

Discrete Mathematics 275 (2004) 375 – 383

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

The chromatic uniqueness of certain complete *t*-partite graphs^{\vec{x}}

Hui Wen Zou^{a, b}

^a*Glorious Sun School of Business & Management, Donghua University, Shanghai 200052, People's Republic of China* ^b*Department of Mathematics, East China Institute of Technology (North Area), Fuzhou 344000, People's Republic of China*

Received 9 August 2000; received in revised form 2 June 2003; accepted 5 June 2003

Abstract

Let G be a simple graph and $P(G, \lambda)$ denote the chromatic polynomial of G. Then G is said to be chromatically unique if for any simple graph H, $P(H, \lambda) = P(G, \lambda)$ implies that H is isomorphic to G. A class $\mathscr L$ of graphs is called a class of chromatically normal graphs if, for any $Y, G \in \mathcal{L}, P(Y, \lambda) = P(G, \lambda)$ implies that Y is isomorphic to G. Let $K(n_1, n_2, \ldots, n_t)$ denote a complete t-partite graph and $\mathcal{L}_t = \{K(n_1, n_2, \ldots, n_t) | 0 < n_1 \leq n_2 \leq \cdots \leq n_t\}$. The main results of the paper are as follows.

Let $G = K(n_1, n_2, \ldots, n_t) \in \mathcal{L}_t$, $t \geq 3$, $\mathcal{Q}(G) = \{Y | P(Y, \lambda) = P(G, \lambda)\}$ and $a_t =$ $\left(\sum_{1 \leq i < j \leq t} (n_i - n_j)^2 / (2t) \right)^{1/2}$. If \sum $i=1$ $n_i > ta_i^2 + \sqrt{2t(t-1)}a_t,$ (*)

then $\mathcal{Q}(G) \subseteq \mathcal{L}_t$. Furthermore, if \mathcal{L}_t is also a class of chromatically normal graphs, then G is chromatically unique. In particular, if G satisfies the condition $(*)$ and one of the following conditions:

(i) $n_1 = n_2 = \cdots = n_t$, (ii) $n_1 < n_2 < \cdots < n_t$, (iii) $t = 3$, (iv) $t = 4$,

then G is chromatically unique.

 c 2003 Elsevier B.V. All rights reserved.

Keywords: Complete t-partite graph; Chromatically unique graph; Chromatically normal graphs; Partition into color classes

0012-365X/\$ - see front matter \odot 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2003.06.014

 \overline{X} Project supported by Jiangxi Education Bureau Science & Technology Foundation (2002-01) and Shanghai Higher Learning Science & Technology Development Foundation (02DK08).

1. Introduction

We consider only finite, undirected and simple graphs. Notation and terminology that are not defined here may be found in $[1,2,7,8]$.

Let $P(G, \lambda)$ denote the chromatic polynomial of a graph G. Two graphs H and G are said to be *chromatically equivalent* (in notation: $H \sim G$) if $P(H, \lambda) = P(G, \lambda)$. A graph G is said to be *chromatically unique* if, for any graph $H, H \sim G$ implies that $H \cong G$.

The notion of chromatic uniqueness was first introduced and studied by Chao and Whitehead in 1978 [\[4\]](#page-7-0). Koh and Teo, in their expository paper [\[7,8\]](#page-7-0), gave a survey of most of the work done before 1997.

In this paper, let $K(n_1, n_2, \ldots, n_t)$ denote a complete t-partite graph with partite sets N_i such that $|N_i| = n_i$ for $i = 1, 2, \ldots, t$, and let $K(n_1, n_2, \ldots, n_t) - A$ denote the t-partite graph obtained by deleting a set A of edges from the graph $K(n_1, n_2, \ldots, n_t)$.

