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0. Introduction

Local cohomology theory has been an indispensable and significant tool in commutative algebra and algebraic geometry.
In this paper, we introduce a generalization of the notion of local cohomology module, which we call a local cohomology
module with respect to a pair of ideals (I, J), and study its various properties.

To be more precise, let R be a commutative noetherian ring and let I and J be ideals of R. We are concerned with the
subset

W(, J) = {p € Spec(R) | I" C p + ] for anintegern > 1}
of Spec(R). See Definition 1.5 and Corollary 1.8 (1). In general, W (I, J) is closed under specialization, but not necessarily a
closed subset of Spec(R). For an R-module M, we consider the (I, J)-torsion submodule I'; ;(M) of M which consists of all
elements x of M with Supp(Rx) € W (I, J). Furthermore, for an integer i, we define the ith local cohomology functor H,'" ] with
respect to (I, J) to be the ith right derived functor of I ;. We call H,"J(M) the ith local cohomology module of M with respect
to (I, J). See Definitions 1.1 and 1.3. }

Note thatif] = O then H,l’ ] coincides with the ordinary local cohomology functor H; with the support in the closed subset
V(I). On the other hand, if ] contains I then it is easy to see that /7 ; is the identity functor and H,"’] = 0fori > 0. Thus we
may consider the local cohomology functor H,'" jasa family of functors with parameter J, which connects the ordinary local
cohomology functor H,i with the trivial one.

Our main motivation for this generalization is the following. Let (R, m) be alocal ring and let I be an ideal of R. We assume
that R is a complete local ring for simplicity. For a finitely generated R-module M of dimension r, Schenzel [18] introduces

the notion of the canonical module Ky, and he proves the existence of a monomorphism H; (M) — Ky and determines
the image of this mapping, where ¥ denotes the Matlis dual. By his result, we can see that the image is actually equal to
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Iy 1 (Ky). From this observation one expects that there would be a duality between the ordinary cohomology functor H} and
our cohomology functor Hfm ;- We shall show in Section 5 that there are canonical isomorphisms

HI(M)" = T (Ku) and HY, (M)Y = I3(Ky).

See Theorem 5.11 and Corollary 5.12.

We should note that our idea already appears in several articles, but in a more general setting. In fact, if we denote by
wd, J) the set of ideals a satisfying I" C a + J for an integer n, then the set F = {D(a) | a € wd, J)} of open subsets of
Spec(R) forms a Zariski filter on Spec(R). See [2, Definition 6.1.1]. In this setting, Brenner [2, Section 6.2] defines the functor
IF by

I't(M) = {x € I'(Spec(R), M) | x|y = O for some D(a) € F} = ll_n)] I'vy(M),
D(a)eF

for an R-module M. This actually coincides with I ;(M).

The aim of the present paper is to generalize a number of statements about ordinary local cohomology to our generalized
local cohomology H,"J. One of our main goals is to give criteria for the vanishing and nonvanishing of H,"J (M).

The organization of this paper is as follows.

After discussing the basic properties of the local cohomology functors H,’A’ ] and the subset W (I, J) of Spec(R) in Section 1,

we define a generalization of Cech complexes in Section 2. In fact, we show that the local cohomology modules with respect
to (1, ) are obtained as cohomology modules of the generalized Cech complexes (Theorem 2.4).
In Section 3, we show some relationships of our local cohomology functor with the ordinary local cohomology functor.
Section 4 is a core part of this paper, where we discuss the vanishing and nonvanishing of H,'J. We are interested in
generalizing Grothendieck’s vanishing theorem and the Lichtenbaum-Hartshorne theorem to our context. In fact, one of
our main theorems says that the equality

inf{i | H! ,(M) # 0} = inf(depth M, | p € W(l, J)}

holds for a finitely generated module M (Theorem 4.1). A generalized version of the Lichtenbaum-Hartshorne theorem will
be given in Theorem 4.9.

In Section 5, we shall show a generalized version of the usual local duality theorem for local cohomology modules with
respect to (I, J). Also, motivated by the work of Schenzel, we discuss some kind of duality between H,"’ J and ordinary local
cohomology modules. See Theorem 5.1.

In Section 6, we study the right derived functor RI"; ; defined on the derived category D?(R), and prove several functorial
identities involving RI"; ;. See Theorems 6.2 and 6.3.

Throughout the paper, we freely use the conventions of the notation for commutative algebra from the books
Bruns-Herzog [4] and Matsumura [14]. And we use well-known theorems concerning ordinary local cohomology without
citing any references, for which the reader should consult Brodmann-Sharp [3], Foxby [5], Grothendieck [7] and
Hartshorne [8].

1. Definition and basic properties
Throughout this paper, we assume that all rings are commutative noetherian rings. Let R be a ring, and I, J ideals of R.

Definition 1.1. For an R-module M, we denote by I ;(M) the set of elements x of M such that I"x C Jx for some integer n.
nyM)={xeM|I"x C Jxforn > 1}.

Note that an element x of M belongs to I7 ;(M) ifand only if I" € Ann(x) 4] for n >> 1. Using this, we easily see that I3 ; (M)
is an R-submodule of M.

For a homomorphism f : M — N of R-modules, it is easy to see that the inclusion f (17, ;(M)) C I7 ;(N), and hence the
mapping 17 ;(f) : I7,;(M) — I7;(N) is defined so that it agrees with f on I7 ;(M).

Thus I7,; becomes an additive covariant functor from the category of all R-modules to itself. We call I ; the (I, J)-torsion
functor.

It is obvious that if ] = 0, then the (I, J)-torsion functor I; ; coincides with I-torsion functor I73.
Lemma 1.2. The (I, ])-torsion functor I7  is a left exact functor on the category of all R-modules.

Proof. Let0 — L i) M 5 N — 0be an exact sequence of R-modules. We must show that

NI I7,5(8)
0 — I1;(L) —> ;M) —— I7;(N)

is exact. It is clear that I7 ;(f) is a monomorphism and
Im(17;(f)) < Ker(I7,;(g)).



584 R. Takahashi et al. / Journal of Pure and Applied Algebra 213 (2009) 582-600

To prove the converse inclusion, let x € Ker(/7 ;(g)). Since x € I7 (M), there exists an integer n > 0 such that I"x C Jx.
There is an element y € L with f(y) = x, since g(x) = 0. We have to show that y € [I7(L). For each a € I",
we have f(ay) = af(y) = ax € I"x C Jx, and hence there is an element b € ] with ax = bx. Thus the equality
f((a—b)y) = af(y) — bf(y) = ax — bx = 0 holds, and consequently (a — b)y = 0 because f is a monomorphism.
Therefore ay € Jy, and thus Iy C Jy. It follows thaty € I7 ;(L). O

Definition 1.3. For an integer i, the ith right derived functor of I7  is denoted by H,"‘ ; and will be referred to as the ith local

cohomology functor with respect to (I, J).
For an R-module M, we shall refer to H,’J (M) as the ith local cohomology module of M with respect to (I, ]), and to I ;(M)

as the (I, J)-torsion part of M.
We say that M is (I, J)-torsion (respectively (I, J)-torsion-free) precisely when I ;(M) = M (respectively I ;(M) = 0).

It is easy to see that if ] = 0, then H} 1., coincides with the ordinary local cohomology functor H].
We collect some basic properties of the (I, J)-torsion part and the local cohomology modules w1th respect to (I, J).

Proposition 1.4. Let I, I, ], ]’ be ideals of R and let M be an R-module.

(1) Iy (M) = Ty p (17 (M)).

(2) If I C 1, then I ;(M) 2 Iy ;(M).

(3) If ] € J', then I ;(M) C I7,y(M).

(4) I ;v (M) = Ty, (M). A

(5) I1,;U7, (M) = I,y (M) = I jry (M). In particular, Hz ﬂ,(M) = HA,'YW,(M)for qll integers i.

(6) If ]/ C ], then H;+J’,](M) = H,'A’](M) for all integers i. In particular, H1'+],](M) = H,'A’](M) for all integers i.
(7) If /T =T, then Hf (M) = H,",J(M) for all integers i. In particular, H; ,(M) = Hiﬁ (M) for all integers i.
(8) If V] = /T, then H| (M) = H,’AJ, (M) for all integers i. In particular, H | (M) = H;.ﬂ(M) for all integers i.

Proof. All these statements follow easily from the definitions. As an illustration we just will prove statement (4).

