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The Generalized Sidelobe Canceler (GSC) is a beamforming scheme which is applied in many fields such 
as audio, RADAR, SONAR and telecommunications. Recently, the adaptive Reduced Rank GSC (RR-GSC) has 
been proposed for applications with a large number of sensors. Due to its dimensionality reduction step, 
the adaptive RR-GSC achieves an enhanced performance in comparison with the standard GSC. However, 
both standard GSC and RR-GSC have their performance drastically degraded in the presence of colored 
noise.
In this paper, we propose to extend further the GSC and the RR-GSC for colored noise scenarios. As shown 
in this paper, such improvement in colored noise scenarios can be obtained by incorporating a stochastic 
or a deterministic prewhitening step in the GSC and RR-GSC algorithms. Since the prewhitening increases 
the computational complexity, a block-wise reduced rank stochastic gradient GSC beamformer is also 
proposed. The block-wise step allows only one prewhitening step per block while in the previous schemes 
one per sample was needed. Another proposed advance in colored noise scenarios is the incorporation 
of the Vandermonde Invariance Transform (VIT). The VIT works as a pre-beamformer which reduces 
the interferent power of the undesired sources and the colored noise effect. We show by means of 
simulations the improved results even for highly correlated scenarios.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA 
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Beamforming is an important topic in array signal processing 
and has applications in several fields such as RADAR [1], SONAR 
[2], telecommunications [3] and audio [4]. In the literature, there 
are several adaptations of Direction of Arrival (DOA) estimation 
schemes for colored noise scenarios [5–7], and once the DOA in-
formation is obtained, it can be introduced to the beamformer. The 
addition of such constraints led to the development of beamform-
ers such as the Direct Form Processor (DFP), which includes the 
Linearly Constrained Minimum Variance (LCMV) and Linearly Con-
strained Constant Modulus (LCCM) [8], and the Generalized Side-
lobe Canceler (GSC) [9]. For real time applications, the necessity 
for adaptive algorithms grows and, with this need, adaptive ver-
sions of the GSC were proposed in earlier works [10,11,8].

However, when the number of elements in a sensor array is 
high, these algorithms suffer from computational complexity in-
crease. Therefore, recently, adaptive reduced rank DFP and GSC 
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schemes were also proposed in order to reduce the dimensionality 
of the adaptive filters. The rank reduction step also has a noise re-
moval effect, thus showing an enhanced performance [11,8]. These 
works use the constant modulus (CM) cost function [10], as it was 
shown to have a better accuracy for constant envelope signals. Yet, 
adaptive beamforming techniques using the GSC usually assume 
uncorrelated white noise in the receivers, which is not realistic.

For colored noise scenarios, prewhitening schemes have been 
successfully applied in combination with DOA estimation [5,6] and 
audio signal processing schemes [12]. The prewhitening schemes 
are divided into stochastic [6,12] and deterministic prewhiten-
ing [5]. In deterministic prewhitening, the noise may have a spe-
cific structure which can be exploited, while in the stochastic 
prewhitening, no structure is assumed. Moreover, there are also 
multidimensional prewhitening schemes for the case that the data 
has a tensor structure [13].

In this work, we propose to extend the least mean squares GSC 
(LMS-GSC) and the Reduced Rank LMS-GSC (RR-LMS-GSC) for col-
ored noise scenarios by incorporating a prewhitening step. We pro-
pose the prewhitened GSC schemes considering the deterministic 
prewhitening [5] and the stochastic prewhitening [6,12]. The col-
ored noise is usually concentrated in certain direction. Therefore, 
 under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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to further enhance the GSC, the VIT [14] is also applied as a pre-
processing step. The colored noise can be also concentrated close 
to the desired signal direction, therefore a prewhitening step is 
also still needed along the VIT. The stochastic prewhitening needs 
the computation of one SVD at each iteration. In order to re-
duce the complexity of the stochastic prewhitening, we propose 
the block-wise reduced rank stochastic gradient GSC (BW-RR-GSC) 
beamformer.

This paper is divided into 6 sections including this introduc-
tion. In Section 2 we present the data model for colored noise. In 
Section 3 the classic beamformer designs for the LMS-GSC and RR-
LMS-GSC are briefly introduced. Then, in Section 4 we propose our 
high accuracy and low complexity GSC schemes by incorporating 
prewhitening steps, the VIT and a block-wise modification for col-
ored noise scenarios. In Section 5, simulations are shown and the 
results are drawn. Finally, Section 6 makes the conclusions about 
the work.