When $t = 2$, the beautiful results are that $K(m, n)$ (for $2 \le m \le n$) and $K(m, n)$ – ${e}$ (for $3 \le m \le n$) are chromatically unique [\[10\]](#page-7-0). On the chromatic uniqueness of $K(n_1, n_2, \ldots, n_t)$ for $t \ge 3$, the authors pointed out in [\[3,5–9\]](#page-7-0) that the following graphs (under certain conditions) are chromatically unique:

 $K(n, n, n+k)$ (for $n \ge 2$ and $0 \le k \le 3$), $K(n-k, n, n)$ (for $n \ge k+2$ and $0 \le k \le 3$), $K(n - k, n, n + k)$ (for $n \ge 5$ and $0 \le k \le 2$) [\[5\]](#page-7-0); $K(n_1, n_2, ..., n_t)$ (for $|n_i - n_j| \le 1$ where $1 \le i \le t$ and $1 \le j \le t$) [\[3\]](#page-7-0); $K(n-1, n, ..., n, n+1)$ and $K(n, n, ..., n) - \{e\}$ (for $n \ge 3$) [\[6\]](#page-7-0); $K(1, n_2,..., n_t)$ (if and only if $\max\{n_2,..., n_t\} \le 2$) [\[9\]](#page-7-0).

Thus, $K(1, n_2, \ldots, n_t)$ is not chromatically unique if max $\{n_2, \ldots, n_t\} \geq 3$.

The authors in [\[5,7\]](#page-7-0) also put forward the following problem and conjecture:

Problem A (Koh and Teo [\[7\]](#page-7-0)). For each $t \ge 2$, is the graph $K(n_1, n_2, \ldots, n_t)$ chromatically unique if $|n_i - n_j| \le 2$ where $1 \le i \le t$ and $1 \le j \le t$, and if $\min\{n_1, n_2,..., n_t\}$ is sufficiently large?

Conjecture B (Chia et al. [\[5\]](#page-7-0); Koh and Teo [\[7\]](#page-7-0)). The graph $K(n-k, n, n)$ is chromatically unique for all n, k with $n \geq k + 2$.

In this paper, we discuss the chromatic uniqueness of more general graphs $K(n_1,$ $n_2,...,n_t$) (for $t \ge 3$) and give a partial solution to the above problem and conjecture.

2. The main results

First, we define a class of graphs as follows.

A class L of graphs is called a class of *chromatically normal graphs* if, for any $Y, G \in \mathcal{L}, Y \sim G$ implies that $Y \cong G$.

Clearly, if a graph G is chromatically unique, then $\mathcal{Q}(G) = \{Y | Y \sim G\}$ is a class of chromatically normal graphs. Thus the following property holds.

Property 1. A graph G is chromatically unique if and only if there exists a class \mathscr{L} of chromatically normal graphs such that $\mathcal{Q}(G) \subseteq \mathcal{L}$.

Let $\mathcal{L}_t = \{K(n_1, n_2, \ldots, n_t) | 0 < n_1 \leq n_2 \leq \cdots \leq n_t\}.$

Property 2 (Zou [\[15\]](#page-8-0)). \mathcal{L}_3 and \mathcal{L}_4 are classes of chromatically normal graphs.

Our main results are as follows.

Theorem 1. *Let* $G = K(n_1, n_2, ..., n_t) \in \mathcal{L}_t$, $t \ge 3$, $a_t = \left(\sum_{1 \le i < j \le t} (n_i - n_j)^2 / (2t)\right)^{1/2}$ *and* $\mathcal{Q}(G) = \{Y | Y \sim G\}$. *If*

$$
\sum_{i=1}^{t} n_i > ta_t^2 + \sqrt{2t(t-1)}a_t,
$$
\n^(*)

then $\mathcal{Q}(G) \subseteq \mathcal{L}_t$.

Furthermore, if \mathcal{L}_t *is also a class of chromatically normal graphs, then* G *is chromatically unique*.

Corollary 1. Let $G = K(n_1, n_2, \ldots, n_t) \in \mathcal{L}_t$ where $t \geq 3$. If G satisfies condition (*) *of Theorem* 1 *and also satisfies one of the following conditions:*

(i)
$$
n_1 = n_2 = \cdots = n_t
$$
, (ii) $n_1 < n_2 < \cdots < n_t$, (iii) $t = 3$, (iv) $t = 4$,

then G *is chromatically unique*.

Theorem 2. Let $G = K(m, n, r)$ where $m \le n \le r$ and $r - m = u \ge 0$. If $m > (u + u^2)/3$, *then* G *is chromatically unique*.

