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Abstract

We investigate a family of correspondences associated to étale coverings of degree 3 of hyperellip-
tic curves. They lead to Prym—Tyurin varieties of exponent 3. We identify these varieties and derive
some consequences.
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1. Introduction

A correspondencen a smooth projective curv@ is by definition a divisorD on the
productC x C. Any correspondencP on C induces an endomorphispg of the Jacobian
JC. Conversely, for every endomorphisyne EndC there is a correspondendz on C
such thaty = yp. However for most correspondencB®swhich occur in the literature,
yp is a multipled - 1;¢ of the identity of the Jacobian. In particular, this is the case for

Y Supported by DAAD, Conacyt 40033-F and FONDECYT No. 3040066.
* Corresponding author.
E-mail addressedange@mi.uni-erlangen.de (H. Lange), sevin@matmor.unam.mx (S. Recillas),
anita@matmor.unam.mx (A.M. Rojas).

0021-8693/$ — see front mattét 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.01.029


https://core.ac.uk/display/82017179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

H. Lange et al. / Journal of Algebra 289 (2005) 594-613 595

any correspondence of a general curve. It were mainly these correspondencesfcalled
valency dwhich were studied by the classical Italian geometers (see, e.g., [8]).

At the beginning of the 1970s A. Tyurin suggested the investigation of another class of
correspondences, namely effective symmetric correspondénaegghout fixed point on
C such thatyp satisfies an equation

Y2+ (e —2)yp — (e — 1) =0.

For these correspondenc®s= im(yp — 1,¢) is a Prym—Tyurin varietyof exponente,
meaning that the restriction of the canonical polarizatiorv6fto P is thee-fold of a
principal polarization orP. Jacobians are Prym—Tyurin varieties of exponent 1, Prym va-
rieties associated to étale double coverings are Prym-Tyurin varieties of exponent 2. On
the other hand, it is not difficult to show (see [2, Corollary 12.2.4]) that every principally
polarized abelian variety is a Prym—Tyurin of some high exponent. However, it seems not
S0 easy to construct Prym—Tyurin varieties of low expone First examples (associ-
ated to Fano threefolds) were investigated by Tyurin (see [9]). Other examples (associated
to Weil groups of certain Lie algebras) were constructed by Kanev (see [5]).

Itis the aim of this paper to study the following correspondence le¢ a hyperelliptic
curve of genug >3 and f: C — C an étale threefold covering. Consider the following
curve in the symmetric product@:

X={peC?|fP(p)egl

Let « denote the hyperelliptic involution af and forx € C write f*i(x) = {x1, x2, x3},
F~Yx) = {y1, y2, y3} and moreover for abbreviatiah; = x; + y; € C?. Then the sym-
metric (2, 2)-correspondenc® on X is defined by

D={(Pj,Pu)eX x X |i=kandj#loris#kandj=1(}.

We show in Section 2 under the hypothesis thats smooth and irreducible, tha =
im(yp — 1;x) is a Prym—Tyurin variety of exponent 3. In Section 3 we realig&ga— 1)-
dimensional family of pairgC, f) such thatX is smooth and irreducible. In fact, the
Galois groupG of the Galois extensiow — P! of C—>Plis necessarily isomorphic

to S3 x S3 C Se. In Section 5 we compute the dimensions of the Jacobians and Prym
varieties relevant to this situation. The main result of this section is Theorem 5.3 which
says that there are two trigonal curvEs and X, associated to subgroups 6fsuch that

P is canonically isomorphic as a principally polarized abelian variety to the product of
Jacobiang/ X1 x J X2. The trigonal covers ok, and X2 have disjoint ramification locus
and X is their common fibre product ové@!. As a consequence of this and the moduli
considerations of Section 4 we obtain the following consequence which seems of interest
to us and for which we could not find a different proof:

Corollary (of Theorems 4.1 and 5.2)et X; and X be trigonal curves with simple rami-
fication and disjoint branching and & denote their fibre product ové with projections
fi : X — X;. ThenX is a smooth projective curve and the map+ f5: J X1 x J X, —

J X is an embedding.
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Finally, in Section 6 we study the Abel-Prym map of the Prym—Tyurin vadtetefined
as the composition of the Abel map— J X and the projectiod X — P. The main result
is the following:

Theorem. For g > 6 the Abel-Prym magp : X — P is an embedding.

As a consequence we obtain that the cohomology class of three times the canonical
product polarization of/ X1 x JX> is represented by a smooth irreducible curve (see
Corollary 6.5).

2. Construction of the Prym—Tyurin varieties

Let C be an hyperelliptic curve of genys> 3,i:C — C the hyperelliptic involution
andh : C — P! the map given by thg%. Let f: C — C be an étale morphism of degree
from a projective smooth irreducible curge

Let us define a new curvE by the following cartesian diagram:

1 ~

X = (f(z)) (g%) s c®

n=f®lx i i @ (2.1)
Plxglc — - c@,

where f@:c® — C®@ denotes the second symmetric producfoDbserve that is of
degreen?.