Notation Scalars are denoted by lower-case letters (a, b, . . .), vec-
tors are written as boldface lower-case letters (a, b, . . .) and matri-
ces as boldface capitals (A, B, . . .). The superscripts T, H and ∗ rep-
resent transpose, Hermitian transpose and complex conjugate of a 
term, respectively. The operator E{·} stands for the expected value 
operation.

2. Data model

We assume that d sources are transmitting different symbols 
at the n-th time instant. Since the sources are far away from the 
receiver, the narrowband wave fronts are considered planar. We 
assume a Uniform Linear Array (ULA) with M isotropic sensor ele-
ments with an inter-element spacing of � wavelengths. Therefore, 
we can mathematically represent the received symbols as

x(n) = a(θ0)s(n) + Aint(θ int)sint(n) + n(c)(n), (1)

where x(n) = [x0(n), . . . , xM−1(n)]T is the vector containing the re-
ceived symbols at time instant n, s(n) is the desired signal, sint(n)

is a vector with the interference symbols from the d − 1 interferes 
and n(c)(n) contains colored noise samples at the sensor elements. 
Note that n(c)(n) = Ln(n), where n(n) contains i.i.d. noise samples 
with Circularly Symmetric Complex Gaussian (CSCG) distributions. 
The matrix L ∈ C

M×M stands for the correlation matrix. For the 
special case where L is the identity matrix the noise becomes 
white at the sensors. The vector a(θ0) is the steering vector with a 
Vandermonde structure for the desired signal, where the elements 
of the vector a(θ0) are a function of the DOA of the desired signal 
defined as θ0 and are arranged in a column. The matrix Aint(θ int) ∈
C

M×d−1 is the steering matrix containing all the steering vectors 
of the interfering signals where their corresponding DOAs are com-
prised in the vector θ int ∈ C

d−1×1. The DOAs might also be repre-
sented by the spatial frequencies, i.e. spatially related phase delays, 
φ0 = −2π� sin θ0 and φint = −2π� sin θ int ∈C

d−1×1, respectively.
More generally, assuming a sliding window in which at time n

a snapshot of the current and the N − 1 previously transmitted 
symbols are allocated into a vector s and collecting the interfering 
signals into a matrix Sint(n) ∈ C

N×d−1 we can rewrite our model 
in a compact format

X(n) = a(θ0)sT(n) + Aint(θ int)ST
int(n) + N(c) ∈C

M×N , (2)

where X(n) = [x(n − N + 1), . . . , x(n)] and N(c) = L · N ∈ C
M×N . The 

matrix N ∈ C
M×N contains the N white noise samples for all M

sensors in the same manner as X contains N signal plus noise sam-
ples from the M sensors. The variable s(n) ∈ C

N×1 has the N latest 
samples for the desired signal and Sint ∈ C

N×d−1 has the N latest 
samples for the d − 1 interfering sources.
Fig. 1. LMS-GSC block diagram.

Here, we assume that the received symbols X(n) and the DOA 
of the desired signal θ0 are known at the receiver and we desire to 
find ŝ(n), which is an estimate of s(n). To find the DOA, we refer 
to [5–7] or alternatively we can assume that the position of the 
transmitter with respect to the receiver is known.

3. State-of-the-art beamformer designs

This section is divided into two subsections. In Section 3.1, we 
review the standard LMS-GSC beamformer, while in Section 3.2, 
we review the reduced rank LMS-GSC (RR-LMS-GSC).

3.1. LMS-GSC

The GSC algorithm turns a constrained problem into an uncon-
strained problem by introducing a blocking matrix, which is the 
orthogonal complement of the constraint a(θ0). In our case, the 
constraint is formed based on the steering vector of the desired 
signal, which can be estimated via [5–7].

In Fig. 1, the input signal x(n) passes through a beam pointed 
at the desired signal direction θ0 generating d(n) = aH(θ0)x(n). The 
same input signal also passes through a blocking matrix B which 
is the orthogonal complement of the constraint a(θ0). Conse-
quently, B blocks the desired signal and let ideally only Ai(θi)si(n)

pass. The filter w should then be adjusted so that it generates the 
interference signal y(n) that is subtracted from the desired sig-
nal d(n).

In Fig. 1, y(n) is given by

y(n) = wHxB(n), (3)

where xB(n) = Bx(n). As shown in Fig. 1, the error signal e(n) is 
used by the adaptive algorithm to adjust w. Once w converges, 
then we have that ŝ(n) = e(n). Since e(n) is free from interference 
it is also the system’s output signal.

