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0. Introduction

Local cohomology theory has been an indispensable and significant tool in commutative algebra and algebraic geometry.
In this paper, we introduce a generalization of the notion of local cohomology module, which we call a local cohomology
module with respect to a pair of ideals (I, J), and study its various properties.
To be more precise, let R be a commutative noetherian ring and let I and J be ideals of R. We are concerned with the

subset

W (I, J) = { p ∈ Spec(R) | In ⊆ p+ J for an integer n ≥ 1 }

of Spec(R). See Definition 1.5 and Corollary 1.8 (1). In general,W (I, J) is closed under specialization, but not necessarily a
closed subset of Spec(R). For an R-module M , we consider the (I, J)-torsion submodule ΓI, J(M) of M which consists of all
elements x ofM with Supp(Rx) ⊆ W (I, J). Furthermore, for an integer i, we define the ith local cohomology functor H iI, J with
respect to (I, J) to be the ith right derived functor of ΓI, J . We call H iI, J(M) the ith local cohomology module ofM with respect
to (I, J). See Definitions 1.1 and 1.3.
Note that if J = 0 thenH iI, J coincides with the ordinary local cohomology functorH

i
I with the support in the closed subset

V (I). On the other hand, if J contains I then it is easy to see that ΓI, J is the identity functor and H iI, J = 0 for i > 0. Thus we
may consider the local cohomology functor H iI, J as a family of functors with parameter J , which connects the ordinary local
cohomology functor H iI with the trivial one.
Ourmainmotivation for this generalization is the following. Let (R,m) be a local ring and let I be an ideal of R. We assume

that R is a complete local ring for simplicity. For a finitely generated R-module M of dimension r , Schenzel [18] introduces
the notion of the canonical module KM , and he proves the existence of a monomorphism HrI (M)

∨
→ KM and determines

the image of this mapping, where ∨ denotes the Matlis dual. By his result, we can see that the image is actually equal to
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Γm,I(KM). From this observation one expects that there would be a duality between the ordinary cohomology functorH iI and
our cohomology functor H im,I . We shall show in Section 5 that there are canonical isomorphisms

HrI (M)
∨
' Γm,I(KM) and Hrm,I(M)

∨
' ΓI(KM).

See Theorem 5.11 and Corollary 5.12.
We should note that our idea already appears in several articles, but in a more general setting. In fact, if we denote by

W̃ (I, J) the set of ideals a satisfying In ⊆ a + J for an integer n, then the set F = {D(a) | a ∈ W̃ (I, J)} of open subsets of
Spec(R) forms a Zariski filter on Spec(R). See [2, Definition 6.1.1]. In this setting, Brenner [2, Section 6.2] defines the functor
ΓF by

ΓF (M) = {x ∈ Γ (Spec(R),M) | x|V (a) = 0 for some D(a) ∈ F} = lim
−→
D(a)∈F

ΓV (a)(M),

for an R-moduleM . This actually coincides with ΓI, J(M).
The aim of the present paper is to generalize a number of statements about ordinary local cohomology to our generalized

local cohomology H iI, J . One of our main goals is to give criteria for the vanishing and nonvanishing of H
i
I,J(M).

The organization of this paper is as follows.
After discussing the basic properties of the local cohomology functors H iI, J and the subsetW (I, J) of Spec(R) in Section 1,

we define a generalization of Čech complexes in Section 2. In fact, we show that the local cohomologymodules with respect
to (I, J) are obtained as cohomology modules of the generalized Čech complexes (Theorem 2.4).
In Section 3, we show some relationships of our local cohomology functor with the ordinary local cohomology functor.
Section 4 is a core part of this paper, where we discuss the vanishing and nonvanishing of H iI, J . We are interested in

generalizing Grothendieck’s vanishing theorem and the Lichtenbaum–Hartshorne theorem to our context. In fact, one of
our main theorems says that the equality

inf{i | H iI, J(M) 6= 0} = inf{depthMp | p ∈ W (I, J)}

holds for a finitely generated moduleM (Theorem 4.1). A generalized version of the Lichtenbaum–Hartshorne theoremwill
be given in Theorem 4.9.
In Section 5, we shall show a generalized version of the usual local duality theorem for local cohomology modules with

respect to (I, J). Also, motivated by the work of Schenzel, we discuss some kind of duality between H iI, J and ordinary local
cohomology modules. See Theorem 5.1.
In Section 6, we study the right derived functor RΓ I, J defined on the derived category Db(R), and prove several functorial

identities involving RΓ I,J . See Theorems 6.2 and 6.3.
Throughout the paper, we freely use the conventions of the notation for commutative algebra from the books

Bruns–Herzog [4] and Matsumura [14]. And we use well-known theorems concerning ordinary local cohomology without
citing any references, for which the reader should consult Brodmann–Sharp [3], Foxby [5], Grothendieck [7] and
Hartshorne [8].

1. Definition and basic properties

Throughout this paper, we assume that all rings are commutative noetherian rings. Let R be a ring, and I, J ideals of R.

Definition 1.1. For an R-moduleM , we denote by ΓI, J(M) the set of elements x ofM such that Inx ⊆ Jx for some integer n.

ΓI, J(M) = {x ∈ M | Inx ⊆ Jx for n� 1}.

Note that an element x ofM belongs toΓI, J(M) if and only if In ⊆ Ann(x)+ J for n� 1. Using this, we easily see thatΓI, J(M)
is an R-submodule ofM .
For a homomorphism f : M → N of R-modules, it is easy to see that the inclusion f (ΓI, J(M)) ⊆ ΓI, J(N), and hence the

mapping ΓI, J(f ) : ΓI, J(M)→ ΓI, J(N) is defined so that it agrees with f on ΓI, J(M).
ThusΓI, J becomes an additive covariant functor from the category of all R-modules to itself. We callΓI, J the (I, J)-torsion

functor.

It is obvious that if J = 0, then the (I, J)-torsion functor ΓI, J coincides with I-torsion functor ΓI .

Lemma 1.2. The (I, J)-torsion functor ΓI, J is a left exact functor on the category of all R-modules.

Proof. Let 0→ L
f
→M

g
→N → 0 be an exact sequence of R-modules. We must show that

0 −−→ ΓI, J(L)
ΓI, J (f )
−−−→ ΓI, J(M)

ΓI, J (g)
−−−→ ΓI, J(N)

is exact. It is clear that ΓI, J(f ) is a monomorphism and

Im(ΓI, J(f )) ⊆ Ker(ΓI, J(g)).
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To prove the converse inclusion, let x ∈ Ker(ΓI, J(g)). Since x ∈ ΓI, J(M), there exists an integer n ≥ 0 such that Inx ⊆ Jx.
There is an element y ∈ L with f (y) = x, since g(x) = 0. We have to show that y ∈ ΓI, J(L). For each a ∈ In,
we have f (ay) = af (y) = ax ∈ Inx ⊆ Jx, and hence there is an element b ∈ J with ax = bx. Thus the equality
f ((a − b)y) = af (y) − bf (y) = ax − bx = 0 holds, and consequently (a − b)y = 0 because f is a monomorphism.
Therefore ay ∈ Jy, and thus Iny ⊆ Jy. It follows that y ∈ ΓI, J(L). �

Definition 1.3. For an integer i, the ith right derived functor of ΓI, J is denoted by H iI, J and will be referred to as the ith local
cohomology functor with respect to (I, J).
For an R-moduleM , we shall refer to H iI, J(M) as the ith local cohomology module ofM with respect to (I, J), and to ΓI, J(M)

as the (I, J)-torsion part ofM .
We say thatM is (I, J)-torsion (respectively (I, J)-torsion-free) precisely when ΓI, J(M) = M (respectively ΓI, J(M) = 0).

It is easy to see that if J = 0, then H iI, J coincides with the ordinary local cohomology functor H
i
I .

We collect some basic properties of the (I, J)-torsion part and the local cohomology modules with respect to (I, J).

Proposition 1.4. Let I, I ′, J , J ′ be ideals of R and let M be an R-module.
(1) ΓI, J(ΓI ′, J ′(M)) = ΓI ′, J ′(ΓI, J(M)).
(2) If I ⊆ I ′, then ΓI, J(M) ⊇ ΓI ′, J(M).
(3) If J ⊆ J ′, then ΓI, J(M) ⊆ ΓI, J ′(M).
(4) ΓI, J(ΓI ′, J(M)) = ΓI+I ′, J(M).
(5) ΓI, J(ΓI, J ′(M)) = ΓI, JJ ′(M) = ΓI, J∩J ′(M). In particular, H iI, JJ ′(M) = H

i
I, J∩J ′(M) for all integers i.

(6) If J ′ ⊆ J , then H iI+J ′, J(M) = H
i
I, J(M) for all integers i. In particular, H

i
I+J, J(M) = H

i
I, J(M) for all integers i.

(7) If
√
I =
√
I ′, then H iI, J(M) = H

i
I ′, J(M) for all integers i. In particular, H

i
I, J(M) = H

i
√
I, J
(M) for all integers i.

(8) If
√
J =
√
J ′, then H iI, J(M) = H

i
I, J ′(M) for all integers i. In particular, H

i
I, J(M) = H

i
I,
√
J(M) for all integers i.

Proof. All these statements follow easily from the definitions. As an illustration we just will prove statement (4).
Let x ∈ ΓI, J(ΓI ′, J(M)). Then there exist integers m, n ≥ 0 such that Imx ⊆ Jx and I ′nx ⊆ Jx hold. Thus we have

(I + I ′)m+nx ⊆ Imx + I ′nx ⊆ Jx, and hence x ∈ ΓI+I ′, J(M). To prove the converse inclusion, let x ∈ ΓI+I ′, J(M). Then
there exists an integer n ≥ 0 such that (I + I ′)nx ⊆ Jx. Thus Inx, I ′nx ⊆ (I + I ′)nx ⊆ Jx. Hence x ∈ ΓI, J(ΓI ′, J(M)). �

Definition 1.5. LetW (I, J) denote the set of prime ideals p of R such that In ⊆ J + p for some integer n.

W (I, J) = {p ∈ Spec(R) | In ⊆ J + p for n� 1}.

