Note

The chromatic uniqueness of certain complete \(t \)-partite graphs

Hui Wen Zou\(^a,b\)

\(^a\)Glorious Sun School of Business & Management, Donghua University, Shanghai 200052, People’s Republic of China

\(^b\)Department of Mathematics, East China Institute of Technology (North Area), Fuzhou 344000, People’s Republic of China

Received 9 August 2000; received in revised form 2 June 2003; accepted 5 June 2003

Abstract

Let \(G \) be a simple graph and \(P(G, \lambda) \) denote the chromatic polynomial of \(G \). Then \(G \) is said to be chromatically unique if for any simple graph \(H \), \(P(H, \lambda) = P(G, \lambda) \) implies that \(H \) is isomorphic to \(G \). A class \(\mathcal{L} \) of graphs is called a class of chromatically normal graphs if, for any \(Y, G \in \mathcal{L} \), \(P(Y, \lambda) = P(G, \lambda) \) implies that \(Y \) is isomorphic to \(G \). Let \(K(n_1, n_2, \ldots, n_t) \) denote a complete \(t \)-partite graph and \(\mathcal{L}_t = \{ K(n_1, n_2, \ldots, n_t) \mid 0 < n_1 \leq n_2 \leq \cdots \leq n_t \} \). The main results of the paper are as follows.

Let \(G = K(n_1, n_2, \ldots, n_t) \in \mathcal{L}_t \), \(t \geq 3 \), \(\mathcal{L}(G) = \{ Y \mid P(Y, \lambda) = P(G, \lambda) \} \) and \(a_t = \left(\sum_{1 \leq i < j \leq t} (n_i - n_j)^2 / (2t) \right)^{1/2} \). If

\[
\sum_{i=1}^{t} n_i > ta_t^2 + \sqrt{2t(t-1)a_t},
\]

then \(\mathcal{L}(G) \subseteq \mathcal{L}_t \). Furthermore, if \(\mathcal{L}_t \) is also a class of chromatically normal graphs, then \(G \) is chromatically unique. In particular, if \(G \) satisfies the condition \((*) \) and one of the following conditions:

\[
(i) \ n_1 = n_2 = \cdots = n_t, \quad (ii) \ n_1 < n_2 < \cdots < n_t, \quad (iii) \ t = 3, \quad (iv) \ t = 4,
\]

then \(G \) is chromatically unique.

\(\odot \) 2003 Elsevier B.V. All rights reserved.

Keywords: Complete \(t \)-partite graph; Chromatically unique graph; Chromatically normal graphs; Partition into color classes

\(\star \) Project supported by Jiangxi Education Bureau Science & Technology Foundation (2002-01) and Shanghai Higher Learning Science & Technology Development Foundation (02DK08).

0012-365X/$ - see front matter \(\odot \) 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2003.06.014
1. Introduction

We consider only finite, undirected and simple graphs. Notation and terminology that are not defined here may be found in [1,2,7,8].

Let \(P(G, \lambda) \) denote the chromatic polynomial of a graph \(G \). Two graphs \(H \) and \(G \) are said to be chromatically equivalent (in notation: \(H \sim G \)) if \(P(H, \lambda) = P(G, \lambda) \). A graph \(G \) is said to be chromatically unique if, for any graph \(H \), \(H \sim G \) implies that \(H \cong G \).

The notion of chromatic uniqueness was first introduced and studied by Chao and Whitehead in 1978 [4]. Koh and Teo, in their expository paper [7,8], gave a survey of most of the work done before 1997.

In this paper, let \(K(n_1, n_2, \ldots, n_t) \) denote a complete \(t \)-partite graph with partite sets \(N_i \) such that \(|N_i| = n_i \) for \(i = 1, 2, \ldots, t \), and let \(K(n_1, n_2, \ldots, n_t) - A \) denote the \(t \)-partite graph obtained by deleting a set \(A \) of edges from the graph \(K(n_1, n_2, \ldots, n_t) \).