The adaptation of w is computed via stochastic gradient of the 
following cost function

J lms(w) = E
{∣∣d(n) − wHxB(n)

∣∣2}
(4)

which gives the update rule for the adaptive part

w(n + 1) = w(n) + μlms∇w J lms(w) (5)

with μlms being the step size for the LMS-GSC.
We use the instantaneous estimates R̂xx = x(n)xH(n) and r̂dx =

d(n)x(n) [9] to find the stochastic gradient:

∇̂w J lms = 2Bx(n)xH(n)BHw − 2Bd(n)x(n). (6)

Now the stochastic gradient is inserted into LMS update rule for 
the GSC [9]:

w(n + 1) = w(n) + μlmsBx(n)xH(n)
(
a(θ0) − BHw

)
. (7)
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Fig. 2. RR-LMS-GSC block diagram.

3.2. RR-LMS-GSC

Regular LMS algorithms have been reported to have a slow con-
vergence for high number of sensor elements M [11]. To overcome 
these drawbacks, a reduced rank (RR) adaptive algorithm for the 
GSC scheme was developed in [8,11] and is depicted in Fig. 2. 
The process is similar to that described in Section 3.1, except 
that the blocked signal passes through a transformation matrix 
T ∈ C

(M−1)×r that performs a dimensionality reduction. As derived 
in [10], x̃(n) = e∗

rr(n)x(n) is used instead of x(n) for the input sig-
nal, where err(n) = wH(n)x(n) is the output signal for the RR algo-
rithm as indicated by the subscript and w(n) = a(θ0) −BHT(n)w(n). 
The CM error and its quadratic mean describes the CM cost func-
tion:

Jcm(w) = E
{∣∣wHx̃(n) − ν

∣∣2}
, (8)

where ν is constant set to 1 for unit variance signals. The filter w
can be represented in terms of time evolving T(n) and w(n) for 
the adaptation process. Thus, the expanded cost function becomes

Jcm
(
T(n), w(n)

) = E
{∣∣[a(θ0) − BHT(n)w(n)

]H
x̃(n) − ν

∣∣2}
, (9)

with w(n) being the reduced rank filter of size r < M . The stochas-
tic gradient of the previous cost function with respect to T(n) and 
w(n) gives their LMS update rules respectively

T(n + 1) = T(n) + μTe∗
cm(n)x̃B(n)wH(n), (10)

w(n + 1) = w(n) + μwe∗
cm(n)xB(n), (11)

where ecm = 1 − w(n)Hx̃(n) is the CM error. Also note that a new 
variable is introduced in (11) which corresponds to the filter input 
signal xB(n) = THx̃B(n), i.e. after the blocked signal transformation.

4. Proposed solutions

In this section, we propose different variations for the prewhit-
ened adaptive GSC and prewhitened adaptive RR-GSC. The High 
Accuracy Stochastic Prewhitening (HASP) method that makes usage 
of one SVD per sample is shown in Section 4.1. The Vandermonde 
Invariant Transform (VIT) is also used along the HASP to create 
the VIT-HASP solution. In the phase perspective, the VIT keeps the 
Vandermonde structure in a desired direction and changes the di-
rections of the interferent sources. From the spatial power sense, 
it acts as beamformer conserving power at a direction of inter-
est and reduces the power in other directions. The VIT results in 
a virtual array that is further used by the adaptive GSC. Since the 
direction where the noise power is concentrated is not known, it 
can be close to the desired signal making the prewhitening still 
required, thus forming the VIT-HASP. In Section 4.3, the Determin-
istic Prewhitening (DP) method is shown for the cases where the 
correlation structure of the noise is known. Since the prewhiten-
ing step requires one SVD per sample for sample-wise adaptive 
algorithms, a new block-wise reduced rank stochastic gradient GSC 
beamformer (BW-RR-SG-GSC), which requires only one SVD per 
block, is also presented.
Fig. 3. High accuracy stochastic prewhitening block diagram.