It is easy to see that if J = 0, thenW (I, J) coincideswith the Zariski closed setV (I) consisting of all prime ideals containing
I . Note thatW (I, J) is stable under specialization, but in general, it is not a closed subset of Spec(R).
We exhibit some of the properties ofW (I, J) below.

Proposition 1.6. Let I, I ′, J , J ′ be ideals of R.
(1) If I ⊆ I ′, then W (I, J) ⊇ W (I ′, J).
(2) If J ⊆ J ′, then W (I, J) ⊆ W (I, J ′).
(3) W (I + I ′, J) = W (I, J) ∩W (I ′, J).
(4) W (I, JJ ′) = W (I, J ∩ J ′) = W (I, J) ∩W (I, J ′).
(5) W (I, J) = W (

√
I, J) = W (I,

√
J).

(6) Let R be a local ring with maximal ideal m. If I is not an m-primary ideal, then the following equality holds.

W (m, I) =

(⋂
I(J

W (m, J)

)
∩ {p | p is prime ideal such that p 6⊆ I}.

(7) V (I) =
⋂
J W (I, J) =

⋂
J∈D(I)W (I, J), where D(I) is the complement of V (I) in Spec(R).

Proof. (1) to (5): The proofs are easy. We will prove only statement (4) and leave the proofs of the remaining statements
to the reader.
Since JJ ′ ⊆ J ∩ J ′ ⊆ J, J ′, it holds thatW (I, JJ ′) ⊆ W (I, J ∩ J ′) ⊆ W (I, J) ∩W (I, J ′). Let p ∈ W (I, J) ∩W (I, J ′). Then

there exist integers m, n ≥ 0 such that Im ⊆ p + J , In ⊆ p + J ′. Thus Im+n ⊆ (p + J)(p + J ′) ⊆ p + JJ ′. Hence we have
p ∈ W (I, JJ ′).
(6): Let p ∈ W (m, I), then I + p is m-primary. If I ( J , then J + p is m-primary as well, hence p ∈ W (m, J). Since I is not

m-primary, we have p 6⊆ I .
To prove the converse, let p ∈

⋂
I(J W (m, J)with p 6⊆ I . Setting J = I + p ) I , we must have p ∈ W (m, I + p). Thus I + p

is an m-primary ideal. Therefore it follows that p ∈ W (m, I).
(7): It is trivial that V (I) ⊆

⋂
J W (I, J) ⊆

⋂
J∈D(I)W (I, J). Suppose that p 6∈ V (I). Thenwe have p ∈ D(I) and p 6∈ W (I, p).

Thus p 6∈
⋂
J∈D(I)W (I, J). �
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Proposition 1.7. For an R-module M, the following are equivalent.
(1) M is (I, J)-torsion R-module.
(2) Min(M) ⊆ W (I, J).
(3) Ass(M) ⊆ W (I, J).
(4) Supp(M) ⊆ W (I, J).
Proof. The implications (4)⇒ (3)⇒ (2) are trivial.
(2) ⇒ (4): For p ∈ Supp(M), there exists q ∈ Min(M) such that q ⊆ p. Since q ∈ W (I, J), In ⊆ J + q ⊆ J + p for an

integer n. Hence p ∈ W (I, J).
(1)⇒ (3): If p ∈ Ass(M) then p = Ann(x) for some x ∈ M . SinceM is an (I, J)-torsion R-module, there exists an integer

n such that In ⊆ J + Ann(x) = J + p. Hence p ∈ W (I, J).
(4) ⇒ (1): We have to show that M ⊆ ΓI, J(M). Let x ∈ M , and set Min(Rx) = {p1, . . . , ps}. Since Min(Rx) ⊆

Supp(M) ⊆ W (I, J), there exists an integer n such that In ⊆ J + pi for all i, thus Ins ⊆ J + (p1 · · · ps). Now since√
Ann(x) = p1 ∩ · · · ∩ ps ⊇ p1 · · · ps, it follows that (p1 · · · ps)m ⊆ Ann(x) for an integer m. Therefore we have
Imns ⊆ J + Ann(x). Hence x ∈ ΓI, J(M). �

Corollary 1.8. (1) For x ∈ M, the following conditions are equivalent.
(a) x ∈ ΓI, J(M).
(b) Supp(Rx) ⊆ W (I, J).

(2) Let 0→ L→ M → N → 0 be an exact sequence of R-modules. Then M is an (I, J)-torsion module if and only if L and N
are (I, J)-torsion modules.

Proof. (1): (a)⇒ (b) The assumption implies that ΓI, J(Rx) = Rx. Thus by Proposition 1.7 we get Supp(Rx) ⊆ W (I, J).
(b)⇒ (a) By using Proposition 1.7, we get x ∈ Rx = ΓI, J(Rx) ⊆ ΓI, J(M).
(2): This follows from Proposition 1.7 and the fact that Supp(M) = Supp(L) ∪ Supp(N). �

Corollary 1.9. If M is an (I, J)-torsion R-module, then M/JM is an I-torsion R-module. The converse holds if M is a finitely
generated R-module.
Proof. SinceM is an (I, J)-torsion R-module, we have Supp(M) ⊆ W (I, J). Thus we get Supp(M/JM) ⊆ Supp(M)∩V (J) ⊆
W (I, J) ∩ V (J) ⊆ V (I). ThereforeM/JM is I-torsion R-module.
Suppose that M is a finitely generated R-module, and let x ∈ M . We want to show that x ∈ ΓI, J(M). By the Artin–Rees

lemma, there is an integer n ≥ 0 such that JnM∩Rx ⊆ Jx. SinceM/JM is I-torsion, we have Supp(M/JnM) = Supp(M/JM) ⊆
V (I), therefore M/JnM is I-torsion as well. Thus there exists an integer m ≥ 0 with Imx ⊆ JnM . Hence it follows that
Imx ⊆ JnM ∩ Rx ⊆ Jx. Thus x ∈ ΓI, J(M), as desired. �

Proposition 1.10. Let M be an R-module. Then the equality

Ass(M) ∩W (I, J) = Ass(ΓI, J(M))

holds. In particular, ΓI, J(M) 6= 0 if and only if Ass(M) ∩W (I, J) 6= ∅.
Proof. Since ΓI, J(M) is an (I, J)-torsion R-module, we have Ass(ΓI, J(M)) ⊆ W (I, J) by Proposition 1.7. Thus the inclusion
Ass(M) ∩W (I, J) ⊇ Ass(ΓI, J(M)) is obvious.
To prove the converse inclusion, take p ∈ Ass(M) ∩W (I, J). Then there is an element x(6= 0) ∈ M with p = Ann(x) and

an integer nwith In ⊆ J + p. Thus In ⊆ J + Ann(x), hence x ∈ ΓI, J(M). Since p = Ann(x), we have p ∈ Ass(ΓI, J(M)). �

For a prime ideal p ∈ Spec(R), we denote by E(R/p) the injective hull of the R-module R/p.

Proposition 1.11. Let p ∈ Spec(R). If p ∈ W (I, J), then E(R/p) is an (I, J)-torsion R-module. On the other hand, if p 6∈ W (I, J)
then E(R/p) is an (I, J)-torsion-free R-module.
Proof. If p ∈ W (I, J), then Ass(E(R/p)) = {p} ⊆ W (I, J). Therefore ΓI, J(E(R/p)) = E(R/p) by Proposition 1.7. Contrarily, if
p 6∈ W (I, J), then Ass(E(R/p)) ∩W (I, J) = {p} ∩W (I, J) = ∅. Therefore, by Proposition 1.10, we have ΓI, J(E(R/p)) = 0.

�

Proposition 1.12. Let M be an (I, J)-torsion R-module. Then there exists an injective resolution of M in which each term is an
(I, J)-torsion R-module.
Proof. First note that the injective hull E0 of M is also an (I, J)-torsion module. In fact, since M is (I, J)-torsion, we have
Ass(E0) = Ass(M) ⊆ W (I, J) by Proposition 1.7. Hence E0 is (I, J)-torsion. Thus we see that M can be embedded in an
(I, J)-torsion injective R-module E0.
Suppose, inductively, we have constructed an exact sequence

0 −−−→ M −−−→ E0 −−−→ · · · −−−→ En−1
dn−1
−−−→ En

of R-modules in which E0, . . . , En−1, En are (I, J)-torsion injective R-modules. Let C be the cokernel of the map dn−1. Since
En is an (I, J)-torsion module, C is (I, J)-torsion as well by Corollary 1.8 (2). Applying the argument in the first paragraph
to C , we can embed C into an (I, J)-torsion injective R-module En+1. This completes the proof by induction. �
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Corollary 1.13. Let M be an R-module.

(1) If M is an (I, J)-torsion R-module, then H iI, J(M) = 0 for all i > 0.
(2) H iI, J(ΓI, J(M)) = 0 for i > 0.
(3) M/ΓI, J(M) is an (I, J)-torsion-free R-module.
(4) There is an isomorphism H iI, J(M) ∼= H

i
I, J(M/ΓI, J(M)) for all i > 0.

(5) H iI, J(M) is an (I, J)-torsion R-module for any integer i ≥ 0.

Proof. (1) follows from Proposition 1.12. Since ΓI, J(M) is an (I, J)-torsion R-module, (2) follows from (1).
From the obvious exact sequence

0→ ΓI, J(M)→ M → M/ΓI, J(M)→ 0

we have an exact sequence

0→ ΓI, J(ΓI, J(M))→ ΓI, J(M)→ ΓI, J(M/ΓI, J(M))→ 0

and isomorphisms

H iI, J(M) ∼= H iI, J(M/ΓI, J(M)) for i ≥ 1,

since H iI, J(ΓI, J(M)) = 0 for i > 0. It follows from this that (3) and (4) hold.
SinceH iI, J(M) (i ≥ 0) is a subquotient of an (I, J)-torsionmodule, it is also (I, J)-torsion by Corollary 1.8, hence (5) holds.
�

Remark 1.14. In Corollary 1.13 (1), the converse holds if R is a local ring andM is a finitely generated R-module. Namely, if
H iI, J(M) = 0 for all integer i > 0, thenM is an (I, J)-torsion R-module. (See Corollary 4.2.)