When \(t = 2 \), the beautiful results are that \(K(m, n) \) (for \(2 \leq m \leq n \)) and \(K(m, n) - \{e\} \) (for \(3 \leq m \leq n \)) are chromatically unique [10]. On the chromatic uniqueness of \(K(n_1, n_2, \ldots, n_t) \) for \(t \geq 3 \), the authors pointed out in [3,5–9] that the following graphs (under certain conditions) are chromatically unique:

- \(K(n, n, n + k) \) (for \(n \geq 2 \) and \(0 \leq k \leq 3 \)), \(K(n - k, n, n) \) (for \(n \geq k + 2 \) and \(0 \leq k \leq 3 \)), \(K(n - k, n, n + k) \) (for \(n \geq 5 \) and \(0 \leq k \leq 2 \)) [5];
- \(K(n_1, n_2, \ldots, n_t) \) (for \(|n_i - n_j| \leq 1 \) where \(1 \leq i \leq t \) and \(1 \leq j \leq t \)) [3];
- \(K(n - 1, n, \ldots, n, n + 1) \) and \(K(n, n, \ldots, n) - \{e\} \) (for \(n \geq 3 \)) [6];
- \(K(1, n_2, \ldots, n_t) \) (if and only if \(\max\{n_2, \ldots, n_t\} \leq 2 \)) [9].

Thus, \(K(1, n_2, \ldots, n_t) \) is not chromatically unique if \(\max\{n_2, \ldots, n_t\} \geq 3 \).

The authors in [5,7] also put forward the following problem and conjecture:

Problem A (Koh and Teo [7]). For each \(t \geq 2 \), is the graph \(K(n_1, n_2, \ldots, n_t) \) chromatically unique if \(|n_i - n_j| \leq 2 \) where \(1 \leq i \leq t \) and \(1 \leq j \leq t \), and if \(\min\{n_1, n_2, \ldots, n_t\} \) is sufficiently large?

Conjecture B (Chia et al. [5]; Koh and Teo [7]). The graph \(K(n - k, n, n) \) is chromatically unique for all \(n, k \) with \(n \geq k + 2 \).

In this paper, we discuss the chromatic uniqueness of more general graphs \(K(n_1, n_2, \ldots, n_t) \) (for \(t \geq 3 \)) and give a partial solution to the above problem and conjecture.

2. The main results

First, we define a class of graphs as follows.

A class \(\mathcal{L} \) of graphs is called a class of *chromatically normal graphs* if, for any \(Y, G \in \mathcal{L} \), \(Y \sim G \) implies that \(Y \cong G \).

Clearly, if a graph \(G \) is chromatically unique, then \(\mathcal{A}(G) = \{Y \mid Y \sim G\} \) is a class of chromatically normal graphs. Thus the following property holds.

Property 1. A graph \(G \) is chromatically unique if and only if there exists a class \(\mathcal{L} \) of chromatically normal graphs such that \(\mathcal{A}(G) \subseteq \mathcal{L} \).
Let $\mathcal{L}_t = \{K(n_1, n_2, \ldots, n_t) \mid 0 < n_1 \leq n_2 \leq \cdots \leq n_t\}$.

Property 2 (Zou [15]). \mathcal{L}_3 and \mathcal{L}_4 are classes of chromatically normal graphs.

Our main results are as follows.

Theorem 1. Let $G = K(n_1, n_2, \ldots, n_t) \in \mathcal{L}_t$, $t \geq 3$, $a_i = \left(\sum_{1 \leq i < j \leq t} (n_i - n_j)^2/(2t)\right)^{1/2}$ and $\mathcal{A}(G) = \{Y \mid Y \sim G\}$. If

$$\sum_{i=1}^t n_i > ta_i^2 + \sqrt{2t(t-1)a_i},$$

then $\mathcal{A}(G) \subseteq \mathcal{L}_t$.

Furthermore, if \mathcal{L}_t is also a class of chromatically normal graphs, then G is chromatically unique.

Corollary 1. Let $G = K(n_1, n_2, \ldots, n_t) \in \mathcal{L}_t$ where $t \geq 3$. If G satisfies condition (*) of Theorem 1 and also satisfies one of the following conditions:

(i) $n_1 = n_2 = \cdots = n_t$, (ii) $n_1 < n_2 < \cdots < n_t$, (iii) $t = 3$, (iv) $t = 4$,

then G is chromatically unique.

Theorem 2. Let $G = K(m, n, r)$ where $m \leq n \leq r$ and $r - m = u \geq 0$. If $m > (u + u^2)/3$, then G is chromatically unique.

Theorem 3. If $n > k + k^2/3$ and $k \geq 0$, then $K(n-k, n, n)$ is chromatically unique.