Theorem 3. *If* $n > k + k^2/3$ *and* $k \ge 0$, *then* $K(n - k, n, n)$ *is chromatically unique.*

Theorem 4. Let $G = K(h, m, n, r)$ where $h \leq m \leq n \leq r$ and $r - h = u \geq 0$. If $h >$ **Theorem 4.** Let $G = K(n, m, n, r)$ where $n \le m \le n \le (2\sqrt{3} - 1)u/4 + u^2/2$, then G is chromatically unique.

Remark 1. 1. Theorems 2 and 4 give a partial solution to Problem [A](#page-1-0) for $t = 3$ and 4, respectively. Theorem 3 gives a partial solution to Conjecture [B.](#page-1-0) When $k = 4$, Conjecture [B](#page-1-0) is true [\[11\]](#page-7-0).

2. Let $K(n_1, n_2, n_3) = K(n - k, n, n + i)$, where k and i are non-negative integers. By Theorem 2 if $3n > k - i + (k^2 + i^2 + ki) + 2(k^2 + i^2 + ki)^{1/2}$, then $K(n - k, n, n + i)$ is chromatically unique. In [\[5,7,8\]](#page-7-0), it was shown that $K(n - k, n, n + i)$ is chromatically unique for some particular cases such as $k=0$, $0 \le i \le 3$ and $n \ge 2$; or $i=0$, $0 \le k \le 3$ and $n \geq k + 2$; or $0 \leq i = k \leq 2$ and $n \geq 5$ (see also Section [1\)](#page-1-0).

 α $n \ge \kappa + 2$; or $0 \le l = \kappa \le 2$ and $n \ge 3$ (see also Section 1).
3. If $n_1 + n_2 + n_3 \le 3a_3^2 + 2\sqrt{3}a_3$, then $K(n_1, n_2, n_3)$ might not be chromatically unique. For example, $K(1, n, n)$ is not chromatically unique if $n \geq 3$ (see [\[9\]](#page-7-0) or Section [1\)](#page-1-0), For example, $K(1, n, n)$ is not chromatically unique if $n \ge 3$ (see [9] or section 1),
where $a_3 = (n-1)/\sqrt{3}$ and $n_1 + n_2 + n_3 = 2n + 1 < n^2 - 1 = 3a_3^2 + 2\sqrt{3}a_3$ if $n \ge 3$. But the condition of Theorem 2 for $t = 3$ is only a sufficient condition, since $K(2, 4, 6)$ is chromatically unique [\[12\]](#page-7-0) while the condition is not satisfied.

3. Some preliminary lemmas

Let G be a graph and let $m_r(G)$ denote the number of distinct partitions of $V(G)$ into r color classes.

Lemma 1 (Zou [\[14\]](#page-7-0); Zou and Shi [\[17\]](#page-8-0)). *For any two graphs* G *and* Y , Y ∼ G *if and only if* $|V(Y)| = |V(G)|$ *and* $m_r(Y) = m_r(G)$ *for* $r = 1, 2, ..., |V(G)|$.

Lemma 2. Let $G=K(n_1, n_2, \ldots, n_t) \in \mathcal{L}_t$. Then $m_{t+1}(G)=2^{n_1-1}+2^{n_2-1}+\cdots+2^{n_t-1}-t$.

Proof. Let (N_1, N_2, \ldots, N_t) denote the *t*-partition of $V(G)$, where $|N_i| = n_i$ for $i =$ 1,2,...,t. Since any two vertices which lie in different partite sets of (N_1, N_2, \ldots, N_t) are adjacent in G, a partition of $V(G)$ into $t + 1$ color classes must be obtained from $(N_1, N_2,..., N_t)$ by partitioning one of the N_i $(i = 1, 2,..., t)$ into two color classes. For each $i = 1, 2, \ldots, t$, let D_i denote the number of ways of partitioning N_i into two color classes. Clearly

$$
D_i = \sum_{j=1}^{n_i-1} {n_i \choose j} / 2 = 2^{n_i-1} - 1 \text{ for } i = 1, 2, ..., t.
$$

Thus

$$
m_{t+1}(G) = D_1 + D_2 + \cdots + D_t = 2^{n_1-1} + 2^{n_2-1} + \cdots + 2^{n_t-1} - t. \qquad \Box
$$