For the rest of this section let us assume that the ciri@smooth and irreduciblg(In
the next section we will see that there exist étale coverifigsich that this is the case.)
Under this hypothesis we define a corresponddhos X . For this consider the canonical
2:1-mapi:C2 — C@ from the cartesian to the symmetric productofind denote

X =1»"1Xx).

Let p1: X — C denote the projection onto the first factor, whérés considered as a curve
in C2. Then

5::{(a,b) eXxX | pl(a):pl(b)}

with reduced subscheme structure is an effective diviso??%nontaining the diagonal.
Denote

Y:=D— A.
The divisor

D := (A x1)(Y)
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is an effective symmetric correspondenceXobf bidegree2n — 2, 2n — 2).
In order to describe this correspondence set-theoretically, we fix some notation. Given
ze Pl let

hYz) = x +ix
and
A= x) D) =)
If we denote fori, j =1,...,n,
Pij=xi+yjeXC 5(2),

thenr=1(z) ={Pij i, j=1,...,n}.
By construction, the imag® (P;;) = (p2)«(D N ({ P;;} x X)) is given by

n n
D(Pj)= > Pi+ Y, Py
I=1, I#] k=1, ki

In particular, the correspondend? is fixed point free. Moreover, a straightforward
computation shows that

DX(Pij)=(@2n—2Pj+(n—2)D(P))+2 ) Pu.
ki, 1]

thus we get:
D?(P;j) — (2n — &) P;j — (n — HD(Pyj) = 21* (w(P;))).

This implies that the endomorphispp of the Jacobiary (X) induced byD satisfies the
equation

y2 4+ (4—n)yp — (2n —4) =0.

Recall that according to a theorem of Kanev (see [2, Theorem 12.9.1]) an effective fixed
point free symmetric correspondenbeon a smooth projective curvE defines a Prym—
Tyurin variety of exponent if and only if the endomorphismp associated td satisfies
the equation

y3+(—2yp—(e—1)=0.
Together with the above reasoning this implies:

Proposition 2.1. P = Im(yp — 1) is a Prym—Tyurin variety for the curvg if and only if
n = 3. In this case the exponent &fis 3.
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Remark 2.2. Observe that orX there is another natural effective symmetric correspon-
dence:

D'(P;j) = Z Py,
ki, 1]

which is symmetric and whose associated endomorphigsne End(J X) satisfies the
equationyg, + (n — 2)yp — (n — 1) = 0. HoweverD’ has fixed points, so we do not
know whether it induces a Prym—Tyurin variety.

3. Existence of the curve X

Let h: C — P! be a hyperelliptic covering of genygsas above. We want to determine
those étale coveringg: C — C of degree 3 for which the curv¥ defined by diagram
(2.1) is smooth and irreducible.

Recall that if By = {ay, ..., a2} C P! denotes the branch locus bfando; denotes
the class of the path from a fixed pointe P* going around:; once, then

28+2
[]oi= 1>. (3.1)

nl(]P’l \ By, Zo) = <01, ce, 02642
i=1

Let
iy (P By, z0) — Se
be a classifying homomorphism for the composed rfiap: : C — C — P! and denote
G =Im(p) C Se.

By constructionu(o;) = t1t2t3 Wherety, r, andrz are disjoint transpositions, but not all
such products can occur.

In fact, if we denote as above 1(z) = x +ix, f~1(x) = {x1, x2, x3} and f ~1(ix) =
{y1, y2, y3} and if we identify(x1, x2, x3) with (1, 3,5) and(y1, y2, y3) with (2, 4, 6), then
exactly the following 6 permutations can occur:

{12(34(56),(14(25(36),(16)(23)(45),
(12(36)(45),(14(23(56), (162534}

Hence the existence of an étale coverifigC — C is equivalent to the existence of a
homomorphismmu : 71 (P \ By, zo) — Se as above such that the image= Im(r) is a
transitive subgroup ofs. By a direct computation, one checks that there are up to conju-
gation exactly 3 types of transitive subgroupsSgfgenerated by a subset of the above set
of permutations, namely:
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=((12RB4(56),(14(25(36)) ~ 3,
I G=((12(34)(56),(14(25(36),(12(36)(45) =82 x S3,
lll: G generated by all 6 permutations of above, i.e.,
=((2406,(19(24,(14H(25(36)) ~ 53 x Ss.

In order to see in which cases the associated ckirigesmooth and irreducible, we describe
the monodromy associated to the constructioiX oFor this we have to analyze the action
of the groupG on a fibre ofr : X — P, i.e., the action of5 on the sef{x1 + y1, x1 + y2,

.,x3 + y3}. One immediately checks that the in the cases | and Il this action is not
transitive. Hence the normalization &fis not connected in these cases. So for the rest of
this section leG denote the group of case Ill. Then we have:

Lemma 3.1. If f:5 — C is an étale covering of degre® of a hyperelliptic curveC
such that the image of a classifying homomorphismr1 (P \ By, zg) — Se is a group of
typelll, then the curvex of diagram(2.1)is smooth and irreducible.