Let x € I7;(Iv ;(M)). Then there exist integers m,n > 0 such that ["x C Jx and I""x < Jx hold. Thus we have
(I 4+ 1)™"x C I"x + I"x C Jx, and hence x € Ij.y ;(M). To prove the converse inclusion, let x € Iy ;(M). Then
there exists an integer n > 0 such that (I +I")"x € Jx. Thus I"x, I"'x € (I +1')"x C Jx. Hence x € I} ;(I7r;(M)). O

Definition 1.5. Let W(I, J) denote the set of prime ideals p of R such that I" C J + p for some integer n.
W, J) = {p € Spec(R) | I" CJ + pforn > 1}.

Itis easy to see thatif] = 0,then W (I, J) coincides with the Zariski closed set V (I) consisting of all prime ideals containing
I. Note that W (I, J) is stable under specialization, but in general, it is not a closed subset of Spec(R).
We exhibit some of the properties of W (I, J) below.

Proposition 1.6. Let I, I, ], ]’ be ideals of R.

(D IFICT, thenW(, ]J) D W, )).

() IfJ S, thenW(l, J) S W, J.
BGYWA+TI, )=wd, DNW{I, ).

@) wd, JJ)=wd,jnj)=wd, Hnwd, ).
Egg W, ) =W 1, ) =wd, V.

Let R be a local ring with maximal ideal m. If I is not an m-primary ideal, then the following equality holds.

Wm,I) = (m W (m, ])) N {p | p is prime ideal such that p Z I}.
IS

7y v() = ﬂ] w(d, ]) = ﬂjeD(,) W(, J), where D(I) is the complement of V (I) in Spec(R).

Proof. (1) to (5): The proofs are easy. We will prove only statement (4) and leave the proofs of the remaining statements
to the reader.

Since ]/ € JNJ CJ, J,itholds that W(I, JJ)) € W, JNJ) € Wd, ) "W, J).Letp € W(I, J) N W, J'). Then
there exist integers m,n > O such thatI™ C p +J,I" € p +J. Thus ™™ C (p +)(p +J) € p + JJ'. Hence we have
pewd, II.

(6): Letp € W(m,I), then I + p is m-primary. If I C J, thenJ + p is m-primary as well, hence p € W (m, J). Since I is not
m-primary, we have p Z I.

To prove the converse, letp € ﬂlg W (m, J) withp &Z I. Setting] =1+ p 2 I, we must havep € W(m, I +p). Thus +p
is an m-primary ideal. Therefore it follows that p € W (m, I).

(7): Itis trivial that V(I) € ﬂj wd, J) < ﬂjeD(,) W (I, J).Suppose thatp ¢ V(I). Thenwe havep € D(I) andp & W (I, p).

Thusp & (Njepoy WU, ). O
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Proposition 1.7. For an R-module M, the following are equivalent.
(1) Mis (I, J)-torsion R-module.

(2) Min(M) € W(l, J).

(3) Ass(M) < W, J).

(4) Supp(M) € W(I, ]).

Proof. The implications (4) = (3) = (2) are trivial.

(2) = (4): For p € Supp(M), there exists ¢ € Min(M) such that q C p.Sinceq € W(I, J),I" € J+q < J + p foran
integer n. Hence p € W (I, J).

(1) = (3): Ifp € Ass(M) then p = Ann(x) for some x € M. Since M is an (I, J)-torsion R-module, there exists an integer
nsuchthat ™ C J + Ann(x) =] + p. Hence p € W(I, J).

(4) = (1): We have to show that M C 17 ;(M). Let x € M, and set Min(Rx) = {p1, ..., ps}. Since Min(Rx) <
Supp(M) < W(, J), there exists an integer n such that I" C J + p; for all i, thus I < J + (p;---ps). Now since
JAnn(x) = p; N -~ Nps D pq---ps, it follows that (py---ps)™ < Ann(x) for an integer m. Therefore we have
I C J 4+ Ann(x). Hencex € I7 ;(M). O

Corollary 1.8. (1) For x € M, the following conditions are equivalent.
(a) x e I7 ;(M).
(b) Supp(Rx) < W(I, ]). , , , ,

(2) Let 0 > L - M — N — 0 be an exact sequence of R-modules. Then M is an (I, J)-torsion module if and only if L and N
are (I, J)-torsion modules.

Proof. (1): (a) = (b) The assumption implies that I3 ;(Rx) = Rx. Thus by Proposition 1.7 we get Supp(Rx) € W(l, ).
(b) = (a) By using Proposition 1.7, we get x € Rx = I ;(Rx) C I3 j(M).
(2): This follows from Proposition 1.7 and the fact that Supp(M) = Supp(L) U Supp(N). 0O

Corollary 1.9. If M is an (I, ]J)-torsion R-module, then M /JM is an I-torsion R-module. The converse holds if M is a finitely
generated R-module.

Proof. Since M is an (I, J)-torsion R-module, we have Supp(M) € W (I, J). Thus we get Supp(M /JM) < Supp(M)NV(J) €
W, J) NnV({J) € V(). Therefore M/JM is I-torsion R-module.

Suppose that M is a finitely generated R-module, and let x € M. We want to show that x € I ;(M). By the Artin-Rees
lemma, there is an integer n > 0 such thatJ"M NRx C Jx. Since M /JM is I-torsion, we have Supp(M /J"M) = Supp(M/JM) C
V(I), therefore M /J™M is I-torsion as well. Thus there exists an integer m > 0 with I"x C J"M. Hence it follows that
I"x € J"M NRx C Jx. Thus x € I3 ;(M), asdesired. O

Proposition 1.10. Let M be an R-module. Then the equality
Ass(M) "W, J) = Ass(I7,;(M))
holds. In particular, I7 ;(M) # 0if and only if Ass(M) N W, J) # 0.

Proof. Since I ;(M) is an (I, J)-torsion R-module, we have Ass(I7 ;(M)) € W(I, J) by Proposition 1.7. Thus the inclusion
Ass(M) NW(I, J) 2 Ass(I7,;(M)) is obvious.

To prove the converse inclusion, take p € Ass(M) N W (I, J). Then there is an element x(# 0) € M with p = Ann(x) and
an integer n with I" C J 4 p. Thus I" C J 4+ Ann(x), hence x € 7 ;(M). Since p = Ann(x), we have p € Ass(I7;(M)). O

For a prime ideal p € Spec(R), we denote by E(R/p) the injective hull of the R-module R/p.

Proposition 1.11. Let p € Spec(R).If p € W(I, ]), then E(R/p) is an (I, J)-torsion R-module. On the other hand, if p & W(l, J)
then E(R/p) is an (I, J)-torsion-free R-module.

Proof. Ifp € W(I, J), then Ass(E(R/p)) = {p} € W, J). Therefore I7 ;(E(R/p)) = E(R/p) by Proposition 1.7. Contrarily, if
p & W(, J), then Ass(E(R/p)) N W, J) = {p} N W(, J) = @. Therefore, by Proposition 1.10, we have I ;(E(R/p)) = 0.
O

Proposition 1.12. Let M be an (I, J)-torsion R-module. Then there exists an injective resolution of M in which each term is an
(I, J)-torsion R-module.

Proof. First note that the injective hull E® of M is also an (I, J)-torsion module. In fact, since M is (I, J)-torsion, we have
Ass(E®) = Ass(M) € W(I, J) by Proposition 1.7. Hence E° is (I, J)-torsion. Thus we see that M can be embedded in an
(1, J)-torsion injective R-module E°.

Suppose, inductively, we have constructed an exact sequence

n—1
0 M E° . g1 L g

of R-modules in which E°, ..., E"~1, E™ are (I, J)-torsion injective R-modules. Let C be the cokernel of the map d"~!. Since
E"is an (I, J)-torsion module, C is (I, J)-torsion as well by Corollary 1.8 (2). Applying the argument in the first paragraph
to C, we can embed C into an (I, J)-torsion injective R-module E"*'. This completes the proof by induction. O




586 R. Takahashi et al. / Journal of Pure and Applied Algebra 213 (2009) 582-600

Corollary 1.13. Let M be an R-module.

(1) If M is an (I, J)-torsion R-module, then H,",](M) =O0foralli> 0.
(2) H ;(I7,;(M)) = 0 for i > 0.

3) M/F, j(M)isan (I, J)-torsion-free R-module.