4.1. High accuracy stochastically prewhitened LMS-GSC 
(HASP-LMS-GSC)

We start with the traditional stochastic prewhitening method 
for estimation of the noise correlation factor matrix and reduction 
of the effects of colored noise as proposed by [12]. First, we as-
sume that samples are without signal components, i.e., only with 
noise, so that the noise sample correlation matrix can be given as

R̂NN = 1

Nsf
N(c)′ · (N(c)′)H

, (12)

where Nsf stands for the number of signal free samples and N(c) ′
is the colored noise snapshots matrix. Since R̂NN is Hermitian and 
positive-definite we can perform the Cholesky decomposition

R̂NN = L̂ · L̂
H
, (13)

with the estimated correlation factor matrix L̂ one can perform a 
prewhitening trying to revert the effects of the correlated noise in 
(1) by simply multiplying the data by the inverse of the estimated 
correlation factor matrix:

X′(n) = L̂−1 · X(n), (14)

where X′(n) is the prewhitened matrix of X(n). Once the number 
of signals d is known, we can apply an SVD low rank approxi-
mation on X′(n) resulting to X[s](n). We refer to the model order 
selection schemes [15–17] in order to estimate d. It is important 
to notice that this low rank approximation is not related to the 
rank reduction step performed by the adaptive algorithms. Finally, 
we separate the noise and signal subspace using the dewhitening 
step, which means multiplying it by the estimated correlation fac-
tor matrix L̂. This leads to the final input data:

X[s]′(n) = L̂ · X[s](n). (15)

In Fig. 3, (2) is used as input of the system for the HASP solu-
tion. Then, the SVD is applied in each iteration with the purpose of 
dewhitening. This results in a dewhitened data vector x[s]′(n). The 
dewhitened data can now be inserted into the adaptive LMS-GSC 
or RR-LMS-GSC that will update the beamforming filter.

If the algorithm is element-wise adaptive, then only the latest 
dewhitened snapshot x[s]′(n) is used at the iteration keeping in 
mind that X[s]′(n) = [x[s]′(n − N + 1), · · · , x[s]′(n)]. This snapshot 
can be directly inserted into the update rule (5) and update rules 
(11) and (10). The block-wise adaptation in Section 4.4 uses all the 
N snapshots.

4.2. Vandermonde Invariance Transformation (VIT) based 
HASP-LMS-GSC

The purpose of the VIT is to transform the input signal in a 
way that the Vandermonde structure is preserved [14]. Since there 
are always imperfections on the array, we refer to [18] for array 
interpolation in order to compensate such imperfections. First, we 
define a VIT matrix Tvit ∈ C

M×M and multiplying it with a vector 
that has a Vandermonde structure v = [1, e jφ, . . . , e j(M−1)φ]T, [14]
shows that
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Fig. 4. VIT-HASP block diagram.

v̌ = Tvit · v =
(

e jφ − κ

1 − κ

)M−1

·

⎛
⎜⎜⎝

1
e jν

...

e j(M−1)ν

⎞
⎟⎟⎠ , (16)

where κ is a complex parameter that originates a phase gain. From 
Eq. (16) it is inferred that the original phase φ is mapped into a 
new phase ν , but the Vandermonde structure is still present. More 
specifically, the new virtual phase is

ν = arctan

(
2K · sinφ

1 − K 2 + (1 + K 2) · cosφ

)
, (17)

where K = (κ + 1)/(κ − 1). From (17) it is clear that the phase 
remains the same for φ = 0. Relating these phases to the spa-
tial frequencies φ0 and φint, we shall shift the sources prior 
to applying the VIT by multiplying the input signal by Pφ0 =
diag([1, e− jφ0 , . . . , e− j(M−1)φ0 ]), so that the desired signal virtually 
impinges from 0◦ and no phase amplification is noticed. Therefore, 
the shift and transformation are applied to (1) leading to

x̌(n) = TvitPφ0 a(θ0)s(n) + TvitPφ0 Aint(θ int)sint(n)

+ TvitPφ0 n(c)(n) (18)

= ǎ(θ0)s(n) + Ǎint(θ int)sint(n) + ň(c)(n). (19)

The vector ǎ(θ0) and the matrix Ǎint(θ int) still have a Vander-
monde structure and ň(c)(n) is still a colored noise with its orig-
inal color changed by the VIT so that ň(c)(n) = L′ · n(n) and L′ =
Tvit · Pφ0 · L. As shown in [14], Eq. (16) does not change the ampli-
tude of v at φ = 0 but it is changed for φ �= 0. By setting K < 1
the amplitude away from 0◦ is diminished making the VIT to op-
erate as a beamformer. Thus, the interference and noise not in the 
direction of the desired signal is reduced.

The noise can have most of its power close to the desired signal 
and thus only being partially removed by the VIT. Therefore, the 
usage of prewhitening is still needed. With the transformed noise 
correlation model, the HASP can now be directly applied using the 
estimate

L̂′ = Tvit · Pφ0 · L̂. (20)

Fig. 4 summarizes the VIT-HASP process. First the noisy signal is 
shifted by Pφ0 . At step 2 the VIT is incorporated. After that, the 
signal is ready to pass through the modified HASP, where L̂′ is 
used in place of L̂. The result is a dewhitened data x̌[s]′(n) to be 
used as input to the adaptive GSC algorithms. For details on the 
computation of Tvit we refer to [14].

