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Abstract

We develop general results on centroids of Lie algebras and apply them to determine the centroid
of extended affine Lie algebras, loop-like and Kac-Moody Lie algebras, and Lie algebras graded by
finite root systems.
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1. Introduction

Our main focus will be on centroids of Lie algebras. WhenL is a Lie algebra, the centroid
Cent(L) is just the space of L-module homomorphisms � on L : �([x, y]) = [x, �(y)]
for all x, y ∈ L, (viewing L as an L-module under the adjoint action). Our interest
in the centroid stems from investigations of extended affine Lie algebras (see [1]). These
Lie algebras are natural generalizations of the affine and toroidal Lie algebras, which have
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played such a critical role in many different areas of mathematics and physics. Their root
systems (the so-called extended affine root systems) feature prominently in the work of Saito
([29,30]) and Slodowy [32] on singularities. In the classification of the extended affine Lie
algebras, elements of the centroid are essential in constructing the portion of the algebra
that lies outside of the core (see for example, [24]). This is the part of the extended affine Lie
algebra E that is nondegenerately paired with the centre under the invariant bilinear form
on E. Thus, results on the centroid are a key ingredient in the classification of extended
affine Lie algebras.

The centroid also plays an important role in understanding forms of an algebra: All scalar
extensions of a simple algebra remain simple if and only if its centroid just consists of the
scalars in the base field. In particular, for finite-dimensional simple associative algebras, the
centroid is critical in investigating Brauer groups and division algebras. Another area where
the centroid occurs naturally is in the study of derivations of an algebra. If � ∈ Cent(A)

and � is a derivation of A, then �� is also a derivation of A, so centroidal transformations
can be used to construct derivations of an algebra.

We will develop general results, extending some earlier work of other authors, and then
apply them to determine the centroid of several families of (mostly infinite-dimensional)
Lie algebras: tensor product and in particular loop-like algebras (Proposition 2.19, Remark
2.24), centreless Lie tori (Proposition 3.13), extended affine Lie algebras (Corollary 4.13),
Lie algebras graded by finite root systems (Theorems 5.15 and 5.18), and Kac-Moody Lie
algebras (Corollary 3.5), which are distinguished because of their substantial applications
in a diverse array of subjects.

2. Centroids of algebras

2.1. Some general results

We begin with a little background on centroids for arbitrary (not necessarily Lie, asso-
ciative, etc.) algebras A. Proofs of the results quoted here can be found for example in [17,
X.1] for finite-dimensional algebras and in [20, II, 1.6, 1.7] in general.

It is natural and important for our approach to centroids to consider algebras over a unital
commutative associative ring, (for example, a perfect algebra A over its centroid, which
may not be a field unless A is simple). Thus, let A be an arbitrary algebra over a unital
commutative associative ring K. The centroid of A is the space of K-linear transformations
on A given by Cent(A) = {� ∈ EndK(A) | �(ab) = a�(b) = �(a)b for all a, b ∈ A}. We
will write CentK(A) for Cent(A) if it is important to emphasize the dependence on K.
Clearly, Cent(A) is simply the centralizer algebra of the multiplication algebra Mult(A)=
MultK(A), the unital subalgebra of EndK(A) generated by the left and multiplication
operators of A. The centroid is always a subalgebra of the associative algebra EndK(A).

For a, b, c ∈ A, their associator is defined as (a, b, c) = (ab)c − a(bc). The centre of
A consists of all z ∈ A satisfying za = az and (a, b, z) = (a, z, b) = (z, a, b) = 0 for all
a, b ∈ A. The centre is always a commutative associative subalgebra of A. Moreover, if
A has an identity element 1, then Cent(A) → A, � �→ �(1), is an algebra isomorphism
between the centroid and the centre of A. We denote by A(1) the K-span of all products
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ab for a, b ∈ A. If A is perfect, (i.e., A equals A(1)), then the centroid is necessarily
commutative, as ��(ab) = �(�(a)b) = �(a)�(b) = �(a�(b)) = ��(ab) holds for all a, b ∈
A, �, � ∈ Cent(A). If Cent(A) is commutative, we may regard A as an algebra over its
centroid, �a =a� and �(ab)= (�a)b =a(�b) for all a, b ∈ A, � ∈ Cent(A). If A is prime
in the sense that A has no nonzero ideals I, J with IJ = 0, then Cent(A) is an integral
domain and A is a torsion-free Cent(A)-module. If A is simple, i.e., A(1) �= 0 and the
only ideals of A are 0 and A, then Cent(A) must be a field by Schur’s Lemma. When
the centroid of an algebra coincides with the base ring K (more precisely, it equals K id),
the algebra is said to be central, and in the special case of a simple algebra, it is said to be
central simple. Every simple algebra is central simple over its centroid.

For any subset B of A, the annihilator of B in A is AnnA(B)={z ∈ A | zB=0=Bz}.
Any K-submodule of A containing A(1) or contained in AnnA(A) is an ideal of A. If A
is a Lie algebra, we follow the usual convention of denoting the product of a, b ∈ A by
[a, b]. In this case, AnnA(B) is simply the centralizer CA(B) = {z ∈ A | [z,B] = 0} of
B in A. In particular, AnnA(A)=Z(A), the usual centre of A, which coincides with the
general definition of the centre as given above if 1

2 ∈ K. Let Der(A) denote the algebra
DerK(A) of K-linear derivations of an algebra A. Then we have the following basic facts:

Lemma 2.1. Let A be an algebra over a unital commutative associative ring K and let B
be a subset of A.