Theorem 4. Let $G = K(h, m, n, r)$ where $h \leq m \leq n \leq r$ and $r - h = u \geq 0$. If $h > (2\sqrt{3} - 1)u/4 + u^2/2$, then G is chromatically unique.

Remark 1. 1. Theorems 2 and 4 give a partial solution to Problem A for $t = 3$ and 4, respectively. Theorem 3 gives a partial solution to Conjecture B. When $k = 4$, Conjecture B is true [11].

2. Let $K(n_1, n_2, n_3) = K(n-k, n, n+i)$, where k and i are non-negative integers. By Theorem 2 if $3n > k - i + (k^2 + i^2 + ki) + 2(k^2 + i^2 + ki)^{1/2}$, then $K(n-k, n, n+i)$ is chromatically unique. In [5,7,8], it was shown that $K(n-k, n, n+i)$ is chromatically unique for some particular cases such as $k = 0$, $0 \leq i \leq 3$ and $n \geq 2$; or $i = 0$, $0 \leq k \leq 3$ and $n \geq k + 2$; or $0 \leq k \leq 2$ and $n \geq 5$ (see also Section 1).

3. If $n_1 + n_2 + n_3 \leq 3a_3^2 + 2\sqrt{3}a_3$, then $K(n_1, n_2, n_3)$ might not be chromatically unique. For example, $K(1, n, n)$ is not chromatically unique if $n \geq 3$ (see [9] or Section 1), where $a_3 = (n-1)/\sqrt{3}$ and $n_1 + n_2 + n_3 = 2n + 1 < n^2 - 1 = 3a_3^2 + 2\sqrt{3}a_3$ if $n \geq 3$. But the condition of Theorem 2 for $t = 3$ is only a sufficient condition, since $K(2, 4, 6)$ is chromatically unique [12] while the condition is not satisfied.
3. Some preliminary lemmas

Let G be a graph and let $m_r(G)$ denote the number of distinct partitions of $V(G)$ into r color classes.

Lemma 1 (Zou [14]; Zou and Shi [17]). For any two graphs G and Y, $Y \sim G$ if and only if $|V(Y)| = |V(G)|$ and $m_r(Y) = m_r(G)$ for $r = 1, 2, \ldots, |V(G)|$.

Lemma 2. Let $G = K(n_1, n_2, \ldots, n_t) \in \mathcal{L}_t$. Then $m_{t+1}(G) = 2^{n-1} + 2^{n-1} + \cdots + 2^{n-1} - t$.

Proof. Let (N_1, N_2, \ldots, N_t) denote the t-partition of $V(G)$, where $|N_i| = n_i$ for $i = 1, 2, \ldots, t$. Since any two vertices which lie in different partite sets of (N_1, N_2, \ldots, N_t) are adjacent in G, a partition of $V(G)$ into $t + 1$ color classes must be obtained from (N_1, N_2, \ldots, N_t) by partitioning one of the N_i ($i = 1, 2, \ldots, t$) into two color classes. For each $i = 1, 2, \ldots, t$, let D_i denote the number of ways of partitioning N_i into two color classes. Clearly

$$D_i = \sum_{j=1}^{n_i-1} \binom{n_i}{j} / 2 = 2^{n_i-1} - 1 \quad \text{for} \quad i = 1, 2, \ldots, t.$$

Thus

$$m_{t+1}(G) = D_1 + D_2 + \cdots + D_t = 2^{n_1-1} + 2^{n_2-1} + \cdots + 2^{n_t-1} - t. \quad \Box$$

Lemma 3 (Zou [13,16]). Let $G = K(n_1, n_2, \ldots, n_t) \in \mathcal{L}_t$ where $t \geq 3$, and let J be the set of integers, R the set of real numbers and R^t the t-dimensional cartesian product of R. Suppose that Y is a graph such that $Y \sim G$. Then

$$Y = K(n_1 + \alpha_1, n_2 + \alpha_2, \ldots, n_t + \alpha_t) - A,$$

where $|A| = \sum_{1 \leq i < j \leq t} \alpha_i \alpha_j + \sum_{1 \leq i < j \leq t} (n_i \alpha_j + n_j \alpha_i) \geq 0$, $\sum_{i=1}^t \alpha_i = 0$, $\alpha_i \in J$ and $n_i + \alpha_i > 0$ for $i = 1, 2, \ldots, t$.