(4) There is an isomorphism H’ ](M) H"](M/F,J(M))for alli > 0.
(5) ,](M) is an (I, J)-torsion R-module for any integer i > 0.

Proof. (1) follows from Proposition 1.12. Since I3 ;(M) is an (I, J)-torsion R-module, (2) follows from (1).
From the obvious exact sequence

0— I ;M)—-M-—M/T};(M) =0
we have an exact sequence

0— 17,7 ;M) — I7 ;M) — I ;(M/I7;(M)) — 0
and isomorphisms

Hi (M) = Hj ,(M/I};(M)) fori>1,

since H,",](F,,](M)) = 0 fori > 0. It follows from this that (3) and (4) hold.

Since H,"J(M) (i > 0) is a subquotient of an (I, J)-torsion module, itis also (I, J)-torsion by Corollary 1.8, hence (5) holds.
O

Remark 1.14. In Corollary 1.13 (1), the converse holds if Ris a local ring and M is a finitely generated R-module. Namely, if
H}J(M) = O for all integer i > 0, then M is an (I, J)-torsion R-module. (See Corollary 4.2.)

2. Cech complexes

In this section we present a generalization of Cech complexes. The main purpose is to show that the local cohomology
modules with respect to (I, J) are obtained as the homologies of the generalized Cech complexes.
As before, I, ] denote ideals of a commutative noetherian ring R.

Definition 2.1. For an element a € R, let S, be the subset of R consisting of all elements of the form a" + j wheren € N
andj €.
Sey={a"+jlneN, je]}.

Note that S, ; is a multiplicatively closed subset of R. For an R-module M, we denote by M, ; the module of fractions of M
with respect to Sg ;.

My = s;}M.

Definition 2.2. For an element a € R, the complex G is defined as

Ca;=(0—>R—>Ry;—0),

where R is sitting in the Oth posmon and R, ; in the 1st position in the complex. For a sequence a = aj, .. ., ds of elements
of R, we define a complex C; 2 as follows:

a1_® a]_(0—>R—>HRHIJ—>1_[(RHIJ)HJJ—>-~-—>(--~(Ra1.j)--~)a$,]—>0).

i<j

It is easy to see that if ] = 0, then G coincides with the ordinary Cech complex C; withrespecttoa =ay, ..., .
The following result gives some basic properties of the generalized Cech complexes.

Proposition 2.3. Let a € R.

(1) S, contains 0 if and only if a € /.

(2) If a € /], then Cay = R as chain complexes.

(3) A prime ideal p belongs to W(I, J) ifand only if p N S, ; # D forany a € I.
(4) If a 1, then H] ;(My,j) = O forall i > 0.
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5) If V=, az, ..., as), then the sequence

S
0= I1;(M) > M — [ [Mq
i=1
is exact.

Proof. (1) If0 € S, ;, then 0 = a" + j for an integer n and j € J. Then, since a" = —j € ], we have a € /J. Conversely, if
a € /], then there is an integer n > 0 such that a" = j belongs to J. Thus 0 = a" + (—j) € 5.

(2) Suppose a € +/]. It then follows from (1) that 0 € Sq,;- Thus R,y = 0, hence G, = (0 = R — 0) from the definition.

(3) Assume p € W(I, J) and take an element a € I. Then I" C J + p for an integer n > 0. Since a" € I" C J + p, there
existj € Jand ¢ € psuchthata" = j+ c. Thuswe havec = a" 4+ (—j) e pN Sy ).

Conversely, assume p N Sy ; # ¥ for any a € I. Corresponding to each a € I, we find an element c(a) € p N S, ;, which is
of the form c(a) = a™® + j(a) for an integer n(a) and j(a) € J. Thus a"®@ = —j(a) + c(a) € J + p. Since this is true for any
a € I, and since [ is finitely generated, we see I" C J + p for some n, hence p € W(, J). _

(4) Let E® be an injective resolution of an R-module M. Then (E*®), ; is an R-injective resolution of M, ;. Hence H,‘,] (Mq,)) =

H'(I7,;((E*)a,))). Describing each E' as a direct sum of indecomposable injective modules E' = § Er(R/p)Hi®-M) we

peSpec(R)
have

Eay= P BRI = P EryyRoj/pRa )" M.

peSpec(R) peSpec(R)
Therefore the following equality follows from (3) and the assumption a € I.
FI,]((Ei)a,]) = @ ERa,] (RaJ/pRaJ)“"(”’M) = 0.
peW(.])

It follows H| ; (M, ) = 0.

(5) It is enough to show that x € I3 ;(M) if and only if x € Ker(M — IT;_;M,, ;). Let x € I3 ;(M). Then there exists
an integer n > 0 such that al'x € Jx for all a;. Therefore, since (a] — b;)x = 0 for some b; € J and a — b; € Sy, ;, we have
x € Ker(M — IT_,My, ;). Conversely, if x € Ker(M — II;_;M,, ;), then for each i there exist an integer n; > O and b; € J

such that (a?i — bj)x = 0. Thus a?ix € Jx for each i. This shows that I"x C Jx for a large integer n. Thus we have x € I7 ;(M).
d

Theorem 2.4. Let M be an R-module, and let a = ay, ..., as be a sequence of elements of R which generate I. Then there is a
natural isomorphism H,"] M) = HI(C;J ®gr M) for any integer i.
Proof. Note from Proposition 2.3 (5) that there is a functorial isomorphism

HY(C3, @ M) = I}, ;(M).

Since {Hi( G ®r —) | i = 0} is a cohomological sequence of functors, to prove the theorem we only have to show that

HI(C' ® E) = 0 for any i > 0 and any injective R-module E. To prove this, we may assume that E = Eg(R/p) where p is a
prime 1deal of R. We proceed by induction on the length s of the sequence a.
If s = 1, then

Ca; ®E = (0= Er(R/p) = Er(R/p)a,.; — 0),

where Eg(R/p)q,,; is isomorphic to Er(R/p) if p & W((ay), J), and is (0) if p € W((ay), J). See Proposition 1.11 or 2.3. In
either case, we have H' (O 2 ® E)=0.

Next we assume s > 1,and seta’ = ay, ..., a;. Then we have the equality C;.] = C[;h] ®r C;,J. Therefore there is a
spectral sequence

EY = HP(C; ; @ HI(Cy ; ® E(R/p))) = HPTI(C; ; ® E(R/p)).

Since HY(C}, 1 ® E(R/p)) = 0for g > 0 by the induction hypothesis, the spectral sequence degenerates, and we have
isomorphisms

H'(CZ, ® ER/p) = H'(CS,; ® HO(CY, ® ER/p)))
= H'(C}, ; ® Ty, ER/P)))
= H"(0 — Ty jER/P)) = (Tt jER/D))ay.g — 0).

This shows that H"(C3 2 ® E(R/p)) = 0forn > 2. Note from Proposition 1.11 that I'a;(E(R/p)) is either E(R/p) or (0).
Therefore it remains to show that H!(C* 0 ® E(R/p)) = 0. But this is already done in the cases = 1. O
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Corollary 2.5. Let a = ay, ..., G be a sequence of elements of R, set I = (a) and let M be a J-torsion R-module. Then there is a
natural isomorphism Ca.,] ®r M = C§ ®r M. Hence H,'J(M) = H[(M) for any integer i.

Proof. For an element a € I, there is a natural mapping ¢ : M, — M, ; defined by ¢(z/a") = z/a". First we show that ¢ is
an isomorphism.

Suppose that ¢(z/a") = 0 € My;. Then (a™ — b)z = 0 for an integer m > 0 and an element b € J. Since a™ — b divides
(@™ — b?'), we see (@™ — b*)z = 0 for all integers ¢ > 0. Since M is J-torsion, we have b*'z = 0 for a large ¢. Thus
@™z = 0, and we have z/a" = 0 € M,, which shows that ¢ is injective.

letw = z/(@" —b) € M,; wherez € M and b € ]. Since M is J-torsion, there exists an integer £ such that
b2z = 0. Let us write a®™ — b2 = c(a" — b) for an element ¢ € R. Then we see a>"z = c(a" — b)z in M. Therefore
w=z/(a"—-b)= cz/azl” € M, ;. This shows that ¢ is surjective.