Lemma 3 (Zou [\[13](#page-7-0)[,16\]](#page-8-0)). Let $G = K(n_1, n_2, \ldots, n_t) \in \mathcal{L}_t$ where $t \geq 3$, and let J be the *set of integers*, R *the set of real numbers and* Rt *the* t-*dimensional cartesian product of* R. *Suppose that* Y *is a graph such that* Y ∼ G. *Then*

 $Y = K(n_1 + \alpha_1, n_2 + \alpha_2, \ldots, n_t + \alpha_t) - A$

 $where \mid A \mid = \sum_{1 \leq i < j \leq t} \alpha_i \alpha_j + \sum_{1 \leq i < j \leq t} (n_i \alpha_j + n_j \alpha_i) \geq 0, \sum_{i=1}^t \alpha_i = 0, \alpha_i \in J \text{ and } j \leq t$ $n_i + \alpha_i > 0$ for $i = 1, 2, ..., t$. *Moreover*, *let* $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_t) \in R^t$, $s(\alpha) = s = |A| \geq 0$, $a_t = (\sum_{1 \leq i \leq j \leq t} (n_i - n_j)^2$

$$
(2t)\bigg)^{1/2}, d_{t-1} = \sqrt{2(t-1)/t} \text{ and } c = (c_1, c_2, \dots, c_t) \text{ where } c_i = \left(\sum_{j=1}^{i-1} (n_j - n_i) + \sum_{j=i+1}^{t} (n_j - n_i)\right) / t \text{ for } i = 1, 2, \dots, t. \text{ Then}
$$

- (i) $\alpha \in D = \{ \alpha \mid c_i d_{t-1}a_i \leq \alpha_i \leq c_i + d_{t-1}a_t, i = 1, 2, ..., t; \sum_{i=1}^t \alpha_i = 0 \}$ and $s =$ $s(\alpha)=0$ *if each inequality is an equality*;
- (ii) max_{$\alpha \in D$} { $s(\alpha)$ } = $s(c) = a_t^2$;
- (iii) Let $w = \sum_{i=1}^{t} n_i/t d_{t-1}a_t$. If $s = s(\alpha) > 0$, then $w \leq n_i$ and $w < n_i + \alpha_i$ for $i = 1, 2, \ldots, t.$

Lemma 4. *Let* $H = K(r_1, r_2,...,r_t) \in \mathcal{L}_t$, $Y = H - A$, *where* A *is a nonempty set of s edges of* H *and* $\eta = m_{t+1}(Y) - m_{t+1}(H)$. If $\min\{r_1, r_2, ..., r_t\} > s$, then $s \le \eta \le 2^s - 1$. **Proof.** It is clear that any partition of $V(H)$ into $t + 1$ color classes is a partition of $V(Y)$ into $t + 1$ color classes. Therefore η is the number of partitions of $V(Y)$ into $t + 1$ color classes which are not partitions of $V(H)$.

Let (R_1, R_2, \ldots, R_t) denote the t-partition of $V(H)$, where $|R_i| = r_i$ for $i = 1, 2, \ldots, t$, and let V' denote the set of end vertices of the edges in A.

We next prove the following:

Claim. A necessary and sufficient condition for P to be a partition of $V(Y)$ into $t+1$ *color classes but not a partition of* $V(H)$ *is that* P *be a partition of* $V(Y)$ *into* $t + 1$ *color classes of which one is the set* V_0 *of end vertices of the edges in some fixed nonempty subset of A and the remaining t are the sets* $R_i - V_0$ *where* $i = 1, 2, \ldots, t$.

(*Necessity*). If P is a partition of $V(Y)$ into $t+1$ color classes but not a partition of $V(H)$, then there exists at least one color class (say V_0) of the $t + 1$ color classes of P which contains some vertices of different partite sets of (R_1, R_2, \ldots, R_t) . Since any two vertices of V_0 are not adjacent in Y, V_0 contains the end vertices of some i $(0 < i \leq s)$ edges of A.

Because $\min\{r_1, r_2, \ldots, r_t\} > s$, we conclude that none of $R_i - V'(\subset R_i - V_0)$, $i =$ 1, 2, ..., t, is null. Clearly, $R_i - V'$, $i = 1, 2, ..., t$, must be contained, respectively, in t different color classes of P of which none contains vertices of different partite sets of (R_1, R_2, \ldots, R_t) . But there are only $t + 1$ color classes. Therefore, the $t + 1$ color classes must be V_0 and $R_i - V_0$, $i = 1, 2, ..., t$.