Moreover, let $x = (x_1, x_2, \ldots, x_t) \in R^t$, $s(x) = s = |A| \geq 0$, $a_i = \left(\sum_{1 \leq i < j \leq t} (n_i - n_j)^2 / (2t)\right)^{1/2}$, $d_{i-1} = \sqrt{2(t - 1)/t}$ and $c = (c_1, c_2, \ldots, c_t)$ where $c_i = \left(\sum_{j=i+1}^(t-1) (n_j - n_i) + \sum_{j=i+1}^t (n_j - n_i)\right) / t$ for $i = 1, 2, \ldots, t$. Then

(i) $x \in D = \{x | c_i - d_{i-1}a_i \leq \alpha_i \leq c_i + d_{i-1}a_i, \ i = 1, 2, \ldots, t; \ \sum_{i=1}^t \alpha_i = 0\}$ and $s = s(x) = 0$ if each inequality is an equality;

(ii) $\max_{x \in D} \{s(x)\} = s(c) = a_i^2$,

(iii) Let $w = \sum_{i=1}^t n_i / t - d_{t-1}a_t$. If $s = s(x) > 0$, then $w \leq n_i$ and $w < n_i + \alpha_i$ for $i = 1, 2, \ldots, t$.

Lemma 4. Let $H = K(r_1, r_2, \ldots, r_t) \in \mathcal{L}_t$, $Y = H - A$, where A is a nonempty set of s edges of H and $\eta = m_{t+1}(Y) - m_{t+1}(H)$. If $\min\{r_1, r_2, \ldots, r_t\} > s$, then $s \leq \eta \leq 2^s - 1$.

Proof. It is clear that any partition of $V(H)$ into $t + 1$ color classes is a partition of $V(Y)$ into $t + 1$ color classes. Therefore η is the number of partitions of $V(Y)$ into $t + 1$ color classes which are not partitions of $V(H)$.

Let (R_1, R_2, \ldots, R_t) denote the t-partition of $V(H)$, where $|R_i| = r_i$ for $i = 1, 2, \ldots, t$, and let V' denote the set of end vertices of the edges in A.

We next prove the following:

Claim. A necessary and sufficient condition for P to be a partition of $V(Y)$ into $t + 1$ color classes but not a partition of $V(H)$ is that P be a partition of $V(Y)$ into $t + 1$ color classes of which one is the set V_0 of end vertices of the edges in some fixed nonempty subset of A and the remaining t are the sets $R_i - V'$ where $i = 1, 2, \ldots, t$.

(Necessity). If P is a partition of $V(Y)$ into $t + 1$ color classes but not a partition of $V(H)$, then there exists at least one color class (say V_0) of the $t + 1$ color classes of P which contains some vertices of different partite sets of (R_1, R_2, \ldots, R_t). Since any two vertices of V_0 are not adjacent in Y, V_0 contains the end vertices of some ℓ ($1 \leq \ell \leq t$) edges of A.

Because $\min\{r_1, r_2, \ldots, r_t\} > s$, we conclude that none of $R_i - V' (\subseteq R_i - V_0)$, $i = 1, 2, \ldots, t$, is null. Clearly, $R_i - V'$, $i = 1, 2, \ldots, t$, must be contained, respectively, in t different color classes of P of which none contains vertices of different partite sets of (R_1, R_2, \ldots, R_t). But there are only $t + 1$ color classes. Therefore, the $t + 1$ color classes must be V_0 and $R_i - V_0$, $i = 1, 2, \ldots, t$.

(Sufficiency). If one of the $t + 1$ color classes of P contains vertices of different partite sets of (R_1, R_2, \ldots, R_t), it is clear that P is not a partition of $V(H)$ into $t + 1$ color classes.

Now we complete the proof of the lemma.

Since η is equal to the number of partitions P described in the claim and P is determined by V_0, we can easily see that

$$s = \left(\begin{array}{c} s \\ 1 \end{array} \right) \leq \eta \leq \sum_{j=1}^{s} \left(\begin{array}{c} s \\ j \end{array} \right) = 2^s - 1.$$

4. Proofs of the theorems and corollary

4.1. Proof of Theorem 1

Let J be the set of integers and let J' be the t-dimensional cartesian product of J.