We have shown that My = Mg for any a € I. Thus we have (7 ; ® M = C; ® M for any a € I. Finally we have the
isomorphisms of chain complexes:

G®@M=0C ;8¢ ® -G OM
=R - 0CeM
—C®M. O

From this we can show the following by Theorem 2.4.

Proposition 2.6. The functors H,"Y j (i = 0) commute with inductive limits, i.e. if {M, | A € A} is an inductive system, then there
is a natural isomorphism

H; j(lim M;) = lim Hy ; (My).
A A

foranyi> 0.

Proof. Since the tensor product commutes with direct limits, we have G (X)R(li_n;A M,) = li_r)nl(Ca"J ®gr M,). The
proposition follows from this. O

The following theorem is a generalization of the base ring independence theorem for ordinary local cohomology.

Theorem 2.7. Let I and ] be ideals of R as before. Furthermore, let ¢ : R — R’ be a ring homomorphism, and let M’ be an
R’-module. Suppose that ¢ satisfies the equality

e() =JR.

Then there is a natural isomorphism H,”J(M’) =H R (M) as R'-modules for any integer i > 0.

®
Proof. Set] = (@) = (a1, ..., a)Rand p(@) = ¢(aq), ..., p(a).
Then we have from the assumption the equality

©(Sa;, 1) = Se(an), Jr'»

for any multiplicative closed subset S in R" and for all i with 1 < i < s. Therefore, H,'AJ M) = H"(Ca',] M) =
HI(C(;(a)JR, Rr M) = H}R,’]R,(M’). |

Here we should remark that the hypothesis ¢ (J) = JR' in the theorem cannot be deleted. Indeed, let k be a field, R = k[x, y]
and R = k[x, y, z]/(xz — yz?).SetI = (x)R,] = (y)R'. For a natural ring homomorphism ¢ from R to R’, we have ¢(J) C JR’
and I7;(R)) # g v (R).

Ifp : R — R is a surjective ring homomorphism, then it satisfies the condition ¢ (J) = JR' of the theorem. However, note
that there is a non-surjective ring homomorphism that satisfies the condition. For example, let R = k[x] be a polynomial
ring over a field k and let R = k[x, y]/(xy). We define a k-algebra map ¢ : R — R’ by ¢(x) = x. Then we have ¢(xR) = xR’.

Remark 2.8. Let ¢ : R — R’ be a flat homomorphism of rings, and let M be an R-module. Then it induces a natural mapping
Hi ;(M) @R — Hj (M ®gR') foranyi > 0.

In fact, since ¢(Sg;,;) S Sy, > We have a chain homomorphism (C;J QrM) QR R — C(;(a)JR, Qr (M ®g R"), which
induces the mapping of cohomologies.

We should note that this induced mapping may not be an isomorphism.

In fact, one can easily construct an example of a localization map R — S~'R such that S~'I7 ;(R) — -1y -1 (S 'R) is
not surjective.
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For a further nontrivial example, let ¢ : R = k[x, y](x y = R= kl[x, y]] be the completion map, and let | = xR and

J = yR. Furthermore, let S = {x" 4+ ya | a € R} and S = (X" +yb|b € R} be multiplicatively closed subsets in R and R
respectively. Then we obtain through the computation using Theorem 2.4 the following equalities.

H Ry @xR=S"R/R,  Hk R =S"R/R

It is easy to see that the natural mapping S ‘ﬁi/ﬁ -5 ‘ﬁ/ﬁis injective, but not surjective.
3. Relations between H} and H] ,

In this section, we study the relations between the local cohomology functors H} and H,' ;- We need Theorem 3.2 in the
proof of one of the vanishing theorems of local cohomologies. (See Theorem 4.7 (i).) First we introduce a necessary notation.

Definition 3.1. Let W(I, J) denote the set of ideals a of R such that I" C a + J for some integer n. We define a partial order
on W(I, J) bylettinga < bifa D bfora, b € W(, J).Ifa < b, we have I';,(M) C I',(M). The order relation on W (I, J) and
the inclusion maps make {I5 (M)}ueW(l,j) into a direct system of R-modules.

Theorem 3.2. Let M be an R-module. Then there is a natural isomorphism
i ~ : i
H D = lim o H(M)
a€W (L, J)

for any integer i.
Proof. First of all, we show that I3 ;(M) = Uuew(,’]) I,(M).

To do this, suppose x € I7 ;(M). Then there is an integer n > 0 with I" C Ann(x) + J. Setting a = Ann(x), we have
a€ W(I, D, and x € I';(M). Conversely, letx € Uaew(u) I',(M). Then there is an ideal a € W(I, J) withx € I, (M). Thus

I C a+]J and a"x = O for integers m, n > 0. Then, since I'"™ C (a +J)" C a" 4 J, we have I""x C Jx, hence x € I ;(M).
Let0 - L - M — N — 0 be an exact sequence of R-modules. Then it implies a long exact sequence

0 —— H°(0l) —— H(M) —— HO(N)
—— H!/(l) —— H!M) ——
foreacha € W(I , ]). Since taking the direct limit is an exact functor, we obtain the long exact sequence
0 —— lim HY(L) —— lim

acW(, J)

_ 11m H Ly —— 11m
—>aeW(l,))

0 0
W, ])H M) —— 11m WD H/(N)

—>aeW(l,)) Hu (M)
On the other hand, for any injective R-module E and any positive integer i, we have H;(E) = 0 for each a € W(I, J). Thus

: iy —
we have ll_r)naew(l,]) H (E) = 0.

These arguments imply that {lim
—>a€
completed. O

Wa Hi |i=0,1,2,...}isasystem of right derived functors of I ;, and the proof is

Next we shall show that in a local ring R with maximal ideal m the I-torsion functor I has a description as an inverse
limit of (m, J)-torsion functors I3, ;. The following lemma is a key for this fact.

Lemma 3.3. Let R be a local ring with maximal ideal m. Then

viy= () W D= [ Wm,p.

1eW(m,]) peW (m,J)

Proof. If p € V(J)and I € W (m, D,thenm™ C I +] C I+ p for an integer n > 0, hence we have p € W(m,I). Thus
V() S Niciwm Wm, D). Since W(m, J) € W (m, J), we have (e WD S (ocwm ) Wm, p).

We only have to show the remaining inclusion mpewm,]) W (m,p) € V(J). Suppose that ﬂpew(mJ) Wm,p) € V().
Then there is a prime ideal q € ﬂpew(m’]) W (m, p) with g € V(J). Take an element x € ] \ g and set r = dim R/q. Since x is
R/qg-regular element, dimR/(q + (x)) = r — 1. Thus there exist y1, ¥2, . .., ¥r—1 € msuch thatyq,y,,...y,—1 € m/(qg+ (X))
is a system of parameters of R/(q + (x)). Then q + (x, y1, y2, - .., Yr—1) is an m-primary ideal, and q + (¥1, ¥2, - - ., Yr—1) IS
not. Thus we can find a prime ideal p with q + (1,2, ..., ¥r—1) € p C m. On the other hand, ] 4 p is an m-primary ideal,
since q + (X, Y1, Y2, -- -, ¥r—1) € (x) +p S J + p. Therefore p € W (m, J), and hence we must have q € W (m, p). Thus we
conclude that p = p + g is an m-primary ideal, but this is a contradiction. O
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Recall that W(I, J) is a partially ordered set, in which the order relation a < b fora, b € wd, J) is defined by b C a.
Note that the relation a < b naturally implies the inclusion mapping 17 ,(M) 2 I7 (M), which makes {I“,,u(M)}ae‘;V(,J) an
inverse system of R-modules. We are now ready to prove the following proposition.

Proposition 3.4. Let R be a local ring with maximal ideal m, and M be an R-module. Then we have the equality

L(M) = lim [ (V).
JEW (m,I)

Proof. We show I'7(M) = ﬂjéw(m,,) Iy, j(M). For this, let x € I7(M) and ] € W(m, I). Then there are integers m,n > 0
with [x = 0,m" C ] + . Thus m™"x C Jx, and hence x € I, ;(M). It follows that X € [y .1y L, j (M).
Conversely, let x € mjeW(m,I) Iy ;(M).For] e W(m, I), there exists an integer n > 0 such that m" C Ann(x) + J, hence
Je W(m, Ann(x)). Thus we have W(m,I) € W(m, Ann(x)). It then follows from Lemma 3.3 that
VAmE) = [ WmDS [ W) =Vd).