4.3. Deterministic prewhitening (DP)

In Sections 4.1 and 4.2, the structure of the noise covariance 
matrix is unknown. However, for highly correlated environments 
and for known covariance structure, a deterministic prewhitening 
(DP) can be employed with the expense of one sensor as explained 
in [5]. In Fig. 5 signal-free samples are first inserted into the sys-
tem in order to estimate the noise structure with its correlation 
level. With the noise structure and correlation level in step 2 of 
Fig. 5, we can build the prewhitening matrix in step 3 of Fig. 5. In 
Fig. 5. Deterministic prewhitening diagram.

the last step the input data is multiplied by the generated matrix 
to produce the whitened data.

Here we assume that the noise is correlated as proposed by 
[19]:

n(c)
m+1(n) = ρ · nm(n) +

√
1 − |ρ|2 · nm+1(n), (21)

where 0 � ρ < 1 stands for the noise correlation coefficient. Once 
the noise correlation structure (21) is known, we can mount the 
correlation factor L.

L(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
ρ

√
1 − |ρ|2 0 0

ρ2 ρ
√

1 − |ρ|2 √
1 − |ρ|2 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

ρM−1 ρM−2
√

1 − |ρ|2 ρM−3
√

1 − |ρ|2 . . .
√

1 − |ρ|2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(22)

For the known correlation structure we insert the superscript (k). 
The goal is to find a matrix D that will decorrelated the noise. In 
this work, we assume the same structure of the noise as shown in 
[5]. Therefore, the prewhitening matrix is given by

D = J2 · −ρ · J1, (23)

where J2 and J1 are the selection matrices [0(M−1)×1 IM−1] and 
[IM−1 0(M−1)×1] for the last M −1 sensors and the first M −1 sen-
sors, respectively. By applying the matrix D on the colored noise 
matrix, the prewhitened noise becomes white but with a smaller 
power proportional to the factor 

√
1 − |ρ|2.

N′ = D · N(c) = D · L(k) · N (24)

= J2 · L(k) · N − ρ · L(k) · J1 (25)

=
√

1 − |ρ|2 · J2 · N. (26)

Eq. (24) shows that the noise is not only white but has its variance 
reduced. The matrix J2 on the last line of (24) shows the sacrifice 
of one sensor as a cost for the dewhitening. For applying the DP 
the whole data vector is multiplied by the DP matrix. This results 
in the prewhitened input data vector

x′(n) = D · x(n). (27)

4.4. Block-wise reduced rank stochastic gradient GSC (BW-RR-SG-GSC)

In this subsection we show an alternative way to compute the 
reduced rank GSC beamformer by using the whole information 
contained in one block to estimate the expected values and corre-
lation matrices. The objective of doing block-wisely computations 
is to reduce computational complexity in the prewhitening steps. 
The prewhitening requires the computation of the SVD, as seen in 
Section 4.1, and computing the GSC in blocks reduces the amount 
of SVDs to one per block.
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Table 1
Computational costs in flops.

Algorithm Cost

LMS-GSC, Section 3.1 4M2 + 4M − 4
RR-LMS-GSC, Section 3.2 8M2 + 4M + 14Mr − 10r + 2
DP-LMS-GSC, Sections 3.1 and 4.3 6M2 + 2M − 4
HASP-LMS-GSC, Sections 3.1 and 4.1 8M2 N + 2dMN + 22N3 + 2dM + 4M2 + 4M − 4
VIT-HASP-LMS-GSC, Sections 4.2 and 3.1 8M2 N + 2dMN + 22N3 + 2dM + 4M2 + 4M − 4
DP-RR-LMS-GSC, Sections 3.2 and 4.3 10M2 + 2M + 14Mr − 10r + 2
HASP-RR-LMS-GSC, Section 3.1 and 4.1 8M2 N + 22N3 + 2dMN + 2dM + 8M2 + 4M + 14Mr − 10r + 2
BW-RR-LMS-GSC, Section 4.4 8M2 + 8Mr + 4MN + 2M − 6r − 2N
VIT-HASP-RR-LMS-GSC, Sections 3.2 and 4.2 8M2 N + 22N3 + 2dMN + 2dM + 8M2 + 4M + 14Mr − 10r + 2
HASP-BW-RR-LMS-GSC, Sections 4.1 and 4.4, ib iterations per block 1

ib
· (8M2 N + 22N3 + 2dMN + 2dM) + ib

N · (8M2 + 8Mr + 4MN + 2M − 6r − 2N)