Proof. The stabilizer of the elememft; = x1 + y1 of the fibrex ~1(z) is the groupG p,;, =
(1234 (56), (34(56)), which is Klein’s group of 4 elements. Sincgis of order 36,
this means thaf acts transitively on the s¢t1 + y1, x1 + y2, ..., x3 + y3} implying that

X is irreducible. The proof of the fact that is smooth is a slight generalization of the
proof of [2, Lemma 12.8.1]. O

Let

Gal(h o f)

™~

denote the Galois extension bb f: C — PL. The next proposition identifies Galo f)
in terms of the geometric construction of Section 2. For this consider the Fuved —
A C X x X of Section 1. It can be considered as a symme{fi;c?) correspondence on
X without fixed points. So the projectiong andg2:Y — X coincide and are étale of
degree 2. Let us observe that in this cédegf = 3) the mapp; : X — C is étale (see
proof of Lemma 5.1). Let denote the composed map®:- X — PL.

Proposition 3.2. The map §:Y — P; coincides with the Galois extension
y:Gallho f) — Py.

Proof. As in Section 2, forz € P!, denoteh~1(z) = x + ix and f~1(x) = {x1, x2, x3},
f~Yix) = {y1, y2, y3}. Then the fibres~1(z) for a generak e P! consists of the 36 ele-
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ments{((x1, y1), (x1, ¥2)), ((x1, y1), (x1, ¥3)), ((y1, x1), (¥1, x2)), ((¥1, *1), (¥1, X3)), . . -,

((y3, x3), (¥3, x2))}. It is immediate to check that the group acts transitively on these
fibres or equivalently that the stabilizer of a point, $éy1, y1), (x1, y2)), is trivial. This
implies that the Galois covering Galo f) is a normalization of’. The smoothness df
follows from the fact that’ is a symmetric fixed point free correspondence on the smooth
curveX. O

In order to study the Prym—Tyurin variety of Proposition 2.1, we have to take into
account also the subgroups 6f since to every such subgroup there corresponds an in-
termediate covering of: Y — Pj. For this note that the triple products of transpositions
generating the grou@ form two conjugation classes i, namely

={(12(34(56),(14(25(36).(16)(23)(45)},
={(12(36)(45,(14(23)(56),(16)(25(34)}.
Moreover, we have
G =(C1,C2) ~{(C1) x (C2) ~ 83 x S3. 3.2
Let 7:G — G denote the outer automorphism interchanging the direct fa¢t@rsand
(C2) of G. The subgroup diagram @¥ consists of 8 conjugacy classes of subgroups in-

variant underr and of 14 pairs of different conjugacy classes of subgr@ais G2) with
7(G1) = G2. We need only the following part of it:

—7
\/ 3L

{e}

where

((12(34(56),(35(46),
(12)(34)(56),(35(46),(135(246)=((12(34(56), C2),
(12(34(56),(35(46),(135(264)=((12(36)(45), C1),
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K =((246.(135,(15(24),
L=((246),(35(46)) and
=((35(46)).

Lemma 3.3. Up to conjugation inG, we have

(@ Y/L=CandY/K =C,
(b) Y/H =X andY/M =

Proof. Observe first that. = G N Ss, where S5 denotes the stabilizer of the symbol 1
in Ss. Hencepn (L) c nl(}P’l \ By, zo) is isomorphic to the fundamental group ﬁf\
(ho f)~1By. HenceY /L = C and by Galois theory it follows that/K = C, since there
is no other subgroup betweénandG. This completes the proof of (a).

In order to see (b), note first that the subgralpis the stabilizer inG of the set
{1, 2}. This implies that the action of; on the set of classe§/M gives a homomor-
phismi:G — Sg, which is injective and with image a transitive subgroupsef Hence,
by construction of the curv& the composition. o 1 : 71(P1\ By, zo) — Sg is a classifying
morphism for the covering : X — P*. Denoting bysSg the stabilizer of a symbol ifig, this
implies that(x o 1) ~1(Sg) is isomorphic to the fundamental group ¥f\ = ~1(B;). But a
short computation shows that(Sg) = H. Hence the fundamental group ®f = ~1(B;,)
is isomorphic tow~1(H) implying Y/H = X. SinceM is the stabilizer of the ordered set
(1,2) in G, one shows in a similar way th&/M = X. O

Combining everything and denotiky = Y/H; andX» = Y/ H», we obtain the follow-
ing diagram of morphisms of smooth projective curves:

(3.3)

Recall from Section 2 the correspondemrze= (A x 1)4(Y) C X x X.
Proposition 3.4. A x Aly : Y — D is an isomorphism.