JEW (m,Ann(x)) JEW (m,I)

Therefore we have I C /Ann(x), hencex € I7(M). 0O

4. Vanishing and nonvanishing theorems

In this section we argue about the vanishing and nonvanishing of local cohomology modules with respect to (I, J). For the
remainder of this section, we adopt the convention that infd = oo for the empty subset of N, and depth 0 = oo, dim0 = —1
for the trivial R-module.

Theorem 4.1. For any finitely generated R-module M we have the equality
inf{i | H} ;(M) # 0} = inf{depth M, | p € W(I, J)}.

Proof. We setn = inf{depthM, | p € W(I, J)}, and let E*(M) be a minimal injective resolution of M.
Ifp € W, J), thenn < depthM, = inf{i | ui(p, M) # 0}. Hence we have the equality

nyEm) = @ E®R/p)“S" =o, (1)
peW(,))
for any integer i < n. (Also note that I ;(E"(M)) # 0.) It follows that H} ](M) =0ifi <n.

It suffices to show that H,"f] (M) # 0. We see from equality (1) that the‘complex I, ;(E*(M)) starts from its nth term. Thus
we have a commutative diagram

0 —— H[ (M) —— I1;(E"(M)) —— I ;(E"" (M)

l l

n—1 n
ey s oy —L s Eriw

with exact rows. Since Kerd" = Imd"~!' € E"(M) is an essential extension, it follows that H,"J (M) = I7;(E"(M)) N Kerd" #
0. O

As a special case of the theorem, if | = 0 then we obtain the well-known equality
inf{i | H}(M) # 0} = grade(I, M) = inf{depthM, | p € V(I)}.

for a finitely generated R-module M.

Corollary 4.2. Let M be a finitely generated module over a local ring R with maximal ideal m. Then the following conditions are
equivalent:

(1) M is (I, ])-torsion R-module.
(2) H,',](M) = 0 for all integers i > 0.
Proof. We have already shown the implication (1) = (2) in Corollary 1.13(1).
To prove (2) = (1), let us denote N = M/I} ;(M). We only have to show that N = 0. Suppose N # 0. From
Corollary 1.13(3) and (4), we have I7 ;(N) = Oand H; ,(N) = H; ,(M) = 0ifi > 0.On the other hand, sincem € W(l, J), the

inequality inf{depthN, | p € W(I, J)} < depthN,, = depthN (< 00) holds. Thus H,"J(N) # 0 for an integer i < depthN
by Theorem 4.1. This is a contradiction. Therefore N = 0, and the proof is completed. O
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Theorem 4.3. Let M be a finitely generated module over a local ring R. Suppose that ] # R. Then H,". J(M) = 0 for any
i > dimM/JM.

Proof. We proceed by induction onr = dimM/JM.If r = —1, then M = 0 by Nakayama’s lemma, and hence H,"J(M) =0
for any integeri > 0.
Now assume that r > 0. There is a finite filtration 0 = My € M; C --- € My = M of M such that M;/M;_; = R/p; for

p; € Supp(M) andj = 1, ..., s. Then there are short exact sequences 0 — M;_; — M; — R/p; — Oforj=1,...,sand
hence we have exact sequences

H ;(Mj—1) — Hj ;(M;) — Hj ;(R/p))
for all integers i and j withi > 0and 1 < j < s. Note that

dimR/(p; +J) < dimR/(Ann(M) +J) = dimM/JM = r.

Thus we may assume that M = R/ with P € Spec(R).
Since we show in Theorem 2.7 that H,'J(R/‘,B) = Hf(R/m),J(R/m) (R/), replacing R by R/, we may assume that R is an

integral domain and M = R.
Suppose that HfJ (R) # 0 for some integer £ > r. We would like to derive contradiction. Note in this case that we have

Assg(H ;(R)) # 0.
First, let us assume that AssR(Hf](R)) contains a nonzero prime ideal . Then take a nonzero element x € 9. From the

obvious short exact sequence 0 — R SR R/(x) — 0, one gets an exact sequence
— X
H{ 7' (R/(x)) — H{ ;(R) > H[ ;(R).

Note that dimR/(J + (x)) = r — 1 < £ — 1, hence the induction hypothesis implies Hfjl(R/(x)) = 0. This shows that
the element x is HKI(R)—regular. However, the element x is in the associated prime Q of HfJ(R), hence is a zero-divisor on
Hf | (R).

This contradiction forces AssR(HfJ(R)) = {(0)}. Note from Proposition 1.7 and Corollary 1.13(5) that AssR(H,‘f](R)) -

W (I, J). Hence we have (0) € W(I, J). Since the set W(I, J) is closed under specialization, one has W(I, J) = Spec(R). In
this case one easily sees that Hf’](R) = 0 for any ¢ > 0, which is again a contradiction. O

Corollary 4.4. Let R be a local ring and let M be an R-module that is not necessarily finitely generated. Then H,’" JM)=0 forany
i> dimR/J.

Proof. Since every R-module is a direct limit of finitely generated submodules, we may write M = lim)\ M, where each M,

is a finitely generated R-module. Note that if i > dimR/J, then i > dim M, /JM,. Therefore, by Proposition 2.6, we have
H,’J(M) = li_n;A H,’J(Mﬁ =0. O

Grothendieck’s nonvanishing theorem says that the ordinary local cohomology module H], (M) does not vanish whenever
R is a local ring with maximal ideal m and M is a finitely generated R-module of dimension r. The following theorem can be
thought of as a generalization of this result.

Theorem 4.5. Let M be a finitely generated module over a local ring R with maximal ideal m. Suppose that I + ] is an m-primary
ideal. Then we have the equality
supli | Hf ;(M) # 0} = dimM/JM.

Proof. In virtue of Theorem 4.3, we only have to prove that H[J(M) # 0 forr = dimM/JM. Since I + J is an m-

primary ideal, we have H,"’ M) = HI’;L (M) for any integer i. Thus we may assume that I = m. The exact sequence
0—> M —- M — M/JM — 0induces an exact sequence

HL, (M) — H,  (M/JM) — H(JM).
We see from Theorem 4.3 that H"'(JM) = 0 because dim JM/J?M < dimM//*M = dimM/JM = r. Furthermore, it
follows from Corollary 2.5 and Grgt’ﬁendieck’s nonvanishing theorem that
H; ;(M/JM) = H (M/JM) # 0.
Consequently, the exact sequence implies H;, JM)#0. O
Remark 4.6. (1) If ] = R, then the assertion of Theorem 4.3 does not necessarily hold, for dimM//[M = —1 < 0 and

HY (M) = I} (M) = M.
(2) IfRis a non-local ring, then the assertion of Theorem 4.3 does not necessarily hold.
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For example, let R = k[x] be a polynomial ring over a field k, and set] = (x — 1),] =IN(x) = x> —x),and M = R.
Then one has dimM/JM = 0 < 1but H,{](M) #0.

Even in the non-local case, one has the following result on the vanishing of local cohomology modules with respect to

a .

Theorem 4.7. Let M be a finitely generated R-module. Then
(1) Hj ;(M) = 0 for all integers i > dim M.
(2) H}J(M) = 0 for all integers i > dimM/JM + 1.
Proof. (1) This easily follows from Theorem 3.2 and Grothendieck’s vanishing theorem.
(2) We prove this by induction on r = dim M/JM. When r = —1, Nakayama’s Lemma says that (1 4+ a)M = 0 for some
a € J. Hence we have Jx = Rx for any x € M, which implies that the R-module M is (I, J)-torsion. Corollary 1.13(1) shows

that H,’ (M) =0 foreveryi > 0 = r + 1, as desired. When r > 0, we can prove the assertion along the lines as in the proof
of Theorem4.3. O

As one of the main theorems of this section, we shall prove a generalization of Lichtenbaum-Hartshorne theorem in
Theorem 4.9. For this we begin with the following lemma.

Lemma 4.8. Let n be a non-negative integer. Suppose that HI"J(R) = O foralli > n. Then the following hold for any R-module
M which is not necessarily finitely generated.

(1) Hj (M) = 0foralli > n.

(2) H';(M) = H;(R) ®¢ M.

Proof. First we should note that, by virtue of Proposition 2.6, we only have to prove the lemma for a finitely generated
R-module M.