(*Sufficiency*). If one of the $t + 1$ color classes of P contains vertices of different partite sets of $(R_1, R_2,..., R_t)$, it is clear that P is not a partition of $V(H)$ into $t + 1$ color classes.

Now we complete the proof of the lemma.

Since η is equal to the number of partitions P described in the claim and P is determined by V_0 , we can easily see that

$$
s = \binom{s}{1} \leqslant \eta \leqslant \sum_{j=1}^{s} \binom{s}{j} = 2^{s} - 1. \qquad \Box
$$

4. Proofs of the theorems and corollary

4.1. Proof of Theorem 1

Let J be the set of integers and let J^t be the t-dimensional cartesian product of J. Suppose that $Y \in \mathcal{Q}(G)$. Then, by Lemmas [1](#page-3-0) and [3,](#page-3-0) we have

$$
m_{t+1}(Y) = m_{t+1}(G),
$$
\n(1)

$$
Y = K(n_1 + \alpha_1, n_2 + \alpha_2, \dots, n_t + \alpha_t) - A,\tag{2}
$$

where $|A| = s = s(\alpha) = \sum_{1 \leq i < j \leq t} \alpha_i \alpha_j + \sum_{1 \leq i < j \leq t} (n_i \alpha_j + n_j \alpha_i) \geq 0, \ \alpha \in D \cap J^t$ and $n_i + \alpha_i > 0$ for $i = 1, 2, \ldots, t$. (See Lemma [3\(](#page-3-0)i) for the definition of D.)

We first show that $s = s(\alpha) = 0$.

Let $H = K(n_1 + \alpha_1, n_2 + \alpha_2, \ldots, n_t + \alpha_t)$ $H = K(n_1 + \alpha_1, n_2 + \alpha_2, \ldots, n_t + \alpha_t)$ $H = K(n_1 + \alpha_1, n_2 + \alpha_2, \ldots, n_t + \alpha_t)$ and $\eta = m_{t+1}(Y) - m_{t+1}(H)$. By Lemma 2, we obtain $m_{t+1}(G) = \sum_{i=1}^t 2^{n_i-1} - t$ and $m_{t+1}(H) = \sum_{i=1}^t 2^{n_i+\alpha_i-1} - t$. It follows that

$$
m_{t+1}(G) - m_{t+1}(Y) = \sum_{i=1}^{t} 2^{n_i - 1} - \sum_{i=1}^{t} 2^{n_i + \alpha_i - 1} - \eta.
$$
 (3)

Suppose that $s = s(\alpha) > 0$. We shall deduce that $m_{t+1}(G) - m_{t+1}(Y) \neq 0$. By Lemma [3,](#page-3-0) we have

$$
s \le \max_{\alpha \in D} \{ s(\alpha) \} = a_t^2 = \sum_{1 \le i < j \le t} (n_i - n_j)^2 / (2t). \tag{4}
$$

Let $w = \sum_{i=1}^{t} n_i/t - \sqrt{2t(t-1)}a_t/t$. Also by Lemma [3,](#page-3-0) we find that

$$
w \leq n_i \quad \text{and} \quad w < n_i + \alpha_i \quad \text{for} \quad i = 1, 2, \dots, t. \tag{5}
$$

From the hypothesis of Theorem [1,](#page-2-0) we see that

$$
w > a_t^2 \geqslant s. \tag{6}
$$

From (5) and (6) , we have

$$
\max_{\alpha \in D \cap J'} \{n_1 + \alpha_1, n_2 + \alpha_2, \dots, n_t + \alpha_t\} > w > s.
$$
 (7)

Thus, by Lemma [4,](#page-3-0) we arrive at

$$
0 < s \leqslant \eta \leqslant 2^s - 1. \tag{8}
$$

Now, from (5) and (6), we have $n_i - 1 \geq s$ and $n_i + \alpha_i - 1 \geq s$, $i = 1, 2, \ldots, t$. Thus the following expression is divisible by 2^s :

$$
\sum_{i=1}^t 2^{n_i-1}-\sum_{i=1}^t 2^{n_i+\alpha_i-1}.
$$

But $0 < \eta < 2^s$. Hence $m_{t+1}(G) - m_{t+1}(Y)$ is not divisible by 2^s and, of course, not equal to 0, a contradiction.