2. Čech complexes

In this section we present a generalization of Čech complexes. The main purpose is to show that the local cohomology
modules with respect to (I, J) are obtained as the homologies of the generalized Čech complexes.
As before, I , J denote ideals of a commutative noetherian ring R.

Definition 2.1. For an element a ∈ R, let Sa,J be the subset of R consisting of all elements of the form an + j where n ∈ N
and j ∈ J .

Sa, J = {an + j | n ∈ N, j ∈ J}.

Note that Sa, J is a multiplicatively closed subset of R. For an R-module M , we denote by Ma, J the module of fractions of M
with respect to Sa, J .

Ma, J = S−1a, JM.

Definition 2.2. For an element a ∈ R, the complex C•a, J is defined as

C•a, J = (0→ R→ Ra, J → 0),

where R is sitting in the 0th position and Ra, J in the 1st position in the complex. For a sequence a = a1, . . . , as of elements
of R, we define a complex C•a, J as follows:

C•a, J =
s⊗
i=1

C•ai, J =

(
0→ R→

s∏
i=1

Rai, J →
∏
i<j

(Rai, J)aj, J → · · · → (· · · (Ra1, J) · · · )as, J → 0

)
.

It is easy to see that if J = 0, then C•a, J coincides with the ordinary Čech complex C
•
a with respect to a = a1, . . . , as.

The following result gives some basic properties of the generalized Čech complexes.

Proposition 2.3. Let a ∈ R.

(1) Sa, J contains 0 if and only if a ∈
√
J .

(2) If a ∈
√
J , then C•a, J ∼= R as chain complexes.

(3) A prime ideal p belongs to W (I, J) if and only if p ∩ Sa, J 6= ∅ for any a ∈ I .
(4) If a ∈ I , then H iI, J(Ma, J) = 0 for all i ≥ 0.
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(5) If
√
I =
√
(a1, a2, . . . , as), then the sequence

0→ ΓI, J(M)→ M →
s∏
i=1

Mai, J

is exact.

Proof. (1) If 0 ∈ Sa, J , then 0 = an + j for an integer n and j ∈ J . Then, since an = −j ∈ J , we have a ∈
√
J . Conversely, if

a ∈
√
J , then there is an integer n ≥ 0 such that an = j belongs to J . Thus 0 = an + (−j) ∈ Sa, J .

(2) Suppose a ∈
√
J . It then follows from (1) that 0 ∈ Sa, J . Thus Ra,J = 0, hence C•a, J = (0→ R→ 0) from the definition.

(3) Assume p ∈ W (I, J) and take an element a ∈ I . Then In ⊆ J + p for an integer n ≥ 0. Since an ∈ In ⊆ J + p, there
exist j ∈ J and c ∈ p such that an = j+ c. Thus we have c = an + (−j) ∈ p ∩ Sa, J .
Conversely, assume p ∩ Sa, J 6= ∅ for any a ∈ I . Corresponding to each a ∈ I , we find an element c(a) ∈ p ∩ Sa, J , which is

of the form c(a) = an(a) + j(a) for an integer n(a) and j(a) ∈ J . Thus an(a) = −j(a)+ c(a) ∈ J + p. Since this is true for any
a ∈ I , and since I is finitely generated, we see In ⊆ J + p for some n, hence p ∈ W (I, J).
(4) Let E• be an injective resolution of an R-moduleM . Then (E•)a, J is an R-injective resolution ofMa, J . HenceH iI, J(Ma, J) =

H i(ΓI, J((E•)a, J)). Describing each E i as a direct sum of indecomposable injective modules E i =
⊕

p∈Spec(R) ER(R/p)
µi(p,M), we

have

(E i)a, J =
⊕

p∈Spec(R)

ER(R/p)
µi(p,M)
a, J =

⊕
p∈Spec(R)

ERa, J (Ra, J/pRa, J)
µi(p,M).

Therefore the following equality follows from (3) and the assumption a ∈ I .

ΓI, J((E i)a, J) =
⊕

p∈W (I, J)

ERa, J (Ra, J/pRa, J)
µi(p,M) = 0.

It follows H iI, J(Ma, J) = 0.
(5) It is enough to show that x ∈ ΓI, J(M) if and only if x ∈ Ker(M → Π si=1Mai, J). Let x ∈ ΓI, J(M). Then there exists

an integer n ≥ 0 such that ani x ∈ Jx for all ai. Therefore, since (a
n
i − bi)x = 0 for some bi ∈ J and a

n
i − bi ∈ Sai,J , we have

x ∈ Ker(M → Π si=1Mai, J). Conversely, if x ∈ Ker(M → Π si=1Mai, J), then for each i there exist an integer ni ≥ 0 and bi ∈ J
such that (anii − bi)x = 0. Thus a

ni
i x ∈ Jx for each i. This shows that I

nx ⊆ Jx for a large integer n. Thus we have x ∈ ΓI, J(M).
�

Theorem 2.4. Let M be an R-module, and let a = a1, . . . , as be a sequence of elements of R which generate I. Then there is a
natural isomorphism H iI, J(M) ∼= H

i(C•a, J ⊗RM) for any integer i.

Proof. Note from Proposition 2.3 (5) that there is a functorial isomorphism

H0(C•a, J ⊗M) ∼= ΓI, J(M).

Since {H i(C•a, J ⊗R−) | i ≥ 0} is a cohomological sequence of functors, to prove the theorem we only have to show that
H i(C•a, J ⊗ E) = 0 for any i > 0 and any injective R-module E. To prove this, we may assume that E = ER(R/p) where p is a
prime ideal of R. We proceed by induction on the length s of the sequence a.
If s = 1, then

C•a, J ⊗ E =
(
0→ ER(R/p)→ ER(R/p)a1, J → 0

)
,

where ER(R/p)a1, J is isomorphic to ER(R/p) if p 6∈ W ((a1), J), and is (0) if p ∈ W ((a1), J). See Proposition 1.11 or 2.3. In
either case, we have H1(C•a, J ⊗ E) = 0.
Next we assume s > 1, and set a′ = a2, . . . , as. Then we have the equality C•a, J = C

•

a1, J
⊗R C•a′, J . Therefore there is a

spectral sequence

Ep,q2 = H
p(C•a1, J ⊗ H

q(C•a′, J ⊗ E(R/p)))⇒ H
p+q(C•a, J ⊗ E(R/p)).

Since Hq(C•a′, J ⊗ E(R/p)) = 0 for q > 0 by the induction hypothesis, the spectral sequence degenerates, and we have
isomorphisms

Hn(C•a, J ⊗ E(R/p)) = H
n(C•a1, J ⊗ H

0(C•a′, J ⊗ E(R/p)))

= Hn(C•a1, J ⊗ Γ(a′), J(E(R/p)))

= Hn(0→ Γ(a′), J(E(R/p))→ (Γ(a′), J(E(R/p)))a1, J → 0).

This shows that Hn(C•a, J ⊗ E(R/p)) = 0 for n ≥ 2. Note from Proposition 1.11 that Γ(a′),J(E(R/p)) is either E(R/p) or (0).
Therefore it remains to show that H1(C•a1, J ⊗ E(R/p)) = 0. But this is already done in the case s = 1. �



588 R. Takahashi et al. / Journal of Pure and Applied Algebra 213 (2009) 582–600

Corollary 2.5. Let a = a1, . . . , as be a sequence of elements of R, set I = (a) and let M be a J-torsion R-module. Then there is a
natural isomorphism C•a, J ⊗RM ∼= C

•
a ⊗RM. Hence H

i
I, J(M) ∼= H

i
I (M) for any integer i.

Proof. For an element a ∈ I , there is a natural mapping ϕ : Ma → Ma, J defined by ϕ(z/an) = z/an. First we show that ϕ is
an isomorphism.
Suppose that ϕ(z/an) = 0 ∈ Ma,J . Then (am − b)z = 0 for an integer m ≥ 0 and an element b ∈ J . Since am − b divides

(a2
`m
− b2

`
), we see (a2

`m
− b2

`
)z = 0 for all integers ` ≥ 0. Since M is J-torsion, we have b2

`
z = 0 for a large `. Thus

a2
`mz = 0, and we have z/an = 0 ∈ Ma, which shows that ϕ is injective.
Let w = z/(an − b) ∈ Ma, J where z ∈ M and b ∈ J . Since M is J-torsion, there exists an integer ` such that

b2
`
z = 0. Let us write a2

`n
− b2

`
= c(an − b) for an element c ∈ R. Then we see a2

`nz = c(an − b)z in M . Therefore
w = z/(an − b) = cz/a2

`n
∈ Ma, J . This shows that ϕ is surjective.

We have shown that Ma ∼= Ma,J for any a ∈ I . Thus we have C•a, J ⊗ M ∼= C
•
a ⊗ M for any a ∈ I . Finally we have the

isomorphisms of chain complexes:

C•a, J ⊗M = C
•

a1, J ⊗ C
•

a2, J ⊗ · · · ⊗ C
•

as, J ⊗M
∼= C•a1 ⊗ C

•

a2 ⊗ · · · ⊗ C
•

as ⊗M

= C•a ⊗M. �

From this we can show the following by Theorem 2.4.

Proposition 2.6. The functors H iI, J (i ≥ 0) commute with inductive limits, i.e. if {Mλ | λ ∈ Λ} is an inductive system, then there
is a natural isomorphism

H iI, J(lim−→
λ

Mλ) ∼= lim
−→
λ

H iI, J(Mλ),

for any i ≥ 0.

Proof. Since the tensor product commutes with direct limits, we have C•a, J ⊗R(lim−→λ
Mλ) ∼= lim

−→λ
(C•a, J ⊗RMλ). The

proposition follows from this. �

The following theorem is a generalization of the base ring independence theorem for ordinary local cohomology.

Theorem 2.7. Let I and J be ideals of R as before. Furthermore, let ϕ : R → R′ be a ring homomorphism, and let M ′ be an
R′-module. Suppose that ϕ satisfies the equality

ϕ(J) = JR′.

Then there is a natural isomorphism H iI, J(M
′) ∼= H iIR′, JR′(M

′) as R′-modules for any integer i ≥ 0.