VIT-HASP-BW-RR-LMS-GSC, Sections 4.2 and 4.4, ib iterations per block 1
ib

· (8M2 N + 22N3 + 2dMN + 2dM) + ib
N · (8M2 + 8Mr + 4MN + 2M − 6r − 2N)

HASP-BW-RR-LMS-GSC, Sections 4.1 and 4.4, N iterations per block 16M2 + 22N2 + 2dM + 2dM/N + 8Mr + 4MN + 2M − 6r − 2N
VIT-HASP-BW-RR-LMS-GSC, Sections 4.2 and 4.4, N iterations per block 16M2 + 22N2 + 2dM + 2dM/N + 8Mr + 4MN + 2M − 6r − 2N
First we define the CM input signal block as

X̃m = Xm · diag(em), (28)

where Xm = X(mN), em = [err(N(m − 1) + 1), . . . , err(mN)]H and m
denotes the block index. The previous definitions are used to write 
the estimates of the covariance matrix and expected values x̃(n)

R̂x̃x̃ = 1

L
X̃mX̃H

m, (29)

Ê{x̃} = 1

L
X̃m · 1N , (30)

where 1N is a column vector of ones of length N . Inserting the 
estimates into the gradient of (9), one can write the stochastic gra-
dient (SG) for both T and w:

∇̂T Jcm = −2

L
BX̃m(em + 1L)wH, (31)

∇̂w Jcm = −2

L
THBX̃m(em + 1N). (32)

By defining an incremented error em = em + 1N , Eqs. (31) and (32)
can be further simplified to generate the BW-RR-SG-GSC update 
rules (33) and (34).

T(n + 1) = T(n) + μT X̃BemwH, (33)

w(n + 1) = w(n) + μw THX̃Bem, (34)

where X̃B = BX̃m . The VIT and prewhitening schemes depicted in 
Sections 4.1–4.3 work in the same manner for the block-wise algo-
rithm. The only difference is that the whole data from the output 
matrix is used in the HASP and VIT-HASP solutions.

4.5. Computational complexity analysis

In this subsection we compare the computational complexities 
of the classical and proposed solutions. We consider sums and 
multiplications for the computation of the complexity cost. The 
sum of the total amount of sums and multiplications are con-
sidered flops, which is the used measure unity [20]. In previous 
works [8,11], tables with a number of additions and multiplica-
tions are given for various GSC adaptive algorithms. Table 1 shows 
the complexity per sample of the used algorithms computed using 
the criteria and methods found in [20].

The LMS-GSC and BW-RR-LMS-GSC algorithms in Table 1 have 
no colored noise treatment and have a quadratic number of opera-
tions. By using a DP we add one matrix vector operation resulting 
in 2M2 − 2M flops, thus keeping the quadratic complexity as seen 
in lines DP-LMS-GSC and DP-LMS-GSC. However, when the HASP 
algorithms are used, the SVD and a few matrix multiplications are 
required. This means that the computational cost becomes cubic. 
The SVD alone costs 4M2 N + 22N3 [20].

The BW-RR-LMS-GSC alleviates the SVD cost effect. Since the 
filter is updated block-wisely, only one SVD per block is needed. 
If we set ib iterations per block, then one should process in aver-
age ib/N SVDs per sample. In schemes HASP-BW-RR-LMS-GSC and 
VIT-HASP-BW-RR-LMS-GSC in Table 1, if we choose ib = N , the cu-
bic factors vanish reducing drastically the computational cost.

5. Simulations and results

For the simulations, a ULA with 32 elements was consid-
ered and random uniformly distributed QAM signals with unitary 
l2-norm for seven sources were generated, one relative to desired 
signal positioned and six relative to the interferes. The source and 
interferes are positioned at 10◦ , −63◦ , −43◦ , −21◦ , 28◦ , 39◦ and 
61◦ , respectively. For all simulations, 600 samples were generated. 
Also, white Gaussian noise is added according to (1) and is latter 
correlated by using the structure seen in (22). The correlation is 
set to ρ = 0.9 and the signal to noise ratio (SNR) is fixed at 10 dB. 
The reduced rank is set to r = 10 and the results are evaluated 
according to the mean normalized error (MNE):

MNE(n) = E{|s(n) − ŝ(n)|}
E{|s(n)|} . (35)

Table 2 summarizes the notation used in the legends of figures 
of this section. It is worth noting that by default colored noise is 
used. When white Gaussian noise is used the term “white noise” 
is written after the abbreviation.

