=2m"" pom=lpoqpom=l g O

Thus

Lemma 3 (Zou [13,16]). Let G=K(ny,na,...,n,)€ L, where t =3, and let J be the
set of integers, R the set of real numbers and R' the t-dimensional cartesian product
of R. Suppose that Y is a graph such that Y ~ G. Then

Y:K(I’ll +ocl,n2—|—oc2,...,nt+oct)—A,
t
where | A | :Z1<i<j<t ociuj+21<i<j<l(n,-ocj+njo€i)20, Yoy =0, 0;€J and

ni+o; >0 fori=1,2,...,¢t
Moreover, let o=(01,0,...,0,) ER’, s(a)=s=]A4| =0, a,:(zlgkl.@(n,- - nj)z/

12 }
(20) " dioi=y/20 = Dt and e=(c1,e3,....,) where ei= (7] (1 = m) + iy
(n, —n,-)) Jt for i=1,2,...,1. Then

(i) aeD = {ot|c,— —di_va; <oy <ci+di_a, i=1,2,...,8 Z;Zl o :0} and s =
s(a) =0 if each inequality is an equality;
(i) max,ep {s(2)} =s(c) = a?;
(111) Let w = Z;:l ni/t — d,,la,. ]f s = S(O() > 0, then w <n; and w < n; + o fOV
i=1,2,...,t.

Lemma 4. Let H=K(ry,ry,...,11)€ L, Y=H — A, where A is a nonempty set of s
edges of H and n=m; \(Y)—m, . (H). If min{r|,ry,...,7} >, then s <n <2°—1.
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Proof. It is clear that any partition of V(H) into ¢ + 1 color classes is a partition of
V(Y) into ¢t + 1 color classes. Therefore 5 is the number of partitions of V(YY) into
t 4+ 1 color classes which are not partitions of V(H).

Let (R1,Ra,...,R;) denote the ¢-partition of V(H), where |R;| =r; fori=1,2,...,1,
and let 7’ denote the set of end vertices of the edges in A.

We next prove the following:

Claim. A necessary and sufficient condition for P to be a partition of V(Y) into t+1
color classes but not a partition of V(H) is that P be a partition of V(Y) into t + 1
color classes of which one is the set Vy of end vertices of the edges in some fixed
nonempty subset of A and the remaining t are the sets R; — Vo where i =1,2,...,t.

(Necessity). If P is a partition of V(Y) into £+ 1 color classes but not a partition of
V(H), then there exists at least one color class (say V) of the 4 1 color classes of P
which contains some vertices of different partite sets of (Ry,R;,...,R;). Since any two
vertices of Vj are not adjacent in Y, ¥ contains the end vertices of some i (0 < i <)
edges of 4.

Because min{ry,r,,...,7,} > s, we conclude that none of R, — V'(C R; — Vp), i =
1,2,...,t, is null. Clearly, R, — V', i =1,2,...,t, must be contained, respectively, in ¢
different color classes of P of which none contains vertices of different partite sets of
(R1,R,,...,R;). But there are only 7+ 1 color classes. Therefore, the £+ 1 color classes
must be Vy and R; — Vo, i =1,2,...,1.

(Sufficiency). If one of the # + 1 color classes of P contains vertices of different
partite sets of (Ri,Ry,...,R,), it is clear that P is not a partition of V(H) into ¢+ 1
color classes.

Now we complete the proof of the lemma.

Since 7 is equal to the number of partitions P described in the claim and P is
determined by Vj, we can easily see that

) il K
s=< ><n<2(.>:28—1. O
1 = \J

4. Proofs of the theorems and corollary
4.1. Proof of Theorem 1

Let J be the set of integers and let J’ be the ¢-dimensional cartesian product of J.
Suppose that ¥ € 2(G). Then, by Lemmas 1 and 3, we have

mt+l(Y):mt+l(G), (D

Y =K(nm +o,ny+oo,... 0+ o) — A, 2)

where ‘A| :S:S(OC): Z|<i<j<t OCZ'OC]' +Zl<i<j<t (I’l,O(] +I’le(i) = 0, aeD ﬂJt and
ni+o; >0 fori=1,2,...,¢. (See Lemma 3(i) for the definition of D.)
We first show that s = s(a) =0.
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Let H =K(n; + ay,ny + dp,...,n +0,) and n=my(Y) — m,(H). By Lemma 2,
we obtain m,1(G)=>1_, 2"~ — ¢ and m,(H)=;_, 2"*%~1 — ¢ 1t follows that

t t
mi1(G) —meg (Y)y = 2=y "omtuml oy, 3)
i=1 i=1

Suppose that s = s(a) > 0. We shall deduce that m, (G) — m,1(Y) # 0. By Lemma
3, we have

s<max{s(}=a; = > (m—n)’/(2). (4)
&b 1<i<j<t
Let w= 25:1 nift — \/2t(t — 1)a,/t. Also by Lemma 3, we find that
w<n and w<mn+oao fori=12,...,¢t 5

From the hypothesis of Theorem 1, we see that
w > a,2 > . (6)
From (5) and (6), we have

max {ny + o,y + Oy, + 0 > W > s, (7)
«€DAJ!