Suppose that $Y \in \mathcal{Z}(G)$. Then, by Lemmas 1 and 3, we have

$$m_{t+1}(Y) = m_{t+1}(G),$$

$$Y = K(n_1 + x_1, n_2 + x_2, \ldots, n_t + x_t) - A,$$

where $|A| = s = s(x) = \sum_{1 \leq i < j \leq t} x_i x_j + \sum_{1 \leq i < j \leq t} (n_i x_j + n_j x_i) \geq 0$, $x \in D \cap J'$ and $n_i + x_i > 0$ for $i = 1, 2, \ldots, t$. (See Lemma 3(i) for the definition of D.)

We first show that $s = s(x) = 0$.

Let \(H = K(n_1 + x_1, n_2 + x_2, \ldots, n_t + x_t) \) and \(\eta = m_{t+1}(Y) - m_{t+1}(H) \). By Lemma 2, we obtain \(m_{t+1}(G) = \sum_{i=1}^{t} 2^{n_i-1} - t \) and \(m_{t+1}(H) = \sum_{i=1}^{t} 2^{n_i+x_i-1} - t \). It follows that

\[
m_{t+1}(G) - m_{t+1}(Y) = \sum_{i=1}^{t} 2^{n_i-1} - \sum_{i=1}^{t} 2^{n_i+x_i-1} - \eta.
\] (3)

Suppose that \(s = s(x) > 0 \). We shall deduce that \(m_{t+1}(G) - m_{t+1}(Y) \neq 0 \). By Lemma 3, we have

\[
s \leq \max_{s \in \mathcal{D}} \{ s(x) \} = a_t^2 = \sum_{1 \leq i < j \leq t} (n_i - n_j)^2/(2t).
\] (4)

Let \(w = \sum_{i=1}^{t} n_i/t - \sqrt{2t(t-1)a_i/t} \). Also by Lemma 3, we find that

\[
w \leq n_i \quad \text{and} \quad w < n_i + x_i \quad \text{for} \; i = 1, 2, \ldots, t.
\] (5)

From the hypothesis of Theorem 1, we see that

\[
w \geq a_t^2 \geq s.
\] (6)

From (5) and (6), we have

\[
\max_{s \in \mathcal{D} \cup \mathcal{L}} \{ n_1 + x_1, n_2 + x_2, \ldots, n_t + x_t \} > w > s.
\] (7)

Thus, by Lemma 4, we arrive at

\[
0 < s \leq \eta \leq 2^t - 1.
\] (8)

Now, from (5) and (6), we have \(n_i - 1 \geq s \) and \(n_i + x_i - 1 \geq s \), \(i = 1, 2, \ldots, t \). Thus the following expression is divisible by \(2^t \):

\[
\sum_{i=1}^{t} 2^{n_i-1} - \sum_{i=1}^{t} 2^{n_i+x_i-1}.
\]

But \(0 < \eta < 2^t \). Hence \(m_{t+1}(G) - m_{t+1}(Y) \) is not divisible by \(2^t \) and, of course, not equal to 0, a contradiction.

Thus \(s = s(x) = 0 \) and \(Y = H = K(n_1 + x_1, n_2 + x_2, \ldots, n_t + x_t) \).

Let \(r_i = n_i + x_i \) for \(i = 1, 2, \ldots, t \). We might as well assume that \(r_1 \leq r_2 \leq \cdots \leq r_t \).

Then \(Y = H = K(r_1, r_2, \ldots, r_t) \in \mathcal{L}' \). Hence \(\mathcal{L}(G) \subseteq \mathcal{L}' \).

If \(\mathcal{L}' \) is a class of chromatically normal graphs, then, from Property 1, \(G \) is chromatically unique.

4.2. Proof of Corollary 1

Follow the proof of Theorem 1.

(i) \(n_1 = n_2 = \cdots = n_t \).

By Lemma 3, we have \(a_t = 0, \; x = c = 0 \) and \(s = s(x) = 0 \). Then, from (2), we obtain \(Y = K(n_1, n_2, \ldots, n_t) \cong G \), i.e., \(G \) is chromatically unique.