The results are shown in a Monte Carlo fashion after 1000 trials. 
For comparison we draw the MNE for the LMS-GSC in both white 
and colored noise. The Standard LMS-GSC is used since to the best 
of our knowledge there is no state-of-the-art beamformer for col-
ored noise environments. Moreover, we assumed that the noise 
structure is given by (22). Previous works consider noise as direc-
tional interference [21,22] or beamformers designed with known 
interference direction [23]. The step size is set to μlms = 0.0006 in 
order to give a similar curves as in [8,11] and yet not to diverge 
in colored noise scenarios. The same μlms is adopted for the other 
simulations in this section. This same approach is used for step 
size choice in the other simulations seen in this section. The opti-
mization of μlms for colored noise scenarios is a topic for a future 
work. Results for the LMS-GSC algorithms are seen in Fig. 6.

Note, in Fig. 6, the degradation of performance of the LMS-GSC 
white noise to the LMS-GSC. The only difference between both 
curves is that in LMS-GSC white noise, the noise correlation is 0 
and, in LMS-GSC, the noise correlation is 0.9. If noise-only samples 
are available, the proposed HASP solution represented by the dark 
blue curve can be used. The MNE of the HASP-LMS-GSC scheme 
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Table 2
Notation of the legends used in the figures.

Abbreviation Description

Batch GSC white noise State-of-the-art GSC using all samples to estimate w in a white noise scenario
LMS-GSC white noise State-of-the-art adaptive GSC in a white noise scenario
LMS-GSC State-of-the-art adaptive GSC in a colored noise scenario
Proposed DP-LMS-GSC Adaptive GSC with deterministic prewhitening in a colored noise scenario
Proposed HASP-LMS-GSC Adaptive GSC with high accuracy stochastic prewhitening in a colored noise scenario
Proposed VIT-HASP-LMS-GSC Adaptive GSC with Vandermonde invariance transformation based high accuracy stochastic prewhitening in a colored 

noise scenario
RR-LMS-GSC white noise State-of-the-art reduced rank adaptive GSC in a white noise scenario
RR-LMS-GSC State-of-the-art reduced rank adaptive GSC in a colored noise scenario
HASP-RR-LMS-GSC Adaptive reduced rank GSC with high accuracy stochastic prewhitening in a colored noise scenario
VIT-HASP-RR-LMS-GSC Adaptive reduced rank GSC with Vandermonde invariance transformation based high accuracy stochastic prewhitening in 

a colored noise scenario
Proposed BW-RR-LMS-GSC white noise Block-wise reduced rank adaptive GSC in a white noise scenario
Proposed HASP-BW-RR-LMS-GSC Block-wise reduced rank adaptive GSC with high accuracy stochastic prewhitening in a colored noise scenario
Proposed VIT-HASP-BW-RR-LMS-GSC Block-wise reduced rank adaptive GSC with Vandermonde invariance transformation based high accuracy stochastic 

prewhitening in a colored noise scenario
Fig. 6. MNE of the LMS-GSC type algorithms versus samples for N = 50 and an SNR 
of 10 dB.

is drastically reduced in comparison with the standard LMS-GSC. 
For a VIT-HASP solution an even further reduction of MNE can 
be observed. For comparison we plot the batch GSC solution, i.e. 
the non-adaptive solution using all the samples to estimate beam-
forming filter [9]. As the system evolves in time, the proposed 
VIT-HASP-LMS-GSC, which run in colored noise scenario, almost 
reaches the batch GSC white noise curve. Applying the proposed 
DP-LMS-GSC for a known correlation structure makes the algo-
rithm performs better than in a white noise environment, since 
the noise is reduced.

In Fig. 7, we rerun the simulations for the RR algorithms. The 
step sizes are set to μw = 0.0001 and μT = 0.00001. Also the 
standard RR-LMS-GSC is used for comparison. For the block-wise 
algorithm we have μw = 0.0001/N and μT = 0.00001/N . For the 
VIT-HASP schemes the step sizes were slightly decreased to μw =
0.00005 and μT = 0.000008 for sake of implementation stability. 
In Fig. 7, it is also seen that even though the RR schemes have 
a superior overall performance, the colored noise provokes a large 
reduction of performance and shows a clear necessity of whitening 
the noise. The deterministic prewhitening has a positive, but not 
large, effect by decreasing MNE. The proposed HASP-RR-LMS-GSC 
was shown to outperform the other methods. The combined VIT-
HASP-RR-LMS-GSC has an even smaller MNE outperforming the 
HASP-RR-LMS-GSC.