Proof. Set I = (a) = (a1, . . . , as)R and ϕ(a) = ϕ(a1), . . . , ϕ(as).
Then we have from the assumption the equality

ϕ(Sai, J) = Sϕ(ai), JR′ ,

for any multiplicative closed subset S in R′ and for all i with 1 ≤ i ≤ s. Therefore, H iI, J(M
′) ∼= H i(C•a, J ⊗RM

′) ∼=

H i(C•
ϕ(a), JR′ ⊗R′ M

′) ∼= H iIR′, JR′(M
′). �

Herewe should remark that the hypothesisϕ(J) = JR′ in the theoremcannot be deleted. Indeed, let kbe a field,R = k[x, y]
and R′ = k[x, y, z]/(xz − yz2). Set I = (x)R′, J = (y)R′. For a natural ring homomorphism ϕ from R to R′, we have ϕ(J) ( JR′
and ΓI,J(R′) 6= ΓIR′,JR′(R′).
If ϕ : R→ R′ is a surjective ring homomorphism, then it satisfies the condition ϕ(J) = JR′ of the theorem. However, note

that there is a non-surjective ring homomorphism that satisfies the condition. For example, let R = k[x] be a polynomial
ring over a field k and let R′ = k[x, y]/(xy). We define a k-algebra map ϕ : R→ R′ by ϕ(x) = x. Then we have ϕ(xR) = xR′.

Remark 2.8. Let ϕ : R→ R′ be a flat homomorphism of rings, and letM be an R-module. Then it induces a natural mapping
H iI, J(M)⊗R R

′
→ H iIR′, JR′(M⊗R R

′) for any i ≥ 0.
In fact, since ϕ(Sai, J) ⊆ Sϕ(ai), JR′ , we have a chain homomorphism (C

•

a, J ⊗RM)⊗R R
′
→ C•

ϕ(a), JR′ ⊗R′(M⊗R R
′), which

induces the mapping of cohomologies.
We should note that this induced mapping may not be an isomorphism.
In fact, one can easily construct an example of a localization map R→ S−1R such that S−1ΓI, J(R)→ ΓS−1I,S−1J(S

−1R) is
not surjective.
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For a further nontrivial example, let ϕ : R = k[x, y](x,y) → R̂ = k[[x, y]] be the completion map, and let I = xR and
J = yR. Furthermore, let S = {xn + ya | a ∈ R} and Ŝ = {xn + yb | b ∈ R̂} be multiplicatively closed subsets in R and R̂
respectively. Then we obtain through the computation using Theorem 2.4 the following equalities.

H1I, J(R)⊗R R̂ = S
−1̂R/̂R, H1ÎR,J R̂(̂R) = Ŝ

−1̂R/̂R.

It is easy to see that the natural mapping S−1̂R/̂R→ Ŝ−1̂R/̂R is injective, but not surjective.

3. Relations between H i
I and H i

I, J

In this section, we study the relations between the local cohomology functors H iI and H
i
I, J . We need Theorem 3.2 in the

proof of one of the vanishing theorems of local cohomologies. (See Theorem 4.7 (i).) First we introduce a necessary notation.

Definition 3.1. Let W̃ (I, J) denote the set of ideals a of R such that In ⊆ a+ J for some integer n. We define a partial order
on W̃ (I, J) by letting a ≤ b if a ⊇ b for a, b ∈ W̃ (I, J). If a ≤ b, we have Γa(M) ⊆ Γb(M). The order relation on W̃ (I, J) and
the inclusion maps make {Γa(M)}a∈W̃ (I, J) into a direct system of R-modules.

Theorem 3.2. Let M be an R-module. Then there is a natural isomorphism

H iI, J(M) ∼= lim
−→

a∈W̃ (I, J)

H ia(M)

for any integer i.

Proof. First of all, we show that ΓI, J(M) =
⋃

a∈W̃ (I, J) Γa(M).
To do this, suppose x ∈ ΓI, J(M). Then there is an integer n ≥ 0 with In ⊆ Ann(x) + J . Setting a = Ann(x), we have

a ∈ W̃ (I, J), and x ∈ Γa(M). Conversely, let x ∈
⋃

a∈W̃ (I, J) Γa(M). Then there is an ideal a ∈ W̃ (I, J) with x ∈ Γa(M). Thus
Im ⊆ a+ J and anx = 0 for integersm, n ≥ 0. Then, since Imn ⊆ (a+ J)n ⊆ an + J , we have Imnx ⊆ Jx, hence x ∈ ΓI, J(M).
Let 0→ L→ M → N → 0 be an exact sequence of R-modules. Then it implies a long exact sequence

0 −−−−→ H0a (L) −−−−→ H0a (M) −−−−→ H0a (N)

−−−−→ H1a (L) −−−−→ H1a (M) −−−−→ · · ·

for each a ∈ W̃ (I, J). Since taking the direct limit is an exact functor, we obtain the long exact sequence

0 −−−−→ lim
−→a∈W̃ (I, J)

H0a (L) −−−−→ lim
−→a∈W̃ (I, J)

H0a (M) −−−−→ lim
−→a∈W̃ (I, J)

H0a (N)

−−−−→ lim
−→a∈W̃ (I, J)

H1a (L) −−−−→ lim
−→a∈W̃ (I, J)

H1a (M) −−−−→ · · · .

On the other hand, for any injective R-module E and any positive integer i, we have H ia(E) = 0 for each a ∈ W̃ (I, J). Thus
we have lim

−→a∈W̃ (I, J)
H ia(E) = 0.

These arguments imply that {lim
−→a∈W̃ (I, J)

H ia | i = 0, 1, 2, . . .} is a system of right derived functors of ΓI, J , and the proof is
completed. �

Next we shall show that in a local ring R with maximal ideal m the I-torsion functor ΓI has a description as an inverse
limit of (m, J)-torsion functors Γm, J . The following lemma is a key for this fact.

Lemma 3.3. Let R be a local ring with maximal ideal m. Then

V (J) =
⋂

I∈W̃ (m, J)

W (m, I) =
⋂

p∈W (m, J)

W (m, p).

Proof. If p ∈ V (J) and I ∈ W̃ (m, J), then mn ⊆ I + J ⊆ I + p for an integer n > 0, hence we have p ∈ W (m, I). Thus
V (J) ⊆

⋂
I∈W̃ (m, J)W (m, I). SinceW (m, J) ⊆ W̃ (m, J), we have

⋂
I∈W̃ (m, J)W (m, I) ⊆

⋂
p∈W (m, J)W (m, p).

We only have to show the remaining inclusion
⋂

p∈W (m, J)W (m, p) ⊆ V (J). Suppose that
⋂

p∈W (m, J)W (m, p) 6⊆ V (J).
Then there is a prime ideal q ∈

⋂
p∈W (m, J)W (m, p) with q 6∈ V (J). Take an element x ∈ J \ q and set r = dim R/q. Since x is

R/q-regular element, dim R/(q+ (x)) = r − 1. Thus there exist y1, y2, . . . , yr−1 ∈ m such that ȳ1, ȳ2, . . . ȳr−1 ∈ m/(q+ (x))
is a system of parameters of R/(q + (x)). Then q + (x, y1, y2, . . . , yr−1) is an m-primary ideal, and q + (y1, y2, . . . , yr−1) is
not. Thus we can find a prime ideal p with q + (y1, y2, . . . , yr−1) ⊆ p ( m. On the other hand, J + p is an m-primary ideal,
since q + (x, y1, y2, . . . , yr−1) ⊆ (x) + p ⊆ J + p. Therefore p ∈ W (m, J), and hence we must have q ∈ W (m, p). Thus we
conclude that p = p+ q is an m-primary ideal, but this is a contradiction. �
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Recall that W̃ (I, J) is a partially ordered set, in which the order relation a ≤ b for a, b ∈ W̃ (I, J) is defined by b ⊆ a.
Note that the relation a ≤ b naturally implies the inclusion mapping ΓI,a(M) ⊇ ΓI,b(M), which makes {ΓI,a(M)}a∈W̃ (I, J) an
inverse system of R-modules. We are now ready to prove the following proposition.

Proposition 3.4. Let R be a local ring with maximal ideal m, and M be an R-module. Then we have the equality

ΓI(M) = lim
←−

J∈W̃ (m,I)

Γm, J(M).

Proof. We show ΓI(M) =
⋂
J∈W̃ (m,I) Γm, J(M). For this, let x ∈ ΓI(M) and J ∈ W̃ (m, I). Then there are integers m, n ≥ 0

with Imx = 0, mn ⊆ J + I . Thus mmnx ⊆ Jx, and hence x ∈ Γm, J(M). It follows that x ∈
⋂
J∈W̃ (m,I) Γm, J(M).

Conversely, let x ∈
⋂
J∈W̃ (m,I) Γm, J(M). For J ∈ W̃ (m, I), there exists an integer n ≥ 0 such that mn ⊆ Ann(x)+ J , hence

J ∈ W̃ (m,Ann(x)). Thus we have W̃ (m, I) ⊆ W̃ (m,Ann(x)). It then follows from Lemma 3.3 that

V (Ann(x)) =
⋂

J∈W̃ (m,Ann(x))

W (m, J) ⊆
⋂

J∈W̃ (m,I)

W (m, J) = V (I).

Therefore we have I ⊆
√
Ann(x), hence x ∈ ΓI(M). �

4. Vanishing and nonvanishing theorems

In this sectionwe argue about the vanishing and nonvanishing of local cohomologymoduleswith respect to (I, J). For the
remainder of this section, we adopt the convention that inf∅ = ∞ for the empty subset ofN, and depth 0 = ∞, dim 0 = −1
for the trivial R-module.

Theorem 4.1. For any finitely generated R-module M we have the equality

inf{i | H iI, J(M) 6= 0} = inf{depthMp | p ∈ W (I, J)}.