Thus, by Lemma 4, we arrive at
0<s<n<2 -1 (@)

Now, from (5) and (6), we have n; — 1 =>s and m;+o;, — 1 =5, i=1,2,...,¢t. Thus
the following expression is divisible by 2°:
t t

Z 2,,,,1 o Z 2n,~+a,71'

i=1 i=1

But 0 <5 < 2°. Hence m;11(G) — m;11(Y) is not divisible by 2° and, of course, not
equal to 0, a contradiction.

Thus s =s(x)=0 and Y = H = K(ny + a1, ny + o,..., 10, + 0y).

Let r;=mn; +o; for i=1,2,...,¢t. We might as well assume that r| <r, <--- <ry.
Then Y =H =K(r,r2,...,1:) € %;. Hence 2(G) C %,.

If &, is a class of chromatically normal graphs, then, from Property 1, G is chro-
matically unique.

4.2. Proof of Corollary 1

Follow the proof of Theorem 1.

()m=n=---=n,

By Lemma 3, we have a¢;,=0, a=c=0 and s=s(a) =0. Then, from (2), we obtain
Y =K(ny,n,,...,n;) = G, i.e.,, G is chromatically unique.

(i) ny <mp < --- <ny.
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From (1), Lemma 2 and Y = K(ry,r2,...,r) € ¥, we deduce that
t t
Zzni—l :er,-—l. (9)
i=1 i=1

Let N and M denote respectively the set consisting of the exponents of the non-zero
terms in the binary expansion of 25:1 271 and of Zf:] 2"i=1_ (For example, for
24224224+ 23=2+2% we see that N = {1,4}.) Then, from (9), we have N = M.

Since ny <my <---<ny, N={nm —lLmp —1,...,n, — 1} and |M| = |N| =1t
Therefore M = {r; — 1,r, — 1,...,7: — 1} and hence {ny,ny,...,n} ={ri,ra,...,7:}.

Therefore, ¥ = G, i.e., G is chromatically unique.

(iii) t =3 and (iv) t =4.

Since 2(G) C &,, from Properties 1 and 2, G is chromatically unique.

4.3. Proof of Theorem 2

From Theorem 1 and Corollary 1, we need only prove that
m+n—+r> 3a§+2\f3a3.

Sncem<n<randr—m=u, m+n+r =3m+u.
Let n —m=1i. Then 0 < i < u. Therefore i + (u —i)? =2i(i — u) + u* < u*. Hence

a3 =((n—m)*+ (@ —my + @ —n)y)6=("+u+@u—iy)6 <u’/3
e, u? > 3a§ and  u > V3a;.
From the assumption that m > (u + u?)/3, we deduce that

m+n+r>3m+u>2u—|—u2>3a§+2\/§a3.

4.4. Proof of Theorem 3

From Theorem 1 and Corollary 1, we need only prove that
3n—k > 3a3 + 2V3a;.
Clearly, a3 = k*/3. From the assumption that n > k + k?/3, we deduce that

3n — k > 2k + k* = 3d3 4 2\/3a;.

4.5. Proof of Theorem 4

From Theorem 1 and Corollary 1, we need only prove that

h+m+n+r>4aﬁ+2\@a4.
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Sincch<m<n<randr—h=u, h+m+n—+r=4h+ u.
Let m—h=iand n—h=j . Then 0 <i <wu and 0 <j <u. Thus

Prw—iP<i®, Pr-jP<dd, (-i)P <
Hence

B=((m—h?+m—h*+0E—h?+m—mP+—my+—n)P)8
=P+ =i+ w—i)+w—j)P)8 <u?)2,

ie, v’ >2a5 and u> V2ay.
From the assumption that z > (2v/3 — 1)u/4 + u?/2, we deduce that
h+m+n+r=4h+u>2V3u+ 2’ >4ai—|—2\/8a4.
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