Since the SVD increases significantly the computational com-
plexity of the algorithms using a HASP solution, the BW-RR-SG-GSC 
is also shown as an alternative when computational power is not 
Fig. 7. MNE of the RR-LMS-GSC type algorithms versus samples for N = 50 and an 
SNR of 10 dB.

sufficiently available. The computational savings come at the cost 
of response time. The block size is chosen to N = 50 and the num-
ber of iterations within each block is 2 · N . Even though a slower 
convergence is noticed, the HASP-BW-RR-SG-GSC gets close to the 
HASP-RR-LMS-GSC on the final MNE. Also, the VIT plays an im-
portant role in reducing the MNE. As shown in Fig. 7, the VIT does 
most of the filtering task and the gain of the adaptive GSC becomes 
smaller. The steep descent seen on the first 50 samples of the 
VIT-HASP-RR-LMS-GSC curve is basically due the data length when 
performing the low rank approximation. Once the data reaches its 
limit, here set to 50, the MNE remains almost constant.

In Fig. 8 we compare the BW-RR-SG-GSC white noise scenarios 
with the HASP-BW-RR-LMS-GSC and the VIT-HASP-BW-RR-LMS-
GSC. The HASP-RR-LMS-GSC and the VIT-HASP-RR-LMS-GSC curves 
are left for reference. The BW-RR-SG-GSC does not improve MNE 
in a colored noise scenario with ρ = 0.9. In Fig. 8, the HASP-
BW-RR-SG-GSC has a similar performance when compared to the 
BW-RR-SG-GSC in a white noise environment and the VIT-HASP-
BW-RR-LMS-GSC has a similar MNE to the VIT-HASP-RR-LMS-GSC.

In Fig. 9 the evolution of the MNE in terms of block size is 
shown for the full rank algorithms. The HASP-LMS-GSC has a bet-
ter performance than the DP-LMS-GSC when N > 80 and the VIT-
HASP-LMS-GSC has its performance almost unchanged for N > 50.

In Fig. 10 the evolution of the MNE in terms of block size is 
shown for the reduced rank algorithms. As shown in Fig. 10, the 
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Fig. 8. MNE in dB for LMS-GSC type algorithms with a varying N and an SNR of 
10 dB.

Fig. 9. MNE in dB for LMS-GSC type algorithms with a varying N and an SNR of 
10 dB.

block size plays an important role in the reduced rank algorithms, 
specially for the HASP-only prewhitening schemes. The VIT based 
HASP algorithm has the best performance in comparison to the 
other schemes.

6. Conclusion

In this paper, we have extended the adaptive GSC and the re-
duced rank adaptive GSC for colored scenarios. As shown in this 
work, the colored noise degrades significantly the performance of 
the GSC and RR-GSC algorithms. To reduced MNE in these sce-
narios, we proposed the DP-LMS-GSC, the HASP-LMS-GSC and the 
VIT-HASP-LMS-GSC algorithms for the full rank adaptive GSC and 
the DP-RR-LMS-GSC, HASP-RR-LMS-GSC and VIT-RR-LMS-GSC for 
the reduced rank adaptive GSC. These algorithms are based on 
the DP, on the stochastic prewhitening and on the VIT. The DP is 
used when the correlation structure of the noise is known and 
the stochastic prewhitening when it is unknown. The VIT acts as a 
pre-beamformer reducing the power that is not in direction of the 
desired signal.

The stochastic prewhitening requires one SVD to be computed 
at each sample. To reduce the number of SVD computations, 
a block-wise SG-RR-GSC was proposed. The algorithm adapts its 
Fig. 10. MNE in dB for LMS-GSC type algorithms with a varying N and an SNR of 
10 dB.

filter block by block making only one SVD per block necessary re-
ducing computational cost. The block-wise SG-RR-GSC in colored 
noise scenarios led to the development of the HASP-BW-RR-SG-
GSC and VIT-BW-RR-SG-GSC algorithms.

The incorporation of prewhitening schemes transforms back the 
colored noise into white noise allowing a significant improvement 
of the GSC and RR-GSC. Based on that, several algorithms were 
proposed for colored noise scenarios. A block-wise algorithm was 
proposed to reduced the number of SVD computations to one per 
block. By means of simulation, a lower MNE was achieved in the 
final result when compared to the sample-wise methods.
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