Proof. We set n = inf{depthMp | p ∈ W (I, J)}, and let E•(M) be a minimal injective resolution ofM .
If p ∈ W (I, J), then n ≤ depthMp = inf{i | µi(p,M) 6= 0}. Hence we have the equality

ΓI, J(E i(M)) =
⊕

p∈W (I, J)

E(R/p)µi(p,M) = 0, (1)

for any integer i < n. (Also note that ΓI, J(En(M)) 6= 0.) It follows that H iI, J(M) = 0 if i < n.
It suffices to show thatHnI, J(M) 6= 0.We see from equality (1) that the complex ΓI, J(E

•(M)) starts from its nth term. Thus
we have a commutative diagram

0 −−−−→ HnI, J(M) −−−−→ ΓI, J(En(M)) −−−−→ ΓI, J(En+1(M))y y
En−1(M)

dn−1
−−−−→ En(M)

dn
−−−−→ En+1(M)

with exact rows. Since Kerdn = Imdn−1 ⊆ En(M) is an essential extension, it follows that HnI, J(M) = ΓI, J(E
n(M))∩Kerdn 6=

0. �

As a special case of the theorem, if J = 0 then we obtain the well-known equality

inf{i | H iI (M) 6= 0} = grade(I,M) = inf{depthMp | p ∈ V (I)}.

for a finitely generated R-moduleM .

Corollary 4.2. Let M be a finitely generated module over a local ring R with maximal ideal m. Then the following conditions are
equivalent:

(1) M is (I, J)-torsion R-module.
(2) H iI, J(M) = 0 for all integers i > 0.

Proof. We have already shown the implication (1)⇒ (2) in Corollary 1.13(1).
To prove (2) ⇒ (1), let us denote N = M/ΓI, J(M). We only have to show that N = 0. Suppose N 6= 0. From

Corollary 1.13(3) and (4), we haveΓI, J(N) = 0 andH iI, J(N) ∼= H
i
I, J(M) = 0 if i > 0. On the other hand, sincem ∈ W (I, J), the

inequality inf{depthNp | p ∈ W (I, J)} ≤ depthNm = depthN (< ∞) holds. Thus H iI, J(N) 6= 0 for an integer i ≤ depthN
by Theorem 4.1. This is a contradiction. Therefore N = 0, and the proof is completed. �
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Theorem 4.3. Let M be a finitely generated module over a local ring R. Suppose that J 6= R. Then H iI, J(M) = 0 for any
i > dimM/JM.

Proof. We proceed by induction on r = dimM/JM . If r = −1, thenM = 0 by Nakayama’s lemma, and hence H iI, J(M) = 0
for any integer i ≥ 0.
Now assume that r ≥ 0. There is a finite filtration 0 = M0 ( M1 ( · · · ( Ms = M of M such that Mj/Mj−1 ∼= R/pj for

pj ∈ Supp(M) and j = 1, . . . , s. Then there are short exact sequences 0→ Mj−1 → Mj → R/pj → 0 for j = 1, . . . , s, and
hence we have exact sequences

H iI, J(Mj−1)→ H iI, J(Mj)→ H iI, J(R/pj)

for all integers i and jwith i ≥ 0 and 1 ≤ j ≤ s. Note that

dim R/(pj + J) ≤ dim R/(Ann(M)+ J) = dimM/JM = r.

Thus we may assume thatM = R/PwithP ∈ Spec(R).
Since we show in Theorem 2.7 that H iI, J(R/P) ∼= H

i
I(R/P), J(R/P)(R/P), replacing R by R/P, we may assume that R is an

integral domain andM = R.
Suppose that H`I, J(R) 6= 0 for some integer ` > r . We would like to derive contradiction. Note in this case that we have

AssR(H`I, J(R)) 6= ∅.
First, let us assume that AssR(H`I, J(R)) contains a nonzero prime ideal Q. Then take a nonzero element x ∈ Q. From the

obvious short exact sequence 0→ R
x
→ R→ R/(x)→ 0, one gets an exact sequence

H`−1I, J (R/(x))→ H`I, J(R)
x
→H`I, J(R).

Note that dim R/(J + (x)) = r − 1 < ` − 1, hence the induction hypothesis implies H`−1I, J (R/(x)) = 0. This shows that
the element x is H`I, J(R)-regular. However, the element x is in the associated prime Q of H`I, J(R), hence is a zero-divisor on
H`I, J(R).
This contradiction forces AssR(H`I, J(R)) = {(0)}. Note from Proposition 1.7 and Corollary 1.13(5) that AssR(H

`
I, J(R)) ⊆

W (I, J). Hence we have (0) ∈ W (I, J). Since the setW (I, J) is closed under specialization, one hasW (I, J) = Spec(R). In
this case one easily sees that H`I, J(R) = 0 for any ` > 0, which is again a contradiction. �

Corollary 4.4. Let R be a local ring and let M be an R-module that is not necessarily finitely generated. Then H iI, J(M) = 0 for any
i > dim R/J .

Proof. Since every R-module is a direct limit of finitely generated submodules, we may writeM = lim
−→λ

Mλ where eachMλ
is a finitely generated R-module. Note that if i > dim R/J , then i > dimMλ/JMλ. Therefore, by Proposition 2.6, we have
H iI, J(M) = lim−→λ

H iI, J(Mλ) = 0. �

Grothendieck’s nonvanishing theorem says that the ordinary local cohomologymoduleHrm(M) does not vanishwhenever
R is a local ring with maximal ideal m andM is a finitely generated R-module of dimension r . The following theorem can be
thought of as a generalization of this result.

Theorem 4.5. Let M be a finitely generated module over a local ring R with maximal idealm. Suppose that I+ J is anm-primary
ideal. Then we have the equality

sup{i | H iI, J(M) 6= 0} = dimM/JM.

Proof. In virtue of Theorem 4.3, we only have to prove that HrI, J(M) 6= 0 for r = dimM/JM . Since I + J is an m-
primary ideal, we have H iI, J(M) = H im, J(M) for any integer i. Thus we may assume that I = m. The exact sequence
0→ JM → M → M/JM → 0 induces an exact sequence

Hrm, J(M)→ Hrm, J(M/JM)→ Hr+1m, J (JM).

We see from Theorem 4.3 that Hr+1m, J (JM) = 0 because dim JM/J
2M ≤ dimM/J2M = dimM/JM = r . Furthermore, it

follows from Corollary 2.5 and Grothendieck’s nonvanishing theorem that

Hrm, J(M/JM) = H
r
m(M/JM) 6= 0.

Consequently, the exact sequence implies Hrm, J(M) 6= 0. �

Remark 4.6. (1) If J = R, then the assertion of Theorem 4.3 does not necessarily hold, for dimM/JM = −1 < 0 and
H0I, J(M) ∼= ΓI, J(M) = M .

(2) If R is a non-local ring, then the assertion of Theorem 4.3 does not necessarily hold.
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For example, let R = k[x] be a polynomial ring over a field k, and set I = (x − 1), J = I ∩ (x) = (x2 − x), and M = R.
Then one has dimM/JM = 0 < 1 but H1I, J(M) 6= 0.

Even in the non-local case, one has the following result on the vanishing of local cohomology modules with respect to
(I, J).

Theorem 4.7. Let M be a finitely generated R-module. Then
(1) H iI, J(M) = 0 for all integers i > dimM.
(2) H iI, J(M) = 0 for all integers i > dimM/JM + 1.

Proof. (1) This easily follows from Theorem 3.2 and Grothendieck’s vanishing theorem.
(2)We prove this by induction on r = dimM/JM . When r = −1, Nakayama’s Lemma says that (1+ a)M = 0 for some

a ∈ J . Hence we have Jx = Rx for any x ∈ M , which implies that the R-module M is (I, J)-torsion. Corollary 1.13(1) shows
that H iI, J(M) = 0 for every i > 0 = r + 1, as desired. When r ≥ 0, we can prove the assertion along the lines as in the proof
of Theorem 4.3. �

As one of the main theorems of this section, we shall prove a generalization of Lichtenbaum–Hartshorne theorem in
Theorem 4.9. For this we begin with the following lemma.

Lemma 4.8. Let n be a non-negative integer. Suppose that H iI, J(R) = 0 for all i > n. Then the following hold for any R-module
M which is not necessarily finitely generated.
(1) H iI, J(M) = 0 for all i > n.
(2) HnI, J(M) ∼= H

n
I, J(R)⊗RM.

Proof. First we should note that, by virtue of Proposition 2.6, we only have to prove the lemma for a finitely generated
R-moduleM .
(1) We have shown in the previous theorem that H iI, J(M) = 0 if i > dimM . We prove the assertion by descending

induction on i. There exists a short exact sequence

0→ N → Rm → M → 0

wherem is an integer and N is a finitely generated R-module. This sequence induces an exact sequence

H iI, J(R
m)→ H iI, J(M)→ H i+1I, J (N).

By the induction hypothesis, the equality H i+1I, J (N) = 0 holds. Thus we see that H
i
I, J(M) = 0.

(2) By claim (1), the functor HnI, J is a right exact functor on the category of R-modules, hence it is represented as a tensor
functor. �

For an R-moduleM , we set
AsshR(M) = {p ∈ AssR(M) | dim R/p = dimRM}.

We are now ready to prove the generalized version of Lichtenbaum–Hartshorne theorem.

Theorem 4.9. Let (R,m) be a local ring of dimension d, and let I and J be proper ideals of R. Then the following conditions are
equivalent.
(1) HdI, J(R) = 0.
(2) For each prime ideal p ∈ Assh(R̂) with JR̂ ⊆ p, we have dim R̂/(IR̂+ p) > 0.

Proof. (1) ⇒ (2) Suppose that HdI, J(R) = 0, and that there exists p ∈ Assh(R̂) satisfying J R̂ ⊆ p and dim R̂/(IR̂ + p) = 0.
We would like to derive a contradiction.
By Lemmma 4.8 we have HdI, J(R̂/p) = 0. On the other hand, since J ⊆ p, R̂/p is a J-torsion module over R. Hence

Corollary 2.5 implies that HdI, J(R̂/p) ∼= H
d
I (R̂/p), which is isomorphic to H

d
I(R̂/p)

(R̂/p). Note here that (R̂/p,mR̂/p) is a d-

dimensional complete local ring and (IR̂ + p)/p is mR̂/p-primary ideal. Thus we have HdI, J(R̂/p) ∼= H
d
m(R̂/p)

(R̂/p), which is
nonzero by Grothendieck’s nonvanishing theorem. This is a contradiction.
(2) ⇒ (1) Suppose that HdI, J(R) 6= 0, we shall show a contradiction under the condition (2). Since R̂ is faithfully flat, it

holds by Lemma 4.8 that

HdI, J(R̂) = H
d
I, J(R)⊗R R̂ 6= 0.