Thus $s = s(\alpha) = 0$ and $Y = H = K(n_1 + \alpha_1, n_2 + \alpha_2, \ldots, n_t + \alpha_t)$.

Let $r_i = n_i + \alpha_i$ for $i = 1, 2, ..., t$. We might as well assume that $r_1 \le r_2 \le \cdots \le r_t$. Then $Y = H = K(r_1, r_2, \ldots, r_t) \in \mathcal{L}_t$. Hence $\mathcal{Q}(G) \subseteq \mathcal{L}_t$.

If \mathcal{L}_t is a class of chromatically normal graphs, then, from Property 1, G is chromatically unique.

4.2. Proof of Corollary 1

Follow the proof of Theorem [1.](#page-2-0)

(i) $n_1 = n_2 = \cdots = n_t$.

By Lemma [3,](#page-3-0) we have $a_t = 0$, $\alpha = c = 0$ and $s = s(\alpha) = 0$. Then, from [\(2\)](#page-4-0), we obtain $Y = K(n_1, n_2,...,n_t) \cong G$, i.e., G is chromatically unique.

$$
(ii) n_1 < n_2 < \cdots < n_t.
$$

From [\(1\)](#page-4-0), Lemma [2](#page-3-0) and $Y = K(r_1, r_2, \ldots, r_t) \in \mathcal{L}_t$, we deduce that

$$
\sum_{i=1}^{t} 2^{n_i - 1} = \sum_{i=1}^{t} 2^{r_i - 1}.
$$
\n(9)

Let N and M denote respectively the set consisting of the exponents of the non-zero terms in the binary expansion of $\sum_{i=1}^{t} 2^{n_i-1}$ and of $\sum_{i=1}^{t} 2^{r_i-1}$. (For example, for $2+2^2+2^2+2^3=2+2^4$ we see that $N = \{1,4\}$.) Then, from (9), we have $N = M$. Since $n_1 < n_2 < \cdots < n_t$, $N = \{n_1 - 1, n_2 - 1, \ldots, n_t - 1\}$ and $|M| = |N| = t$. Therefore $M = \{r_1 - 1, r_2 - 1, \ldots, r_t - 1\}$ and hence $\{n_1, n_2, \ldots, n_t\} = \{r_1, r_2, \ldots, r_t\}.$

Therefore, $Y \cong G$, i.e., G is chromatically unique. (iii) $t = 3$ and (iv) $t = 4$.

Since $\mathcal{Q}(G) \subseteq \mathcal{L}_t$, from Properties 1 and 2, G is chromatically unique.

4.3. Proof of Theorem [2](#page-2-0)

From Theorem [1](#page-2-0) and Corollary [1,](#page-2-0) we need only prove that

$$
m + n + r > 3a_3^2 + 2\sqrt{3}a_3.
$$

Since $m \le n \le r$ and $r - m = u$, $m + n + r \ge 3m + u$. Let $n - m = i$. Then $0 \le i \le u$. Therefore $i^2 + (u - i)^2 = 2i(i - u) + u^2 \le u^2$. Hence

$$
a_3^2 = ((n-m)^2 + (r-m)^2 + (r-n)^2)/6 = (i^2 + u^2 + (u-i)^2)/6 \le u^2/3,
$$

i.e., $u^2 \ge 3a_3^2$ and $u \ge \sqrt{3}a_3$.

From the assumption that $m > (u + u^2)/3$, we deduce that

$$
m + n + r \geq 3m + u > 2u + u^2 \geq 3a_3^2 + 2\sqrt{3}a_3.
$$

4.4. Proof of Theorem [3](#page-2-0)

From Theorem [1](#page-2-0) and Corollary [1,](#page-2-0) we need only prove that

$$
3n - k > 3a_3^2 + 2\sqrt{3}a_3.
$$

Clearly, $a_3^2 = k^2/3$. From the assumption that $n > k + k^2/3$, we deduce that

$$
3n - k > 2k + k^2 = 3a_3^2 + 2\sqrt{3}a_3.
$$

4.5. Proof of Theorem [4](#page-2-0)

From Theorem [1](#page-2-0) and Corollary [1,](#page-2-0) we need only prove that

$$
h + m + n + r > 4a_4^2 + 2\sqrt{6}a_4.
$$

Since $h \le m \le n \le r$ and $r - h = u$, $h + m + n + r \ge 4h + u$.