Proof. The map is given bY(x;, y;), (xi, y)) = (xi + yj,xi + yx). The morphism
D — Y defined by(a, b)) - ((aNb,a —anNb),(@anb,b—anb))isinverse to it. Here
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a andb are considered as divisors on the cuévanda N b denotes the greatest common
divisor ofa andb. O

4. Themoduli spaces

Let the notation be as at the end of the last sectionfS(B — C is an étale covering of
degree 3 of the hyperelliptic curve: C — P! with branch locusB;, = {a1, oo, a2g42},
such that the compositioh o f is given by a classifying homomorphisp: (P! \
By,z0) > G C Sg as in (3.1) andG ~ S3 x S3, of type Ill. In this section we want to
study the moduli of this situation.

Consider again the direct product decomposition (3.2). Sireg) € C1 U C2, we can
enumerate the; in such a way that

u(oi) =(gi,1) € (C1) x (Co) fori=1,...,«,
H(O'i)=(1»ga+i)€(cl)x<c2> fori:l""’ﬂv

for somex andp with « + 8 =2¢g + 2. In particularg; e C1 fori =1,..., ¢ andg; € C2

fori=a+1,...,a+B. Thenthe conditior}"[izflr2 o; = lis equivalent to the two condi-
tions

o B
[Jei=1 and []euri=1 (4.1)
i=1 i=1

So we must have andg even with
a>4 and B=>=4,

since under the isomorphisni€1) ~ S3 and(C2) ~ S3 the elements of’; andC> corre-
spond to transpositions, that is are of order 2. _

Using the notation of above it makes sense to call an étale covgriag— C of degree
3oftype(a, B) if u(o;) eC1fori=1,..., e andu(o;) e Cofori=a+1,...,a + 8=
2g + 2. The following theorem is the main result for studying the moduli space of étale
degree 3 coverings of hyperelliptic curves of tyjpe3).

Theorem 4.1. Suppose, g are even integers 4witha + 8 =2g+2anday, ..., a2 €
P! pairwise different. There is a canonicél : 1)-correspondence between the sets of

(1) coveringsC 4> € 5 P! degh = 2 ramified exactly ovens. ..., a4 and f unram-
ified of type(a, B) of degree3, and

(2) pairs of trigonal curvesfi: X1 — P! simply ramified exactly ovets, ..., a, and
f2: X2 — P! simply ramified exactly overy1, ..., azet2.
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Proof. Given (f, k) as in (1) it follows from (4.1) that the homomorphisminduces
homomorphismg; and w2 such that the following diagram is commutative:

M1

nl(]P)l \ {a17 MR aOl}1 ZO) - S3
llT Tﬁl
"
m1(PY\{a1, ..., azg 42}, 20) —— G = (C1) x (C2) (4.2)
lzl/ lﬁz
1 Hn2
71 (P\ {ag+1. ..., azg42}, 20) ———— S3,

wherel; is induced by the inclusioB! \ B, — P!\ {a1, ..., a,} and similarlyl by P1\
By — P\ {agq1, .. ., aze42} and p; :G — (C;) = S3 for i =1 and 2 is the projection
followed by a fixed isomorphisniC;) >~ S3.

To u1 corresponds a triple coverings: X1 — P! simply ramified exactly over
ai, ..., ay. Similarly to u» corresponds a triple covering: X» — P! simply ramified
exactly overag 1, . .., aze42. The coveringsf; and f> are uniquely determined up to an
automorphism, since every automorphisnsgis inner.

Conversely, given(f1, f2) as in (2), tof1 corresponds a homomorphism and to
f2 a homomorphismuy as in the diagram. Defing : S3 — G as the composition of a
fixed isomorphisnsSs ~ (C1) with the embedding ofC;) as the first factor and similarly
i2:S3 — G as the composition of a fixed isomorphisty~ (C2) with the embedding of
(C») as the second factor. Then we can definery (P! \ {a1, ..., ag+2},z0) = G such
thatiu = i1 0o u10l1 =iz 0 upolp by setting

u(o;) =itouroli(o;) fori=1,...,aand
u(o;) =izouzols(o;) fori=a+1,...,2¢g+2.

Sincei; andiz map the transpositions ¢ to the products of transpositions {@'1) and

(C>), i.e., toC1 and C», the homomorphisnu defines a composition of coverinngL
Cc 5 P! as in (1). Certainly these maps are inverse to each other which completes the
proof. O

Proposition 4.2. The mapsf; : X; — P! of Theorem#.1and of diagram(3.3) coincide. In
particular,

X;=Y/H; fori=12
Proof. Observe that if we fix the isomorphissa — (C7) by
12— (129@B4H((56), 13+ (14(25(36),
andS3 = (C2) by