Considering a filtration of ideals of R̂;

0 = K0 ( K1 ( · · · ( Ks−1 ( Ks = R̂,

with Kj/Kj−1 ∼= R̂/pj for prime ideals pj of R̂ for 1 ≤ j ≤ s, we see that there is at least one prime ideal p of R̂ such that
HdI, J(R̂/p) 6= 0.
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First consider the case that J ⊆ p. Then, since R̂/p is a J-torsion R-module, it follows from Corollary 2.5 that HdI, J(R̂/p) =
HdI (R̂/p) = Hd

I(R̂/p)
(R̂/p). If dim R̂/p < d, then Hd

I(R̂/p)
(R̂/p) = 0 by Grothendieck’s vanishing theorem, and this is a

contradiction. If dim R̂/p = d, then p ∈ Assh(R̂), hence dim (R̂/IR̂+ p) > 0 by assumption 2. Thus we have Hd
I(R̂/p)

(R̂/p) = 0
by the Lichtenbaum–Hartshorne theorem. This is again a contradiction.
Next consider the case J 6⊆ p. Denote R̄ = R/p ∩ R. Applying Theorem 2.7 to the natural projection R → R̄, we have

HdI, J(R̂/p) = H
d
IR̄, J R̄

(R̂/p). Since dim R̄/J R̄ < dim R̄ ≤ d, it follows from Corollary 4.4 that Hd
IR̄, J R̄

(R̂/p) = 0, which is a
contradiction as well. �

Remark 4.10. In [15, Theorem 1.1] it is proved that the first condition in Theorem 4.9 is equivalent to the condition that
for each p ∈ Assh(R̂) there exists q ∈ W (I, J) with dim R̂/(qR̂ + p) > 0. We see that this condition implies the second
condition in Theorem 4.9, but the opposite implication seems not obvious. (The authors do not know how to prove the
opposite implication directly.) The point is that the second condition in Theorem 4.9 is concerning the ideals I and J , but not
concerning the setW (I, J).

Recall that the arithmetic rank of an ideal I , denoted by ara(I), is defined to be the least number of elements of R required
to generate an ideal which has the same radical as I .

Proposition 4.11. Let M be an R-module. Then H iI, J(M) = 0 for any integer i > ara(IR̄), where R̄ = R/
√
J + Ann(M).

Proof. Denote R′ = R/AnnR(M). Then R̄ = R′/
√
JR′ and AnnR′(M) = 0. Sincewe have an isomorphismH iI, J(M) ∼= H

i
IR′, JR′(M)

by Theorem 2.7, we may assume that AnnR(M) = 0.
Let us denote s = ara(IR̄). Then we find a sequence a = a1, a2, . . . , as of s elements in R such that

√

IR̄ =
√

aR̄. Then it
is easy to see from Proposition 1.4 that the equality

H iI, J(M) = H
i
aR, J(M) = H

i(C•a, J ⊗M)

holds for any i. Since the complex C•a, J is of length s, we see that H
i(C•a, J ⊗M) = 0 for all integers i > s = ara(IR̄). �

5. The Local duality theorem and other functorial isomorphisms

For a local ring Rwithmaximal idealm, we denote the functor HomR(−, ER(R/m)) by (−)∨. Let (R,m) be a d-dimensional
Cohen–Macaulay complete local ring. Then it is well known that it satisfies the local duality theorem, which states the
existence of functorial isomorphisms

Hd−im (M)∨ ∼= ExtiR(M, KR),

for finitely generated R-modulesM and integers i ≥ 0. Note that KR is the canonical module of R given as KR = Hdm(R)
∨. The

following theorem is thought of as a generalization of the local duality theorem.

Theorem 5.1. Let (R,m) be a Cohen–Macaulay complete local ring of dimension d, and let J be a perfect ideal of R of grade t,
i.e. pdRR/J = grade(J, R) = t. Then, for a finitely generated R-module M, there is a functorial isomorphism

Hd−im, J (M)
∨ ∼= Exti−tR (M, K)

for all integer i, where K = Hd−tm, J (R)
∨.

To prove the theorem we need the following lemma.

Lemma 5.2. Let R be a Cohen–Macaulay local ring of dimension d and let J be a perfect ideal of R of grade t. Then the inequality
htp ≥ d− t holds for any p ∈ W (m, J).

Proof. If p + J is an m-primary ideal, then R/p⊗R R/J is of finite length, hence the new intersection theorem [10,16,17]
implies that dim R/p ≤ pdRR/J = t therefore htp ≥ d− t . �

Now we proceed to the proof of Theorem 5.1.

Proof. Let us denote T i(−) = Hd−t−im, J (−)∨, and we shall show the isomorphism of functors T i(−) ∼= ExtiR(−, K).
Note that R/J is a Cohen–Macaulay ring of dimension d− t . Hence we see from Corollary 4.4 that Hd−tm, J (−) is a right exact

functor on the category of allR-modules. Note fromLemma4.8 that there is a natural isomorphismM⊗R Hd−tm, J (R) ∼= H
d−t
m, J (M)

for any R-moduleM . Thus we have

T 0(M) ∼= (M ⊗ Hd−tm, J (R))
∨ ∼= Hom(M, K).
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Let 0→ L→ M → N → 0 be an exact sequence of R-modules. Then we have a long exact sequence

· · · → Hd−t−1m, J (N)→ Hd−tm, J (L)→ Hd−tm, J (M)→ Hd−tm, J (N)→ 0,

which induces a long exact sequence

0→ T 0(N)→ T 0(M)→ T 0(L)→ T 1(N)→ · · · .

Therefore the proof will be completed if we show that T i(F) = 0 for any integer i > 0 and any free R-module F . It is
enough to show that Hd−t−im, J (R) = 0 for i > 0. If p ∈ W (m, J), then we have depth Rp = htp ≥ d− t by Lemma 5.2. Thus we
see from Theorem 4.1 that H jm, J(R) = 0 for all integer j < d− t . �

Remark 5.3. We should note that K = Hd−tm, J (R)
∨ in the theorem is not necessarily a finite R-module, even if R is a Gorenstein

ring.
In fact, when R is Gorenstein, we shall show in Proposition 5.6 the following equality

Ass(Hd−tm, J (R)) = {p ∈ W (m, J) | htp = d− t}.

This set is not equal to {m} if t is positive. In this case, Hd−tm, J (R) is not an artinian R-module, hence K is not a noetherian
R-module.

Let R be a local ring with maximal idealm. Then we shall see in this section that there often exist dualities between local
cohomology with respect to (m, J) and ordinary local cohomology with support in J .
For an R-moduleM and an ideal J of R, we denote by M̂J the J-adic completion ofM , which is defined to be the projective

limit lim
←−n

M/JnM . The following theorem should be compared with the result of Greenlees–May [6].

Theorem 5.4. Let R be a Cohen–Macaulay local ring of dimension d with canonical module KR. And let J be an ideal of R with
dim R/J = d− r. Then there is a natural isomorphism

Hd−rm, J (R)̂J ∼= H
r
J (KR)

∨.

Proof. We have the following isomorphisms

Hd−rm, J (R)/J
nHd−rm, J (R) ∼= H

d−r
m, J (R)⊗R R/J

n

∼= Hd−rm, J (R/J
n) (by Lemma 4.8)

∼= Hd−rm (R/Jn) (by Corollary 2.5)
∼= ExtrR(R/J

n, KR)∨,

where the last isomorphism follows from the local duality theorem applied to the R-module R/Jn. Since these isomorphisms
are functorial, taking project limits we have the isomorphism

Hd−rm, J (R)̂J ∼= lim←−
n∈N

(ExtrR(R/J
n, KR)∨).

On the other hand, it follows from the definition of ordinary local cohomology that

HrJ (KR)
∨ ∼= (lim

−→
n∈N

(ExtrR(R/J
n, KR))∨ ∼= lim

←−
n∈N

(ExtrR(R/J
n, KR)∨).

Combining these isomorphisms we finish the proof of the theorem. �

Remark 5.5. It is natural to ask whether there is a functorial isomorphism

Hd−im, J (R)̂J ∼= H
i
J (KR)

∨.

for any integer i.
This is however not true in general. For example, let R = k[[X, Y , Z,W ]], and J = (X, Y ) ∩ (Z,W ). Then it is easy to see

that H3J (R) = H
4
m(R) = ER(R/m), but H

1
m, J(R) = 0. Thus H

1
m, J(R)̂J 6∼= H

3
J (R)

∨.

Proposition 5.6. Let R be a Cohen–Macaulay local ring of dimension d with canonical module KR. Assume that J is a perfect ideal
of grade t. Then the following equality holds.

Ass(Hd−tm, J (KR)) = {p ∈ W (m, J) | htp = d− t}.
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Proof. Let E• be a minimal injective resolution of the R-module KR. Then it is known that E i =
⊕

htp=i
p∈SpecR

E(R/p), hence

Γm, J(E i) =
⊕

htp=i
p∈W (m, J)

E(R/p). Therefore by Lemma 5.2, there is a short exact sequence

0→ Hd−tm, J (KR)→
⊕
htp=d−t
p∈W (m, J)

E(R/p)→
⊕

htp=d−t+1
p∈W (m, J)

E(R/p).

This implies that Ass(Hd−tm, J (KR)) ⊆ {p ∈ W (m, J) | htp = d− t}. Conversely, let p ∈ W (m, J) be a prime with htp = d− t .
Then by the above exact sequence, we see

(Hd−tm, J (KR))p = ERp(κ(p)) ⊇ κ(p).

Therefore p ∈ Ass(Hd−tm, J (KR)). �

We recall that the generalized local cohomology in the sense [9] is defined as

H iJ (M,N) = lim−→
n

ExtiR(M/J
nM,N),

for R-modulesM and N , and for i ≥ 0.

Theorem 5.7. Let (R,m) be a Gorenstein local ring of dimension d, which is J-adically complete. Then there is an isomorphism

Γm, J(M) ∼= HdJ (M, R)
∨,

for any finitely generated R-module M.