(ii) \(n_1 < n_2 < \cdots < n_t \).
From (1), Lemma 2 and \(Y = K(r_1, r_2, \ldots, r_t) \in L_t \), we deduce that
\[
\sum_{i=1}^{t} 2^{n_i - 1} = \sum_{i=1}^{t} 2^{r_i - 1}.
\]

Let \(N \) and \(M \) denote respectively the set consisting of the exponents of the non-zero terms in the binary expansion of \(\sum_{i=1}^{t} 2^{n_i - 1} \) and of \(\sum_{i=1}^{t} 2^{r_i - 1} \). (For example, for \(2 + 2^2 + 2^3 = 2 + 2^4 \) we see that \(N = \{1, 4\} \).) Then, from (9), we have \(N = M \).

Since \(n_1 < n_2 < \cdots < n_t \), \(N = \{n_1 - 1, n_2 - 1, \ldots, n_t - 1\} \) and \(|M| = |N| = t \). Therefore \(M = \{r_1 - 1, r_2 - 1, \ldots, r_t - 1\} \) and hence \(\{n_1, n_2, \ldots, n_t\} = \{r_1, r_2, \ldots, r_t\} \).

Therefore, \(Y \sim G \), i.e., \(G \) is chromatically unique.

4.3. Proof of Theorem 2

From Theorem 1 and Corollary 1, we need only prove that
\[
m + n + r > 3a_3^2 + 2\sqrt{3}a_3.
\]

Since \(m \leq n \leq r \) and \(r - m = u \), \(m + n + r \geq 3m + u \).

Let \(n - m = i \). Then \(0 \leq i \leq u \). Therefore \(i^2 + (u - i)^2 = 2i(i - u) + u^2 \leq u^2 \). Hence
\[
a_3^2 = ((n - m)^2 + (r - m)^2 + (r - n)^2)/6 = (i^2 + u^2 + (u - i)^2)/6 \leq u^2/3,
\]
i.e., \(u^2 \geq 3a_3^2 \) and \(u \geq \sqrt{3}a_3 \).

From the assumption that \(m > (u + u^2)/3 \), we deduce that
\[
m + n + r \geq 3m + u > 2u + u^2 \geq 3a_3^2 + 2\sqrt{3}a_3.
\]

4.4. Proof of Theorem 3

From Theorem 1 and Corollary 1, we need only prove that
\[
3n - k > 3a_3^2 + 2\sqrt{3}a_3.
\]

Clearly, \(a_3^2 = k^2/3 \). From the assumption that \(n > k + k^2/3 \), we deduce that
\[
3n - k > 2k + k^2 = 3a_3^2 + 2\sqrt{3}a_3.
\]

4.5. Proof of Theorem 4

From Theorem 1 and Corollary 1, we need only prove that
\[
h + m + n + r > 4a_4^2 + 2\sqrt{6}a_4.
\]
Since \(h \leq m \leq n \leq r \) and \(r - h = u \), \(h + m + n + r \geq 4h + u \).

Let \(m - h = i \) and \(n - h = j \). Then \(0 \leq i \leq u \) and \(0 \leq j \leq u \). Thus
\[
i^2 + (u - i)^2 \leq u^2, \quad j^2 + (u - j)^2 \leq u^2, \quad (j - i)^2 \leq u^2.
\]

Hence
\[
a_4^2 = \frac{((m - h)^2 + (n - h)^2 + (r - h)^2 + (n - m)^2 + (r - m)^2 + (r - n)^2)}{8}
\]
\[
= \frac{(i^2 + j^2 + u^2 + (j - i)^2 + (u - i)^2 + (u - j)^2)}{8} \leq \frac{u^2}{2},
\]
i.e., \(u^2 \geq 2a_4^2 \) and \(u \geq \sqrt{2}a_4 \).

From the assumption that \(h > (2\sqrt{3} - 1)u/4 + u^2/2 \), we deduce that
\(h + m + n + r \geq 4h + u > 2\sqrt{3}u + 2u^2 \geq 4a_4^2 + 2\sqrt{6}a_4 \).

Acknowledgements

The author is very grateful to the referees for their very helpful comments, and to his supervisor Professor Shi Yongbing and Professor Zeng Guangxing for their great help.

References

[9] N.Z. Li, R.Y. Liu, The chromaticity of the complete \(t \)-partite graph \(K(1, p_2, \ldots, p_t) \), J. Xinjiang Uni. 7 (3) (1990) 95–96.