12— (123645, (13— (14(23)(56),



604 H. Lange et al. / Journal of Algebra 289 (2005) 594-613

then with the notation of diagram (4.2) we have that the ggoup({1, (12)}) is isomorphic
to the fundamental group of1 \ f; (a1, ..., an}). Hence the group; *u;t ({1, (12)})

is isomorphic to the fundamental group Xf \ fl_l({al, ..., a2¢4+2}). On the other hand,

(et (L. @2}) = M (2 2BH(5ES) x (C2)) = n ™ (H),
which givesX1 >~ Y/ H;. Similarly
(ot ({1 12))) =1 7H((C1) x (12(36)(45)) = ™ (Ha),
which givesXo >~ Y/H>. O
Corollary 4.3. Letw, 8 be even integers 4 with o + 8 =2¢ + 2 and g > 3. The moduli
spaceM («, B) of étale degre@ coverings of hyperelliptic curves of gengsf type(a, 8)
is isomorphic to the moduli space of pairs of trigonal coverings of génus2 and g -2
with simple ramification and disjoint branching. In particuldim M(«, 8) =a+ 8 —3=
2g —1.
Proof. Theorem 4.1 or to be more precise a slight generalization of it concerning families
of the corresponding coverings implies that the moduli functors in question are isomorphic.

This implies the statement about the moduli spaces. It remains to compute the dimension.
Consider

A= (xf‘zllPl) \Ay and B:= (xleﬂbl) \ Ag,
whereA, andAg denote the corresponding discriminants and let
mo H3* > A and mg:H3F - B

denote the Hurwitz spaces of triple covergdfsimply ramified in respectivelys points.
Let R C A x B be the open set

R= {(al,...,aa,aa+1, ooy datp) | ai #agyjforl<i<a, 1< gﬁ}.
Then(m, X ﬂﬁ)_l(R) — R parametrizes pairs of simple triple covers with disjoint branch-
ing. The action of PG[) on R lifts to an action on(m, x n,g)—l(R) and the quotient
(g X n,g)—l(R)/ PGL(1) is the moduli space of pairs of trigonal coverings with simple
ramification and disjoint branching. So dim(a, 8) =a +8—3. O

5. Comparison with other ppav’s

It is the aim of this section to relate the Prym—Tyurin varietiesntroduced in Sec-
tion 2 to the other principally polarized abelian varieties occurring in this situation. For
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this we first determine the ramification of the maps and the genera of the curves occurring
in diagram (3.3).

Recall thaiC is a hyperelliptic curve of genysramified over the pointay, ..., az42 €
P! and C an étale covering of degree 3 ¢f and thus of genusg— 2. Moreover,
from the construction we get that all maps in the diagram (3.3) are unramified over
P\ {ay,..., azg42}. SUPPOSES : C — Cis of type(w, 8). Then we have

Lemmab.l.

(@) g(C)=3g—2,g(X)=9g—8,g(¥Y)=18 — 17,
(b) g(X)=3g—5;

©) gX)=%-2andg(X») =5 - 2;

(d) dmpP =g — 3.

Proof. The covering)? — C is defined by restricting the étale mgpx f in the following
diagram:

X=(fx ) HoO)— 2

| V<t

C:{(x,ix) |xeC}<—> c2.

It follows that X — C is étale of degree 3. Recall from Section 2 tlfais a fixed point
free symmetriq(2, 2)-correspondence on the cunke HenceY — X is an étale double
covering and Hurwitz formula gives (a). From the description of the fiiie)~1(z) for
anyz € Pl in Section 2 we see thatis of ramification typa2, 2, 2, 1, 1, 1). Again Hurwitz
formula gives (b). (c) was proven already in Corollary 4.3.

Proof of (d): LetNp denote the norm endomorphism associated to the endomorphism
yp of the correspondende. According to [2, 5.3.10] din® is related to the analytic trace
of Np by

. 1
dmPpP = éTra(Np).
Sinceyp = 1x — Np, we have

Trr(yp) = 2g(X) = Tr,(Np),

where Ty denotes the rational trace, which is related to the analytic trace.by ZiRe Ty, .
On the other hand, according to a theorem of Weil (see [2, 11.5.2 and 3.1.3]) we have

Trr(yD) = 89

since the correspondendeis without fixed points. Putting everything together gives the
assertion. O
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From Lemma 5.1 we deduce
dim f{'J X1 +dim f; J X2 =dim P.

This suggests that there should be a relation betweénx J X, and P. The following
theorem is the main result of this section.

Theorem 5.2. The canonical magy" + f5 : J X1 x JX2 — JX induces an isomorphism
JX1 x JXo >~ P.

The proof consists of a careful analysis of the action of the gGuRecall thatSs
admits 3 (absolutely) irreducibl®-representations, the trivial and the alternating repre-
sentations g, and U of dimension 1 and the standard 2-dimensional represent&tion
The tensor products of these are all irreducible representations of the Greugs x Ss.

For any subgroup? of G let py (1y) denote the representation@finduced by the trivial
representation of H.