(1) We have shown in the previous theorem that H,”J(M) = 0ifi > dim M. We prove the assertion by descending
induction on i. There exists a short exact sequence

0>N—->R"->M-—0
where m is an integer and N is a finitely generated R-module. This sequence induces an exact sequence
H,’J(R”‘) — H,'](M) — H,‘ (N).

By the induction hypothesis, the equality H; i1 T (N =0 holds. Thus we see that H’ ;M) =0.
(2) By claim (1), the functor H' jisa rlght exact functor on the category of R- modules hence it is represented as a tensor
functor. O
For an R-module M, we set
Asshg(M) = {p € Assg(M) | dimR/p = dimg M}.
We are now ready to prove the generalized version of Lichtenbaum-Hartshorne theorem.

Theorem 4.9. Let (R, m) be a local ring of dimension d, and let I and ] be proper ideals of R. Then the following conditions are
equivalent.

(1) H,(R) = 0.
(2) For each prime ideal p € Assh(R) with JR C p, we have dimR/(IR + p) > 0.
Proof. (1) = (2) Suppose that H ](R) = 0, and that there exists p € Assh(f%) satisfyingjf? C p and dim ﬁ/(lf% +p) =0

We would like to derive a COIltI‘adlCth[l
By Lemmma 4.8 we have H, ](R/P) = 0. On the other hand, since ] C p, R/p is a J-torsion module over R. Hence

Corollary 2.5 implies that H,d](R/p) = Hd(R/p) which is isomorphic to Hd (R/p) Note here that (R/p, mR/p) is a d-

I(R/p)
dimensional complete local ring and (IR + p)/pis mR/p primary ideal. Thus we have H, ](R/p) = (R/p), which is
nonzero by Grothendieck’s nonvanishing theorem. This is a contradiction. .

(2) = (1) Suppose that Hﬁ j(R) # 0, we shall show a contradiction under the condition (2). Since R is faithfully flat, it

holds by Lemma 4.8 that
HY' \(R) = H!,(R) ® R # 0.

m(R/p)

Considering a filtration of ideals of R;
0=KyCKiC- CK_q CK =R,

with K;/Ki_ = f?/pj for prime ideals p; of Rfor 1 < j < s, we see that there is at least one prime ideal p of R such that
H,(R/p) # 0.
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First consider the case that] C p. Then, since IAQ/p is a J-torsion R-module, it follows from Corollary 2.5 that H,",’](IAQ/p) =

HER/p) = H,d(ie/,,) (R/p). If dimR/p < d, then Hf(k/p) (R/p) = 0 by Grothendieck’s vanishing theorem, and this is a

contradiction. If dim ﬁ/p = d, then p € Assh(R), hence dim (IAQ/IR’ + p) > 0 by assumption 2. Thus we have Hf(iz/p) (ﬁ/p) =0
by the Lichtenbaum-Hartshorne theorem. This is again a contradiction.

Next consider the case /] Z p. Denote R = R/p N R. Applying Theorem 2.7 to the natural projection R — R, we have
H,(R/p) = Hf j&(R/p). Since iimR/JR < dimR < d, it follows from Corollary 4.4 that HY &(R/p) = 0, whichis a
contradiction as well. O

Remark 4.10. In [15, Theorem 1.1] it is proved that the first condition in Theorem 4.9 is equivalent to the condition that
for eachp € Assh(f?) there exists ¢ € W(I, J) with dim IAQ/(qIAi' + p) > 0. We see that this condition implies the second
condition in Theorem 4.9, but the opposite implication seems not obvious. (The authors do not know how to prove the
opposite implication directly.) The point is that the second condition in Theorem 4.9 is concerning the ideals I and J, but not
concerning the set W(I, J).

Recall that the arithmetic rank of an ideal I, denoted by ara(I), is defined to be the least number of elements of R required
to generate an ideal which has the same radical as I.

Proposition 4.11. Let M be an R-module. Then H,"J(M) = 0 for any integer i > ara(IR), where R = R//] + Ann(M).

Proof. Denote R = R/Anng(M).ThenR = R'//JR’ and Anng (M) = 0. Since we have an isomorphism H,"J(M) >~ H,"R,.]R/ (M)
by Theorem 2.7, we may assume that Anng(M) = 0.

Let us denote s = ara(II_(). Then we find a sequence a = ay, a,, ..., a; of s elements in R such that VIR = vaR. Then it
is easy to see from Proposition 1.4 that the equality

H; J(M) = Hig. J(M) = H'(C; ;OM)

holds for any i. Since the complex Ca‘J is of length s, we see that Hi(C;q] ® M) = 0 for all integersi > s = ara(I[R). O

5. The Local duality theorem and other functorial isomorphisms

For a local ring R with maximal ideal m, we denote the functor Homg(—, Eg(R/m)) by (—)". Let (R, m) be a d-dimensional
Cohen-Macaulay complete local ring. Then it is well known that it satisfies the local duality theorem, which states the
existence of functorial isomorphisms

HY (M)Y = Exth(M, K),
for finitely generated R-modules M and integers i > 0. Note that Ky is the canonical module of R given as Kz = Hﬂ(R)V. The

following theorem is thought of as a generalization of the local duality theorem.

Theorem 5.1. Let (R, m) be a Cohen-Macaulay complete local ring of dimension d, and let ]| be a perfect ideal of R of grade t,
i.e. pdgR/] = grade(], R) = t. Then, for a finitely generated R-module M, there is a functorial isomorphism

Hy (M) = Exty (M, K)
for all integer i, where K = Hf:f ®".

To prove the theorem we need the following lemma.

Lemma 5.2. Let R be a Cohen—Macaulay local ring of dimension d and let | be a perfect ideal of R of grade t. Then the inequality
htp > d — t holds for any p € W(m, J).

Proof. If p + J is an m-primary ideal, then R/p ®g R/] is of finite length, hence the new intersection theorem [10,16,17]
implies that dimR/p < pdgR/] = t thereforehtp >d —¢t. O

Now we proceed to the proof of Theorem 5.1.

Proof. Let us denote T/(—) = Hij_"(—)v, and we shall show the isomorphism of functors T'(—) = Ext,(—, K).

Note that R/J is a Cohen-Macaulay ring of dimension d — t. Hence we see from Corollary 4.4 that Hf;f (—) is aright exact
functor on the category of all R-modules. Note from Lemma 4.8 that there is a natural isomorphism M ®g Hf;f (R) = Hf:f M)
for any R-module M. Thus we have

T°(M) = (M ® H/(R))" = Hom(M, K).
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Let0 - L - M — N — 0 be an exact sequence of R-modules. Then we have a long exact sequence
— HI7UN) — HS [ (L) — Hi (M) — Hif(N) — 0,
which induces a long exact sequence
0— T°(N) > T°M) — T°(L) - T'(N) - - -

Therefore the proof will be completed if we show that Ti(F) = 0 for any integer i > 0 and any free R-module F. It is
enough to show that Hf:f" (R) =0fori > 0.Ifp € W(m, J), then we have depthR, = htp > d — t by Lemma 5.2. Thus we

see from Theorem 4.1 that Hf;‘,](R) =Oforallintegerj <d—t. O

Remark 5.3. We should note thatK = H,| d— t(R)V in the theorem is not necessarily a finite R-module, evenif R is a Gorenstein
ring.
In fact, when R is Gorenstein, we shall show in Proposition 5.6 the following equality

Ass(Hd (R) ={peW(m,J)|htp=d—t}.

This set is not equal to {m} if t is positive. In this case, Hd y (R) is not an artinian R-module, hence K is not a noetherian
R-module.

Let R be a local ring with maximal ideal m. Then we shall see in this section that there often exist dualities between local
cohomology with respect to (m, J) and ordinary local cohomology with support in J.

For an R-module M and an ideal J of R, we denote by M, the J-adic completion of M, which is defined to be the projective
limit l(ir_nn M /]"M. The following theorem should be compared with the result of Greenlees-May [6].

Theorem 5.4. Let R be a Cohen-Macaulay local ring of dimension d with canonical module Ki. And let | be an ideal of R with
dimR/] = d — r. Then there is a natural isomorphism

Hy [ (R), = Hj (Kp)" .