Let $m - h = i$ and $n - h = j$. Then $0 \le i \le u$ and $0 \le j \le u$. Thus

$$
i^2 + (u - i)^2 \le u^2
$$
, $j^2 + (u - j)^2 \le u^2$, $(j - i)^2 \le u^2$.

Hence

$$
a_4^2 = ((m-h)^2 + (n-h)^2 + (r-h)^2 + (n-m)^2 + (r-m)^2 + (r-n)^2)/8
$$

= $(i^2 + j^2 + u^2 + (j-i)^2 + (u-i)^2 + (u-j)^2)/8 \le u^2/2$,

i.e., $u^2 \ge 2a_4^2$ and $u \ge \sqrt{2}a_4$.

From the assumption that $h > (2\sqrt{3} - 1)u/4 + u^2/2$, we deduce that

$$
h + m + n + r \ge 4h + u > 2\sqrt{3}u + 2u^2 \ge 4a_4^2 + 2\sqrt{6}a_4.
$$

Acknowledgements

The author is very grateful to the referees for their very helpful comments, and to his supervisor Professor Shi Yongbing and Professor Zeng Guangxing for their great help.

References

- [1] N.L. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, MacMillan, New York, 1976.
- [3] C.Y. Chao, G.A. Novacky Jr., On maximally saturated graphs, Discrete Math. 41 (1982) 139–143.
- [4] C.Y. Chao, E.G. Whitehead Jr., On chromatic equivalence of graphs, Theory and Applications of Graphs, Springer Lecture Notes in Mathematics, Vol. 642, Sprinper, Berlin, 1978, pp. 121–131.
- [5] G.L. Chia, B.H. Goh, K.M. Koh, The chromaticity of some families of complete tripartite graphs, SCIENTITA, Ser. A: Math. Sci. 2 (1998) 27–37.
- [6] R.E. Giudici, M.A. López, Chromatic uniqueness of $\overline{sK_n}$, Report No. 85-03, Dept. Math., Univ. Simón Bolivar, 1985.
- [7] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259–285.
- [8] K.M. Koh, K.L. Teo, The search for chromatically unique graphs—II, Discrete Math. 172 (1997) 59–78.
- [9] N.Z. Li. R.Y. Liu, The chromaticity of the complete t-partite graph $K(1, p_2, \ldots, p_t)$, J. Xinjiang Uni. 7 (3) (1990) 95–96.
- [10] C.P. Teo, K.M. Koh, The chromaticity of complete bipartite graphs with at most one edge deleted, J. Graph Theory 14 (1990) 89–99.
- [11] H.W. Zou, On the chromaticity of the complete tripartite graph $K(n 4, n, n)$, J. Shanghai Teachers Univ. 27 (1) (1998) 37–43.
- [12] H.W. Zou, On the chromaticity of the complete tripartite graph $K(2, 4, 6)$, J. Shanghai Teachers Univ. 27 (4) (1998) 14–17.
- [13] H.W. Zou, On the chromatic equivalence of complete t-partite graphs, J. Fuzhou Teachers College 18 (2) (1998) 104–109.
- [14] H.W. Zou, On the chromatic uniqueness of complete tripartite graphs $K(n_1, n_2, n_3)$, J. Systems Sci. Math. Sci. 20 (2) (2000) 181–186.

- [15] H.W. Zou, Classes of chromatically normal graphs of complete t-partite graphs, Jiangxi Sci. 19 (2) (2001) 71–75.
- [16] H.W. Zou, The property of a graph chromatically equivalent to the complete t-partite graphs, Higher Math. Bull. 41 (1) (2002) 1–6.
- [17] H.W. Zou, Y.B. Shi, On the chromaticity of the complete tripartite graph $K(n k, n, n)$, J. Shanghai Teachers Univ. 28 (4) (1999) 15–22.