Lemmab3. pg,(1g) — 16 =V ® Lg,, o, (1) — 16 =15, @ V.

Proof. Fix isomorphismg(C1) >~ S3 and (C2) ~ S3 and thusG ~ S3 x S3. Then H; ~
(1B 4H(56) x (C2) = 52 X S3.

The representatiopy, (1x,) is then given by the action of the grodp= S3 x S3 on
the quotient(S3 x S3)/(S2 x S3) or equivalently by the action of the first factsg on the
quotientSs/S». But it is easy to see that this is just the representétianls,. This implies
the first equation. The second equation is proved in the same way.

Proof of Theorem 5.2. The action of the grou on the curveY induces a homomor-
phismQ[G] — Enth(JY) of the rational group rin@)[G]. Using this, one can associate
an abelian subvariety of X to every projectop € Q[G] and thus to every subrepresenta-
tion of Q[G] in a natural way. In particular, iV is an irreducibleQ-representation ofs,
and(,) a G-invariant scalar product d¥, then for any nonzera € W a projector for

is given as follows (see [2, p. 434]):

dimw
Pw = e Z(w,gw)g-

Gl Twl? &

Itis well known (see, e.g., [7, Corollary 3.2]), that the pull-back of the Prym varetst)

of the morphismf;: X; = Y/H; — Y/G =P in Jy corresponds to the representation
pH; (1) —1¢. Butaccording to Lemma 5.3 both representations are irreducible. So choos-
ing nonzero vectora; € V ® 1s, andwy € 15, ® V and denotingy the composed map

Y > X 5 X of diagram (3.3), this implies

Pu; (JY) ~ @* fFTX; (5.1)
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fori =1 and 2, where- denotes isogeny.

Now an easy computation shows that the vector spéées 153)” and(ls, ® V)H of
H-invariants are one-dimensional. Choosinge (V ®1s,) \ 0 andw, € (15, ® V)# \ 0,
we have

(w;, hgw;) = (w;, ghw;) = (w;, gw;)

foranyh € H andi = 1, 2. Hence applying [6, Proposition 3.5], we get that the projector
pu,; descends to an endomorphigiy, : /X — JX such that

pu (JY) = ¢*(puw, (J X)).

In fact,
dimv
pu; (X) = ————= > _(w, gw)g(x),
P = TG g 2 )8
ge
where
g)=>"o(ghy) (5.2)
heH
with y € Y such thatp(y) = x.
So (5.1) implies
P (JX) ~ fFTX,. (5.3)

Now the projectorp,,; does not depend on the choice of the veabpithe vector spaces
(V® 1s,) and(1s, ® V) being one-dimensional. This implies that in (5.3) we actually
have equality instead of only isogeny (see [2, Proposition 13.6.4]). So we conclude

(ff"’f;)(JXlXJXZ):(l;wl“l‘l;wz)(JX)' (5-4)

In order to complete the proof of the theorem, we have to show that the imggg ¢fp,,,
is just P. For this we have to compute the projectprs and p,,, explicitly.
Consider the decomposition

G=H1U(46H1U(135H;.

If we definevy = Hy, vo = (246)Hy, vz = (135 H1 ande; = v1 — vp, e2 = v2 — v3, then
the action ofG on G/ H; gives us the representatidn® 1g, = e1Q @ e2Q =~ Q2.

Let us for example consider the action(8f) (4 6) € H. We have(35)(46)(H1) = Hi,
(39(46)((246H1) = (L35 H;y and hence35)(46)(e1) = e1 + ez and(35)(46)(e2) =
—e2. This means in matrix forn835)(24) = (1 %):Q? - Q2.
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The next step is to introduce@-invariant scalar product of2. One checks directly
that

((u1, u2), (v1,v2)) = 2u1v1 — u1V2 — UzvL + 2u2v2

is a G-invariant scalar product oV ® 15, = Q% We noted already above that
dm(V ® 153)H = 1. In fact, one observes that the matrix representation for the elements
of H is either the above example or the identity, implying ti®tl)’ € Q? is a generator
of (V& 1s,).

Choosingw; = (2, 1)', we are ready to compute the projeciay,. For example, the
coefficient ofg = (24)(35) in py,, is:

dim(V ® Ls,) 2 1 1)\/2

Gl e 8 = 6. 6<(2 D( 1)<1)>
~ 2 4 2i142=-2 (3
36- 6( Tt 36- 6( )-

Proceeding in this way with all elements@fand the representation® 1s, and similarly
the representations] ® V, we obtain:

2

m.[lzzh

— 62(135)}1 - 62(153)h

—6) (246h—6) (264h

+3) (135(246h+3) (135 (264h
+3).(153(246h+3)_(153(264h},

Pwq + Pwy, =

where the sum is always to be taken overiadt H. (Notice that even thougH is not a
normal subgroup o&, the same expression fox,, + p., is valid if we use right cosets
instead of left cosets.) So we get