Proof. We have the following isomorphisms
HEJ (R /I"HA [ (R) = HY [ (R) @ R/J"
= Hd J(R/J")  (by Lemma 4.8)
= Hi "(R/J") (by Corollary 2.5)
= Extp(R/]", Kg)Y,

where the last isomorphism follows from the local duality theorem applied to the R-module R/J". Since these isomorphisms
are functorial, taking project limits we have the isomorphism

H;ﬂj](R); = lim(Extz (R/J", Kp)").

neN

On the other hand, it follows from the definition of ordinary local cohomology that

Hj (Kp)” = (lim(Exty (R/J", Kr))" = lim(Extg(R/J", Kp) ).

neN neN

Combining these isomorphisms we finish the proof of the theorem. O

Remark 5.5. It is natural to ask whether there is a functorial isomorphism
Hy [ (R)) = Hj(Ke)”

for any integer i.
This is however not true in general. For example, let R = k[[X, Y, Z, W]],and ] = (X, Y) N (Z, W). Then it is easy to see
that H?(R) = H(R) = Eg(R/m), but H ;(R) = 0.Thus H,, ,(R), % H}(R)".

Proposition 5.6. Let R be a Cohen-Macaulay local ring of dimension d with canonical module Kg. Assume that | is a perfect ideal
of grade t. Then the following equality holds.

Ass(H [ () = {p € W(m, ]) | htp = d — t}.
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Proof. Let E* be a minimal injective resolution of the R-module Kg. Then it is known that E = P =i E(R/p), hence
peSpecR

Iy (EY=6 nm=i E(R/p).Therefore by Lemma 5.2, there is a short exact sequence
pEW (m, ])

0—Hi (k) > P ER/) — D E®R/).
htp=d—t htp=d—t+1
peW (m,)) peW(m.])

This implies that Ass(Hiff(KR)) C {p € W(m, J) | htp = d — t}. Conversely, let p € W (m, J) be a prime with htp =d —t.
Then by the above exact sequence, we see

(H3 | (Kr)), = Eg, (k(p)) 2 K (p).
Therefore p € Ass(Hf;f (Kr)). O
We recall that the generalized local cohomology in the sense [9] is defined as

Hj(M,N) = h_n)qut;(M/j"M, N),

n

for R-modules M and N, and fori > 0.

Theorem 5.7. Let (R, m) be a Gorenstein local ring of dimension d, which is J-adically complete. Then there is an isomorphism
T (M) = H' (M, R)",

for any finitely generated R-module M.

Proof. From the definition and the local duality theorem we have the following isomorphisms and inclusion.

H!(M,R)" = (lim Extd(M/J"M, R))"

n

12

: n
lim 17, (M/J"M)
: n

— 1(1r_n M/]"M

= M.
We would like to show that the image of the composite map f : H]d(M, R)Y < M above is equal to I}, ;(M).

Let y € Imf. Applying the Artin-Rees lemma, we see that /"M N Ry C Jy for some integer m > 0. On the other hand, it

follows from the choice of y that the image of y in M /J"M belongs to I',(M /J"M) for each n > 0. Hence we have m‘y C J™M
for some £ > 0. Thus we get m‘y C J™M N Ry C Jy, thatis,y € Ty (M).

Conversely, lety € I, ;(M). Then m™y C Jy for an integer m > 0. Hence we have m™y C J"y C J"M for any n > 0.
Therefore for each n > 0 the image of y in M /J"M belongs to I',(M/]"M), which says thaty € Imf. O

Before proving further results, we make a number of preparatory remarks about the local cohomologies of the canonical
dual of a module.

Suppose that R admits the dualizing complex Dg. We denote by Kj, the canonical module of an R-module M, which is
defined to be

Kv = H*" (RHomg (M, Dg)),

where d = dimR and r = dim M. Note that in case R is a Gorenstein ring we have Ky, = Extg_r(M, R). Therefore if R is
Gorenstein and if r = d, then Kj; equals the ordinary dual M* = Homg(M, R).
Remember that for an integer n > 0, we say that M satisfies the condition (S,) provided

r:]eptthMp > inf{n, dimg, M,}
for all p € Spec(R)
Lemma 5.8. Let R be a Gorenstein local ring of dimension d, and M a finitely generated R-module of dimension r. Suppose that
AssgM = AsshgM and that M satisfies (Sp1) for some n > 0. Then there is an isomorphism
H " '(Ky) = H™'(M, R)
forall0 <i<n.

Proof. Since a module satisfying (S;) also satisfies (S;_1), it is enough to show that H ~"(Ky) = de_"(M, R). Note that
gradegM = d — r. Take a maximal R-sequence y = y1, Y2, ..., Y4—r in AnngM. Replacing R by R/yR, we may assume that
r=d.
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Let S = R x M be the trivial extension of R by M. Since S is isomorphic to R & M as an R-module, K is isomorphic to
Kr @ Ky as an R-module. This induces natural isomorphisms

H'™"(Ks) = H™(R) @ H/'~" (Ki)
H™"(S.R) = H™"(R) & H/"(M. R).

Thus we have to only show that de’"(Ks) ~ H]d’"(S, R).
There are isomorphisms

H™"(S,R) = li_I)nExtg_”(S/ij, R)
k

= lim Extg~"(S/J*S, RHomg(S, R)
k

= lim Extd"(S/J*S, D)
k

= Hf‘"(Ds).

There is a chain map de_”(Ks) — de_"(Dg) induced by the augmentation Ks = H°(Ds) — Ds. We have to show that this
map is an isomorphism. Since we have a spectral sequence

E}! = HJ (H(Ds)) = H}™(Ds),

it suffices to show that dimg Extz(s, R) <d—n—qforanyq > 0.

Let us show that the R-module S satisfies (S;+1). Take p € Suppg S. We want to prove depthRPS,J > inf{n + 1, dimg, S,}.
Because S, = R, ®M, as an R,-module, we have deptthSp = inf{depthR,, deptthMp} = depthRp M, > inf{n+1, dimg, M, }.
It is easy to see that dimg, S, = dimR, = dimg, M, since Assg M = Asshg M and dimg M = r = d. Thus S satisfies (Sy1).

Suppose that dimg Extg(S, R) > d — n — q for some q > 0. Then there exists p € SuppRExtg(S, R) such that
dimR/p > d — n — q. Hence we have Exthp (S5,R,) # 0Oand htp < n + q. The local duality theorem yields an

isomorphism H;?:*q(sp) =~ Exthp (Sy,R,)Y # 0, and so depthg S, < htp —q < n.Since S satisfies (Sn+1), we have
deptthSp = dimg, S, = dimR, = htp. Therefore we must have ¢ < 0, a contradiction. This contradiction completes

the proof of the lemma. O

Let R be a Gorenstein local ring of dimension d, J an ideal of R, and M a finitely generated R-module of dimension r. Then
we have Ky, = Extg_r(M, R). Thus it is easy to see that dim Ky = dim M = r and AssKy; = AsshK),. Moreover, Kj; satisfies
(52). Hence by Lemma 5.8, we obtain

H ™ (Ki,) = H' ™ (K, B)
fori = 0, 1. On the other hand, the following lemma holds.

Lemma 5.9. Let R be a local ring having the dualizing complex Dg, and let M be a finitely generated R-module of dimension r.
Then

H; (Ki,) = H (M).

Proof. In virtue of [13, Theorem 1.2] we can take a Gorenstein ring A of dimension r with a surjective ring homomorphism
¢ : A — R/AnnM. Replacing R (resp. J) with A (resp. ¢~ (J(R/Ann M))), we may assume that R is an r-dimensional
Gorenstein local ring. Then we have Ky = M* and Kx,, = M™*, where (=)* = Homg(—, R). Let f : M — M™* be the

natural homomorphism. It follows from [1, Proposition 2.6] that Ker f = Ext;(trM ,R) and Cokerf = EthR(trM , R), where

trM denotes the Auslander transpose of M. It is easily seen that dimg Ext;Q (X, R) < r —iforany finitely generated R-module
X and i > 0. Hence dim (Kerf) < r — 1 and dim (Cokerf) < r — 2. From this one sees that the induced homomorphism
H]’(f) : Hf(M) — H]’(M**) is an isomorphism. O

Combining the isomorphisms given in Lemmas 5.8 and 5.9, we conclude that the following corollary holds.

Corollary 5.10. Let R be a Gorenstein local ring of dimension d, and let M be a finitely generated R-module of dimension r. Then
there is an isomorphism
H] (M) = H (Ky, R).

Now we shall show the following theorem, which is essentially shown in [18]. We should note that it holds without
assuming that the local ring R is Gorenstein.
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Theorem 5.11. Let (R, m) be a complete local ring and let M be a finitely generated R-module of dimension r. Then we have an
isomorphism

H (M)Y = Ty (Ku).