Proof. From the definition and the local duality theorem we have the following isomorphisms and inclusion.

HdJ (M, R)
∨
= (lim
−→
n

ExtdR(M/J
nM, R))∨

∼= lim
←−

Γm(M/JnM)

↪→ lim
←−
M/JnM

∼= M.

We would like to show that the image of the composite map f : HdJ (M, R)
∨ ↪→ M above is equal to Γm, J(M).

Let y ∈ Imf . Applying the Artin–Rees lemma, we see that JmM ∩ Ry ⊆ Jy for some integer m > 0. On the other hand, it
follows from the choice of y that the image of y inM/JnM belongs to Γm(M/JnM) for each n > 0. Hence we havem`y ⊆ JmM
for some ` > 0. Thus we get m`y ⊆ JmM ∩ Ry ⊆ Jy, that is, y ∈ Γm, J(M).
Conversely, let y ∈ Γm, J(M). Then mmy ⊆ Jy for an integer m > 0. Hence we have mmny ⊆ Jny ⊆ JnM for any n > 0.

Therefore for each n > 0 the image of y inM/JnM belongs to Γm(M/JnM), which says that y ∈ Imf . �

Before proving further results, we make a number of preparatory remarks about the local cohomologies of the canonical
dual of a module.
Suppose that R admits the dualizing complex DR. We denote by KM the canonical module of an R-module M , which is

defined to be

KM = Hd−r(RHomR(M,DR)),

where d = dim R and r = dimM . Note that in case R is a Gorenstein ring we have KM = Extd−rR (M, R). Therefore if R is
Gorenstein and if r = d, then KM equals the ordinary dualM∗ = HomR(M, R).
Remember that for an integer n ≥ 0, we say thatM satisfies the condition (Sn) provided

depthRpMp ≥ inf{n, dimRp Mp}

for all p ∈ Spec(R)

Lemma 5.8. Let R be a Gorenstein local ring of dimension d, and M a finitely generated R-module of dimension r. Suppose that
AssRM = AsshRM and that M satisfies (Sn+1) for some n ≥ 0. Then there is an isomorphism

Hr−iJ (KM) ∼= Hd−iJ (M, R)

for all 0 ≤ i ≤ n.

Proof. Since a module satisfying (Si) also satisfies (Si−1), it is enough to show that Hr−nJ (KM) ∼= Hd−nJ (M, R). Note that
gradeRM = d − r . Take a maximal R-sequence y = y1, y2, . . . , yd−r in AnnRM . Replacing R by R/yR, we may assume that
r = d.
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Let S = R n M be the trivial extension of R by M . Since S is isomorphic to R ⊕ M as an R-module, KS is isomorphic to
KR ⊕ KM as an R-module. This induces natural isomorphisms{

Hd−nJ (KS) ∼= Hd−nJ (R)⊕ Hd−nJ (KM),
Hd−nJ (S, R) ∼= Hd−nJ (R)⊕ Hd−nJ (M, R).

Thus we have to only show that Hd−nJ (KS) ∼= Hd−nJ (S, R).
There are isomorphisms

Hd−nJ (S, R) = lim
−→
k

Extd−nR (S/JkS, R)

∼= lim
−→
k

Extd−nS (S/JkS,RHomR(S, R))

∼= lim
−→
k

Extd−nS (S/JkS,DS)

= Hd−nJ (DS).

There is a chain map Hd−nJ (KS)→ Hd−nJ (DS) induced by the augmentation KS = H0(DS)→ DS . We have to show that this
map is an isomorphism. Since we have a spectral sequence

Epq2 = H
p
J (H

q(DS))⇒ H
p+q
J (DS),

it suffices to show that dimR Ext
q
R(S, R) < d− n− q for any q > 0.

Let us show that the R-module S satisfies (Sn+1). Take p ∈ SuppR S. We want to prove depthRpSp ≥ inf{n + 1, dimRp Sp}.
Because Sp ∼= Rp⊕Mp as an Rp-module, we have depthRpSp = inf{depth Rp, depthRpMp} = depthRpMp ≥ inf{n+1, dimRp Mp}.
It is easy to see that dimRp Sp = dim Rp = dimRp Mp since AssRM = AsshRM and dimRM = r = d. Thus S satisfies (Sn+1).
Suppose that dimR Ext

q
R(S, R) ≥ d − n − q for some q > 0. Then there exists p ∈ SuppRExt

q
R(S, R) such that

dim R/p ≥ d − n − q. Hence we have ExtqRp(Sp, Rp) 6= 0 and htp ≤ n + q. The local duality theorem yields an

isomorphism Hhtp−qpRp (Sp) ∼= ExtqRp(Sp, Rp)
∨
6= 0, and so depthRpSp ≤ htp − q ≤ n. Since S satisfies (Sn+1), we have

depthRpSp = dimRp Sp = dim Rp = htp. Therefore we must have q ≤ 0, a contradiction. This contradiction completes
the proof of the lemma. �

Let R be a Gorenstein local ring of dimension d, J an ideal of R, andM a finitely generated R-module of dimension r . Then
we have KM = Extd−rR (M, R). Thus it is easy to see that dim KM = dimM = r and AssKM = AsshKM . Moreover, KM satisfies
(S2). Hence by Lemma 5.8, we obtain

Hr−iJ (KKM ) ∼= H
d−i
J (KM , R)

for i = 0, 1. On the other hand, the following lemma holds.

Lemma 5.9. Let R be a local ring having the dualizing complex DR, and let M be a finitely generated R-module of dimension r.
Then

HrJ (KKM ) ∼= H
r
J (M).

Proof. In virtue of [13, Theorem1.2] we can take a Gorenstein ring A of dimension r with a surjective ring homomorphism
φ : A → R/AnnM . Replacing R (resp. J) with A (resp. φ−1(J(R/AnnM))), we may assume that R is an r-dimensional
Gorenstein local ring. Then we have KM ∼= M∗ and KKM ∼= M

∗∗, where (−)∗ = HomR(−, R). Let f : M → M∗∗ be the
natural homomorphism. It follows from [1, Proposition2.6] that Ker f ∼= Ext1R(trM, R) and Coker f ∼= Ext

2
R(trM, R), where

trM denotes the Auslander transpose ofM . It is easily seen that dimR ExtiR(X, R) ≤ r − i for any finitely generated R-module
X and i ≥ 0. Hence dim (Ker f ) ≤ r − 1 and dim (Coker f ) ≤ r − 2. From this one sees that the induced homomorphism
HrJ (f ) : H

r
J (M)→ HrJ (M

∗∗) is an isomorphism. �

Combining the isomorphisms given in Lemmas 5.8 and 5.9, we conclude that the following corollary holds.

Corollary 5.10. Let R be a Gorenstein local ring of dimension d, and let M be a finitely generated R-module of dimension r. Then
there is an isomorphism

HrJ (M) ∼= H
d
J (KM , R).

Now we shall show the following theorem, which is essentially shown in [18]. We should note that it holds without
assuming that the local ring R is Gorenstein.
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Theorem 5.11. Let (R,m) be a complete local ring and let M be a finitely generated R-module of dimension r. Then we have an
isomorphism

HrJ (M)
∨ ∼= Γm, J(KM).

Proof. Since R is a complete local ring, there exists a Gorenstein complete local ring S of dim S = dim R = dwith a surjective
ring homomorphism φ : S → R. Set a = φ−1(J). Let us denote themaximal ideal of S by n. Note that S is a-adically complete
as well. Thus we can apply Corollary 5.10, Theorems 5.7 and 2.7, and we obtain the following isomorphisms.

HrJ (M)
∨
= HomR(Hra(M), ER(R/m))
∼= HomS(Hra(M), ES(S/n))
∼= HomS(Hda (KM , S), ES(S/n)) (by Corollary 5.10)
∼= Γn,a(KM) (by Theorem 5.7)
∼= Γm, J(KM) (by Theorem 2.7). �

Corollary 5.12. As in the previous theorem, let (R,m) be a complete local ring and let M be a finitely generated R-module of
dimension r. Then we have an isomorphism

Hrm, J(M)
∨
= ΓJ(KM).

Proof. We know from Proposition 3.4 that the equality

ΓJ(KM) = lim
←−

I∈W̃ (m, J)

Γm,I(KM)

holds. Therefore it follows from the previous theorem that

ΓJ(KM) = lim
←−

I∈W̃ (m, J)

(
HrI (M)

∨
)
=

 lim
−→

I∈W̃ (m, J)

HrI (M)

∨ .
The last module is isomorphic to Hrm, J(M)

∨ by Theorem 3.2. �

6. Derived functors on derived categories

We denote by Db(R) the derived category consisting of all bounded complexes over R. The left exact functor ΓI, J defined
on the category of R-modules induces the right derived functor RΓ I, J : Db(R) → Db(R). In this section we show several
isomorphisms between functors involving RΓ I, J .

Lemma 6.1. Let X, Y ∈ Db(R). Then there are natural isomorphisms in Db(R).

X ⊗L
R RΓ I, J(Y ) ∼= RΓ I, J(X ⊗L

R Y ) ∼= RΓ I, J(X)⊗L
R Y .

Proof. Let a be a sequence of elements of Rwhich generate I . Then all these complexes are isomorphic to X ⊗L
R(Ca, J ⊗

L
R Y ) ∼=

Ca, J ⊗L
R(X ⊗

L
R Y ) ∼= (Ca, J ⊗

L
R X)⊗

L
R Y . �

Theorem 6.2. Let (R,m) be a d-dimensional complete local ring admitting the dualizing complex DR, and let X be a bounded
R-complex with finitely generated homologies. Suppose that J ⊆

√
I , then there is an isomorphism

RΓ I(X) ∼= RΓ I(RΓ m, J(RHom(X,DR))∨)[−d].

Proof. Since RHom(X,DR) is a bounded R-complex with finitely generated homologies and X ∼= RHom(RHom(X,DR),DR),
it is enough to show that

RΓ I(RHom(X,DR)) ∼= RΓ I(RΓ m, J(X)∨)[−d].