36(puwy + Puwp) =4-1yx —2(139 —2(153 —2(246 —2(264
+(135(246 +(135(264
+(153(246 +(153(264),

where(135) is the endomorphism of X induced by(135) using (5.2).
Now with the notation of identifications of Sections 2 and 3 we have at the level of the
curveX:
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(139(P11) = P21, (153 (P11) = P31,
(246)(P11) = P12, (264 (P11) = P13,
(139(246(P11) = P22, (139(264(P11) = P23,
(153(246(P11) = P32, (153(264(P11) = Ps3.
So
36(Puwy + Puy) (Pr1) =4P11 — 2P21 — 2P31 — 2P12 — 2P13+ P22+ P23+ P32+ Pss.
On the other hand, recalling th&X(Py11) = P12 + P13+ P21+ P31, we get
3(1x — D)(P11) + 7% (7 (P11) = 36(pvets, + P1g,ev)(P11).

This implies

(Pwy + Puwr)(UX) = 1yx —yp)(JX) =P,
which with (5.4) implies

(ff+ /5)UX1x JX2) = P.
But on the one hand, the restriction of the canonical principal polarizatiohJ X to P is
of type (3, ..., 3) and on the other hand, the pull-back®@fvia f;" + f5:J X1 x J X2 —
JX is also of type(3, ..., 3). This implies thatf; + f5:JX1 x JX2 — JX is a closed
embedding, thus completing the proof of the theorem.
Remark 5.4. We computed the dimension of all Jacobians and Prym varieties arising from
the subgroup graph of the groih It turns out that they are different from difh So none
of them is isogenous to the Prym-Tyurin varidty The details will not be included here.
Now we are in a position to prove the corollary stated in the introduction.

Proof of the corollary of Theorems 4.1 and 5.2. Let X1, X, and X be as stated in the
corollary. According to Theorem 4.1 the pair of trigonal covers determines an étale degree
3 coveringf : C — C of a hyperelliptic curveC. So we are in the situation of Theorem 5.2
in the proof of which we saw that" + £ : /X1 x JX2 — JX is an embedding. It only
remains to be noted that the curi¥eof Theorem 5.2 coincides with the curvé of the
corollary, i.e., is the fibre product of the trigonal covers. But this comes from the fact that

(H1, H)) =G and HiNH,=H,

since the branchings of the trigonal covers are disjoirt.
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6. The Abel-Prym map

Let the notation be as above. In particular,is a smooth projective curve of genus
3¢ —5andD C X x X the correspondence given B P;j) = > ;. ; Pik + >_;; Pij for
i, j=1,...,3. For any positive integet let X(© denote the/-fold symmetric product of

X andag : X4 — JX be the Abel map with respect to a base pgigie X. In this section
we analyse the Abel-Prym map Bfwhich is by definition the composition

Bp:X Y gx 27X p gy,
By definition, 8p is given by the following diagram:

X9 x x

N
X JX,
Bp

where we consider the correspondence as a morphisi — X @,

Proposition 6.1. If ¢ > 6, the Abel-Prym magp : X — P is injective.

Proof. SupposeBp is not injective. Then according to the diagram there are two points
p1, p2 € X such thatD(p1) — p1 ~ D(p2) — p2, where~ means linear equivalence. This
implies

D(p1) + p2 ~ D(p2) + p1,

which means thaX admits agéL i.e., coveringX — P! of degree< 5. On the other hand,
X is a three to one covering of a curve of gerys< g—ES, namelyX — X;. But then

Castelnuovo’s inequality (see [3]) implies

~3 1
3g—5=g(x)<2-4+3-g—<§(3g+7).

Sog <5, a contradiction. O

Let us now analyse the local behaviour of the Abel-Prym rgap The tangent
spaceToJ X of JX at 0 can and will be identified witH%(X, wx)*. The differen-
tial (dyp)o:ToJ X — TpJ X has just 2 eigenvalues, namely 1 with multiplicigyX) —
dim P = 2g — 2 and—2 with multiplicity dim P = g — 3. Let V; andV_ denote the cor-
responding eigenspaces. Clearly

ToP =V_.
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Define thePrym—Tyurin canonical mapp of P to be the composition of the canoni-
cal mapgy : X — P(TpJ X) and the linear projection: P(ToJ X) — P(TpP) with center
P(Vy):

op: X B P(ToJ X) \ P(Vy) 5> P(ToP).

The following lemma is an immediate consequence of the fact that the canonicalymap
is everywhere defined:

Lemma 6.2. A pointx € X is a base point of the linear systdffy P| = |V_]| if and only if
ex(x) € Vil

For any pointp € P there is a canonical isomorphism of tangent spaGaR ~ To P
via which we identify the two vector spaces. In particular, we consider the differential of
Bp atx as a mapdBp),: Ty X — ToP. Varying x in X, we obtain a homomorphism of
the corresponding tangent bund&$p : Ty — Tp = P x ToP. It is easy to see that the
projectivization ofdg8p coincides with the Prym—Tyurin canonical map

¢p = P(dBp): X — P(ToP).
Using these facts, we are in a position to show:

Proposition 6.3. If g > 5, the differential(dBp). : T, X — ToP of the Abel-Prym map is
injective for every € X.