Proof. Since Ris a complete local ring, there exists a Gorenstein complete local ring S of dim S = dim R = d with a surjective
ring homomorphism ¢ : S — R.Seta = ¢~!(J). Let us denote the maximal ideal of S by n. Note that S is a-adically complete
as well. Thus we can apply Corollary 5.10, Theorems 5.7 and 2.7, and we obtain the following isomorphisms.

H; (M)" = Homg(H; (M), Er(R/m))
= Homg (H, (M), Es(S/n))
Homs (H!(Ky;, S), Es(S/n))  (by Corollary 5.10)
I, (Ky) (by Theorem 5.7)
T, 1 (Ku) (by Theorem 2.7). O

111 1R

Corollary 5.12. As in the previous theorem, let (R, m) be a complete local ring and let M be a finitely generated R-module of
dimension r. Then we have an isomorphism

HL, ;(M)” = I}(Kyy).

Proof. We know from Proposition 3.4 that the equality
I1(Ky) = lim Iy (Kv)
[eW(m,))

holds. Therefore it follows from the previous theorem that

\%

LK) = lim (H M) =| lim H M)
1eW(m,]) 1eW(m, ])

The last module is isomorphic to H;‘J(M)v by Theorem 3.2. 0O

6. Derived functors on derived categories

We denote by D?(R) the derived category consisting of all bounded complexes over R. The left exact functor I, ; defined
on the category of R-modules induces the right derived functor RI"; ; : D"(R) — DP(R). In this section we show several
isomorphisms between functors involving RI™; ;.

Lemma 6.1. Let X, Y € D°(R). Then there are natural isomorphisms in D?(R).
X QFRI(Y) =R (X ®Y) =R ;(X) ®F Y.

~

Proof. Letabe a sequence of elements of R which generate I. Then all these complexes are isomorphic to X ®%(Ca ; ®F Y)
Cay X ®LY) = (Goy ®EX)®EY. O

Theorem 6.2. Let (R, m) be a d-dimensional complete local ring admitting the dualizing complex Dg, and let X be a bounded
R-complex with finitely generated homologies. Suppose that |  +/I, then there is an isomorphism

RIM(X) = RFI(RFmJ(RHom(X,DR))V)[—d].
Proof. Since RHom(X, Dy) is a bounded R-complex with finitely generated homologies and X = RHom(RHom(X, Dg), Dg),
it is enough to show that

R (RHom(X, Dg)) = RIT[(RT (X)) [—d].

Note from the local duality theorem that there is an isomorphism RHom(X, Dg)[d] = RI",,(X)" in D?(R). Therefore we have
to only show that

R RT o (X)Y) Z R I(RT 4y (X)Y).
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From the definition of RI"; we have an isomorphism
RI/(RI (X)) = lim RHom(R/I", RI"w(X)")
n

= lim((R/I" @ RIw (X)),

n

and similarly

RII(RI (X)) = Hm((R/I" @ RI 1y (X))Y).

n

Thus the proof will be completed if we show that there is a natural isomorphism

R/I" @RI (X) = R/I" @RI j(X).
In virtue of Lemma 6.1, this is equivalent to

R (R/I™) @5 X = RI, j(R/I") @R X.
Therefore it is enough to show that RI",(R/I") = RI"y, ;(R/I™). But this is trivial, since R/I" is a J-torsion module. O
Theorem 6.3. Let (R, m) be a d-dimensional complete local ring with dualizing complex D, and let X be a bounded R-complex
with finitely generated homologies. Then there is an isomorphism

R, (X) = RI,, (R (RHom(X, Dg))")[—d].

Proof. Similarly as in the proof of Theorem 6.2, it is enough to show that
R, R, (X)Y) = RFm,](RFJ(X)V).
For eachideal I € W(m, J) and for an integer n > 1, we have the following isomorphisms hold by Lemma 6.1.
R/I" @ RI)(X) = RIT(R/I") ®F X
= R[4 (R/I") @5 X
= RIML(R/I") ® X
= R/I" @RI (X).
Hence,
RHom(R/I", R} (X)) = (R/I" @ RI";(X))"
= (R/I" @RI (X))
=~ RHom(R/I", R (X)").

Applying the functor limI o (lim = (—)), we see from Theorem 3.2 that

Rl RO;(X)Y) Z R, JROLX)Y). O
As a natural extension of terminology, we say that a complex X € D?(R) is (I, J)-torsion if R (X) = X.
Corollary 6.4. Let (R, m) be a complete local ring with dualizing complex Dg, and let X be a bounded R-complex with finitely

generated homologies.

(1) If X is a J-torsion, then X = RI'; (R, ;(X¥)Y).
(2) If X isan (m, J)-torsion, then X = RI"y, ;R (XY)Y).

Proof. (1) Since X is J-torsion, it follows from Theorem 6.2 that
X =RI';(X) = RI"(RT, j(RHom(X, Dg))¥)[—d],
where, by Theorem 6.3,
Rl j(RHom(X, Dg)) = RI"m,](RI"j(X)V)[—d] = RI"mJ(XV)[—d].

Thus claim (1) follows.
(2) Since X is (m, J)-torsion, it holds that

X =Rl ;(X) = R, ;(RI;(RHom(X, Dg))¥)[—d].



R. Takahashi et al. / Journal of Pure and Applied Algebra 213 (2009) 582-600 599

On the other hand we have from Theorem 6.2 that

R (RHom(X, D)) = RIj(RIy, ;(X)V)[—d] = R[;(X¥)[—d]. O

Lemma 6.5. Let M be an (I, J)-torsion R-module, and let X be a left bounded R-complex. Then there is an isomorphism

RHom(M, X) = RHom(M, RT"; ;(X)).

Proof. Let E be an injective resolution of a complex X. We will show that Hom(M, E') = Hom(M, F,J(E")). Llet f €
Hom(M, EY) andx € M.Since M is (I, J)-torsion, there exists an integern > OsuchthatI"x C Jx. Thus we have I"f (x) C Jf (x),
thus f (x) € I7,;(E"). This shows that Imf < I3 ;(E'). Therefore it holds that

RHom(M, X) = Hom(M, E)
= Hom(M, I ;(E))
= RHom(M, RI";;(X)). O

Proposition 6.6. Let R be a d-dimensional Gorenstein complete local ring with maximal ideal m, and | be an ideal of R with
ht/] = r. Then

Ass(HET(R)¥) NV () = Min(R/J) = Ass(H] (R)).

Proof. Let p € V(J). By Theorem 6.2 and Lemma 6.5, it holds that

RHom(R/p, R) = RHom(R/p, RI"}(R))
= RHom(R/p, R[";(RT ", ;(R)"[—d]))
= RHom(R/p, Ry ;(R))[—d].

Thus there is a spectral sequence
Exth(R/p, HY | (R)") = Exth ""(R/p, R).

Since H;_J(R) = 0fori > d — r, we see from this spectral sequence that
Hom(R/p, Hy | (R)”) = Extp(R/p, R).

This shows thatp € Ass(Hd "(R)) if and only if ExtR (R/p,R), # 0Oifand only if htp = r. The first equality in the proposition
follows from this, and the second can be proved in a similar manner. 0O

Proposition 6.7. Let R be a d-dimensional complete Gorenstein local ring with maximal ideal m. Then

Ass(H'(R)") N W (m, J) = Ass(In,j(R)).

Proof. Letp € W(m, J). By Theorem 6.3 and Lemma 6.5, it holds that

RHom(R/p, R) = RHom(R/p, RI", ;(R))
= RHom(R/p. R ; (R (R)*)[—d])
= RHom(R/p, RI;(R))[—d].

Thus there are spectral sequences
EXtR(R/p, H | (R)) = Exty™(R/p, R), and
—q+d
EXtR(R/p. H!(R)") = Exty ""(R/p. R).

The first spectral sequence induces Homg(R/p, I, ;(R)) = Homg(R/p, R), and the second induces Homg(R/p, Hf(R)V) =
Homg(R/p, R), since qu (R) = 0 for g > d. Thus we have shown

Homg(R/p. Iy j(R)), = Homg(R/p, H'(R)"),,
forany p € W(m, J). Since Ass(I j(R)) € W (m, J), the proposition follows. O
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