Note from the local duality theorem that there is an isomorphism RHom(X,DR)[d] ∼= RΓ m(X)∨ in Db(R). Therefore we have
to only show that

RΓ I(RΓ m(X)∨) ∼= RΓ I(RΓ m, J(X)∨).



598 R. Takahashi et al. / Journal of Pure and Applied Algebra 213 (2009) 582–600

From the definition of RΓ I we have an isomorphism

RΓ I(RΓ m(X)∨) ∼= lim
−→
n

RHom(R/In,RΓ m(X)∨)

∼= lim
−→
n

((R/In ⊗L
R RΓ m(X))∨),

and similarly

RΓ I(RΓ m, J(X)∨) ∼= lim
−→
n

((R/In ⊗L
R RΓ m,J(X))∨).

Thus the proof will be completed if we show that there is a natural isomorphism

R/In⊗L
R RΓ m(X) ∼= R/In⊗L

R RΓ m,J(X).

In virtue of Lemma 6.1, this is equivalent to

RΓ m(R/In)⊗L
R X ∼= RΓ m, J(R/In)⊗L

R X .

Therefore it is enough to show that RΓ m(R/In) ∼= RΓ m, J(R/In). But this is trivial, since R/In is a J-torsion module. �

Theorem 6.3. Let (R,m) be a d-dimensional complete local ring with dualizing complex DR, and let X be a bounded R-complex
with finitely generated homologies. Then there is an isomorphism

RΓ m, J(X) ∼= RΓ m, J(RΓ J(RHom(X,DR))∨)[−d].

Proof. Similarly as in the proof of Theorem 6.2, it is enough to show that

RΓ m, J(RΓ m(X)∨) ∼= RΓ m, J(RΓ J(X)∨).

For each ideal I ∈ W̃ (m, J) and for an integer n ≥ 1, we have the following isomorphisms hold by Lemma 6.1.

R/In⊗L
R RΓ J(X) ∼= RΓ J(R/In)⊗L

R X
∼= RΓ I+J(R/In)⊗L

R X
∼= RΓ m(R/In)⊗L

R X
∼= R/In⊗L

R RΓ m(X).

Hence,

RHom(R/In,RΓ J(X)∨) ∼= (R/In⊗L
R RΓ J(X))

∨

∼= (R/In⊗L
R RΓ m(X))∨

∼= RHom(R/In,RΓ m(X)∨).

Applying the functor lim −→

I∈W̃ (m, J)
(lim −→

n∈N
(−)), we see from Theorem 3.2 that

RΓ m, J(RΓ J(X)∨) ∼= RΓ m, J(RΓ m(X)∨). �

As a natural extension of terminology, we say that a complex X ∈ Db(R) is (I, J)-torsion if RΓ I, J(X) = X .

Corollary 6.4. Let (R,m) be a complete local ring with dualizing complex DR, and let X be a bounded R-complex with finitely
generated homologies.

(1) If X is a J-torsion, then X ∼= RΓ J(RΓ m, J(X∨)∨).
(2) If X is an (m, J)-torsion, then X ∼= RΓ m, J(RΓ J(X∨)∨).

Proof. (1) Since X is J-torsion, it follows from Theorem 6.2 that

X = RΓ J(X) ∼= RΓ J(RΓ m, J(RHom(X,DR))∨)[−d],

where, by Theorem 6.3,

RΓ m, J(RHom(X,DR)) ∼= RΓ m, J(RΓ J(X)∨)[−d] = RΓ m, J(X∨)[−d].

Thus claim (1) follows.
(2) Since X is (m, J)-torsion, it holds that

X = RΓ m, J(X) ∼= RΓ m, J(RΓ J(RHom(X,DR))∨)[−d].
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On the other hand we have from Theorem 6.2 that

RΓ J(RHom(X,D)) ∼= RΓ J(RΓ m, J(X)∨)[−d] = RΓ J(X∨)[−d]. �

Lemma 6.5. Let M be an (I, J)-torsion R-module, and let X be a left bounded R-complex. Then there is an isomorphism

RHom(M, X) ∼= RHom(M,RΓ I, J(X)).

Proof. Let E be an injective resolution of a complex X . We will show that Hom(M, E i) = Hom(M,ΓI, J(E i)). Let f ∈
Hom(M, E i) and x ∈ M . SinceM is (I, J)-torsion, there exists an integern ≥ 0 such that Inx ⊆ Jx. Thuswehave Inf (x) ⊆ Jf (x),
thus f (x) ∈ ΓI, J(E i). This shows that Imf ⊆ ΓI, J(E i). Therefore it holds that

RHom(M, X) ∼= Hom(M, E)
= Hom(M,ΓI, J(E))
∼= RHom(M,RΓ I,J(X)). �

Proposition 6.6. Let R be a d-dimensional Gorenstein complete local ring with maximal ideal m, and J be an ideal of R with
htJ = r. Then

Ass(Hd−rm, J (R)
∨) ∩ V (J) = Min(R/J) = Ass(HrJ (R)).

Proof. Let p ∈ V (J). By Theorem 6.2 and Lemma 6.5, it holds that

RHom(R/p, R) ∼= RHom(R/p,RΓ J(R))
∼= RHom(R/p,RΓ J(RΓ m, J(R)∨[−d]))
∼= RHom(R/p,RΓ m, J(R)∨)[−d].

Thus there is a spectral sequence

ExtpR(R/p,H
q
m, J(R)

∨)⇒ Extp−q+dR (R/p, R).

Since H im, J(R) = 0 for i > d− r , we see from this spectral sequence that

Hom(R/p,Hd−rm, J (R)
∨) = ExtrR(R/p, R).

This shows that p ∈ Ass(Hd−rm, J (R)
∨) if and only if ExtrR(R/p, R)p 6= 0 if and only if htp = r . The first equality in the proposition

follows from this, and the second can be proved in a similar manner. �

Proposition 6.7. Let R be a d-dimensional complete Gorenstein local ring with maximal ideal m. Then

Ass(HdJ (R)
∨) ∩W (m, J) = Ass(Γm, J(R)).

Proof. Let p ∈ W (m, J). By Theorem 6.3 and Lemma 6.5, it holds that

RHom(R/p, R) ∼= RHom(R/p,RΓ m,J(R))
∼= RHom(R/p,RΓ m, J(RΓ J(R)∨)[−d])
∼= RHom(R/p,RΓ J(R)∨)[−d].

Thus there are spectral sequences{
ExtpR(R/p,H

q
m, J(R))⇒ Ext

p+q
R (R/p, R), and

ExtpR(R/p,H
q
J (R)

∨)⇒ Extp−q+dR (R/p, R).

The first spectral sequence induces HomR(R/p,Γm, J(R)) ∼= HomR(R/p, R), and the second induces HomR(R/p,HdJ (R)
∨) =

HomR(R/p, R), since H
q
J (R) = 0 for q > d. Thus we have shown

HomR(R/p,Γm, J(R))p = HomR(R/p,HdJ (R)
∨)p,

for any p ∈ W (m, J). Since Ass(Γm, J(R)) ⊆ W (m, J), the proposition follows. �



600 R. Takahashi et al. / Journal of Pure and Applied Algebra 213 (2009) 582–600

Acknowledgments

The authors express their gratitude to Kazuhide Kakizaki. The discussion presented in the first section of this paper
is actually based on his master thesis at Okayama University, which was reported by him at the 24th Symposium on
Commutative Ring Theory in Japan. As concerns this, see the monographs [11] and [12].

References

[1] M. Auslander, M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969).
[2] H. Brenner, Grothendieck topologies and ideal closure operations. http://arxiv.org/abs/math.AG/0612471.
[3] M.P. Brodmann, R.Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, 1998.
[4] W. Bruns, J. Herzog, Cohen–Macaulay Rings, Revised Version, Cambridge University Press, 1998.
[5] H.-B. Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979) 149–172.
[6] J.P.C. Greenlees, J.P. May, Derived functors of I-adic completion and local homology, J. Algebra 149 (2) (1992) 438–453.
[7] A. Grothendieck, Local Cohomology, in: Lecture Notes in Mathematics, vol. 41, Springer, 1967.
[8] R. Hartshorne, Residues and Duality, in: Lecture Notes in Mathematics, vol. 20, Springer, 1966.
[9] J. Herzog, Komplexe. Auflösungen und dualitat in der lokalen Algebra, Habilitationsschritf, Universität Regensburg, 1970.
[10] M. Hochster, The equicharacteristic case of some homological conjectures on local rings, Bull. Amer. Math. Soc. 80 (1974) 683–686.
[11] K. Kakizaki, R. Takahashi, Y. Yoshino, On vanishing of local cohomology modules and the Lichtenbaum–Hartshorne theorem Part I, in: Proceedings of

the 24th Symposium on Commutative Ring Theory, 2002, pp. 78–83 (Japanese).
[12] K. Kakizaki, R. Takahashi, Y. Yoshino, On vanishing of local cohomology modules and the Lichtenbaum–Hartshorne theorem Part II, in: Proceedings

of the 24th Symposium on Commutative Ring Theory, 2002, pp. 84–90.
[13] T. Kawasaki, On Macaulayfication of Noetherian schemes, Trans. Amer. Math. Soc. 352 (2000) 2517–2552.
[14] H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986.
[15] K. Divaani-Aazar, R. Naghipour,M. Tousi, The Lichtenbaum–Hartshorne theorem for generalized local cohomology and connectedness, Comm. Algebra

30 (8) (2002) 3687–3702.
[16] C. Peskine, L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S. 42 (1972) 47–119.
[17] P. Roberts, Le théorème d’intersection, C. R. Acad. Sc. Paris Sér. I Math. 304 (1987) 177–180.
[18] P. Schenzel, Explicit computations around the Lichtenbaum–Hartshorne vanishing theorem, Manuscripta Math. 78 (1) (1993) 57–68.

http://arxiv.org/abs/math.AG/0612471

	Local cohomology based on a nonclosed support defined by a pair of ideals
	Introduction
	Definition and basic properties
	Čech complexes
	Relations between  HIi  and  HI, Ji 
	Vanishing and nonvanishing theorems
	The Local duality theorem and other functorial isomorphisms
	Derived functors on derived categories
	Acknowledgments
	References