Proof. Assume that for some € X the differential of the Abel-Prym map atis not
injective, i.e.,(dBp), = 0. According to Lemma 6.2 and by what we have said above this
means that is a base point of the linear systegffy P| which is the case if and only if
the image of the canonical map satisfiegx) € P(V,). We will show that this leads to a
contradiction. For this consider the commutative diagram

X —— X(4)

D
" l l "
YD

JX —JX.

On the level of tangent spaces this gives

T. X Tpin X@
x W D(x)

(dog)x l (doa) p(x)

(dyp)o
ToJX —— TyJ X.
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In the same way as in the proof of Proposition 6.1 we conclude from Castelnuovo’s in-
equality that forg(X) > 10 or equivalentlyg > 5 the curveX does not admit @i. This
implies that the magdas) p) : Tpy X @ — ToJ X is an isomorphism onto its image.

Now letz € T, X be a nonzero vector. Since the projectivized differential of the Abel
mape; is the canonical mapy, we get from the assumption anthatdas (¢) € V. But
(dyp)o is the identity onV., implying

(dyp)o(dar)x (1) = (da1) (7).
The commutativity of the above diagram implies
(da) (1) € (daa) poy Tpo X @ C ToJ X.

Projectivizing and using the fact that the projectivizationd#,), is the canonical map,
we get

px(x) € D(x) C |wx]*. (6.1)

Here D(x) means the linear span of the divisBr(x) in the projective spac@wy|* =
P3-6. Now h%(D) = 1 sinceX does not admit &;. Hence the geometric version of
Riemann—Roch (see [1, p. 12]) implies

dimD(x) = 3.

But then (6.1) implies dinb(x) +x = 3 which again by the geometric version of
Riemann—Roch implies®(D(x) + x) = 2. So the linear systerD(x) + x| is agé. But
D(x) + x is part if a fibre ofz : X — P! and the corresponding linear system does not
admit fixed points. So this cannot occur completing the proof of the propositian.

Combining Propositions 6.1 and 6.3, we proved the theorem stated in the introduction.
Let (A, ®) denote a principally polarized abelian variety of dimensgiofthe cohomol-
ogy class(g_Ll)![@)]g*l is not divisible inH28~2(A, Z) therefore called the dimension-one
minimal cohomology classf (A, ©). If g > 3 itis not at all clear whether a multiple of it
contains a smooth irreducible curve. We obtain as a consequence of Theorem 5.3 and the
result of this section

Corollary 6.4. Let X1 and X» be trigonal curves of positive genus with simple ramification
and disjoint branching and le® denote the canonical product principal polarization of
JX1 x JX2. If g :=g(X1) + g(X2) > 3, then the clas§ﬁ[(~)]g‘l is represented by a
smooth irreducible curve.

For the proof we need the following well-known lemma, for which we include a proof
in lack of a reference:
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Lemma 6.5. For i = 1,2 let (A;, ®;) be principally polarized abelian varieties with
Endy(A;) = Q and Hom(A1, A2) = 0. ThenA; x A» admits no principal polarization
apart from the canonical product polarization.

Proof. Let ® denote the canonical product polarization 4f x A,. For any polar-
ization L let ¢; : A1 x A2 — (A1 x A)* denote the associated isogeny onto the dual
abelian variety. According to [2, Theorem 5.2.8] the maf(A1 x A2) — End(A1 x A2),

L+ ¢po <p51, induces a bijection between the sets of principal polarizations and totally
positive automorphisms of; x A, symmetric with respect to the Rosati involution. But
End(A1 x Ap) =Z x Z and the only such automorphism ig,1x 14,, the Rosati involu-

tion being the identity. Since4l x 14, corresponds to the polarizati@, this implies the
assertion. 0O

Proof of Corollary 6.4. By Theorem 5.3, it suffices to show that the principal polarization
Z of P coincides with the canonical product principal polarizatiod &f; x J X,. Accord-

ing to Lemma 6.5 it is enough to show that for general trigonal curves as in the corollary
we have End(JX;) =Q fori = 1,2 and Hon{J X1, J X») = 0, since if the polarizations
coincide for general trigonal curves they do so for all such curves.

The second condition being obvious it suffices to show that a general trigonal Xurve
satisfies End(JX) = Q. But for 1< g(X) < 4 any curve is trigonal and far(X) > 5 the
subspace of trigonal curves in the moduli spAdegx, is of dimension 2(X) + 1. Hence
the assertion follows from the main result of [4] which says that the Jacobian of a general
member of a family of curves of genus g and dimensio2¢ — 2 has endomorphism
algebraQ. O
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