(a) AnnA(B) is invariant under Cent(A), as is any perfect ideal of A.
(b) For any Cent(A)-invariant ideal B of A, the vanishing ideal

V(B) := {� ∈ Cent(A) | �(B) = 0}
is isomorphic to HomA/B(A/B, AnnA(B)), which is the set of K-linear maps f :
A/B → AnnA(B) satisfying f (xy) = f (x)y = xf (y) for all x, y ∈ A/B, where
A/B × AnnA(B) → A is defined by (a + B)z = az and similarly for AnnA(B) ×
A/B → A. In particular, if Cent(B) = K id, then

Cent(A) = K id ⊕ V(B). (2.2)

(c)

Cent(A) ∩ Der(A) = {� ∈ EndK(A) |A(1) ⊆ ker �, im � ⊆ AnnA(A)},
= {� ∈ Cent(A) |A(1) ⊆ ker �} = V(A(1)),

= {� ∈ Der(A) | im � ⊆ AnnA(A)},
� HomA/A(1) (A/A(1), AnnA(A))

� HomK(A/A(1), AnnA(A)).

(d) A is indecomposable (cannot be written as the direct sum of two nontrivial ideals, or
equivalently, is an indecomposable Mult(A)-module) if and only if Cent(A) does not
contain idempotents �= 0, id.

(e) Suppose A is an indecomposable Mult(A)-module of finite length n, and denote by
rad Cent(A) the Jacobson radical of Cent(A). Then Cent(A) is a local ring, i.e.,
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Cent(A)/rad Cent(A) is a division ring (see for example, [19, Section 19]), and
(rad Cent(A))n =0. Thus, rad Cent(A) is nilpotent and coincides with the set of nilpo-
tent transformations in Cent(A). In particular, if A is a finite-dimensional indecom-
posable algebra over a perfect field F then there exists a division algebraD over F such
that Cent(A) =D id ⊕ rad Cent(A).

(f) If A is perfect, every � ∈ Cent(A) is symmetric with respect to any invariant form on
A.

Proof. (a)–(d) are straightforward. Part (d) can be found in [21, Section 1] for Lie alge-
bras or in [28, Lemma 1] for more general algebras, where a description of Cent(A) for
decomposable A is also given.

(e) Since Cent(A) consists of the Mult(A)-module endomorphisms ofA, the first part of
(e) follows from [19, Theorem 19.17]. Under the assumptions of the second part we know
that Cent(A) is a local F-algebra. The claim then follows from Wedderburn’s principal
theorem.

(f) Let (|) be an invariant K-bilinear form on A, so that (ab | c)= (a | bc) for all a, b, c ∈
A, and let � ∈ Cent(A). Then (�(ab) | c)=(a�(b) | c)=(a | �(b)c)=(a | b�(c))=(ab | �(c))

for all a, b, c ∈ A. �

Remark 2.3. Let L be a Lie algebra over a field F. A derivation from L to an L-module
M is an F-linear map � : L → M such that �([x, y]) = x.�(y) − y.�(x) for all x, y ∈ L.
The space Der(L,M) of such derivations contains the inner derivations IDer(L,M) =
{�m |m ∈ M}, where �m(x) = x.m for all x ∈ L. Then the first cohomology group of L
with values inM is the quotient H1(L,M) := Der(L,M)/IDer(L,M) (see for example,
[14, Chapter I, Section 3, Example 12] or [17, Chapter V.6]). Now for any Lie algebra L,
an idealM of L is an L-module under the adjoint action. Examples of Cent(L)-invariant
ideals are the centre Z(L) and all the ideals in the derived series, lower (descending)
central series, and ascending central series of L. In particular if M = Z(L), we have
IDer(L, Z(L)) = 0. Thus H1(L, Z(L)) = Der(L, Z(L)), and by Lemma 2.1, we have
a canonical identification

H1(L, Z(L)) = {� ∈ EndF(L) | [�(L),L] = 0 = �(L(1))} = V(L(1)),

� HomF(L/L(1), Z(L)) (2.4)

as Cent(L)-modules.

Example 2.5. For any Lie algebra L over a field F,

V(L(1)) = {� ∈ EndF(L) | [�(L),L] = 0 = �(L(1))},
as in (2.4). Thus, if Z(L) �= 0 and L �= L(1), we have

F id�F id ⊕ V(L(1)) ⊆ CentF(L).

So in order for L to be central, a necessary condition is that Z(L) = 0 or L is perfect.
Later results (Corollaries 3.4 and 4.13) will treat various classes of Lie algebras for which
F id�F id ⊕ V(L(1)) = Cent(L). Heisenberg Lie algebras provide easy examples of this
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phenomenon. A Heisenberg Lie algebra H has a basis {ai, bi | i ∈ I} ∪ {c}, such that
[ai, bj ] = �i,j c, [ai, aj ] = 0 = [bi, bj ], and [H, c] = 0, where �i,j is the Kronecker delta.
By (2.2) applied to B = H(1) = Z(H),

Cent(H) = F id ⊕ V(H(1)).

For nilpotent Lie algebras (in particular, for L = H), V(L(1)) �= 0, but it may
well be that F id ⊕ V(L(1))�Cent(L) for an arbitrary nilpotent Lie algebra (see [21,
Proposition 2.7]).

Remark 2.6. Indecomposable Lie algebras L having a small centroid, i.e. those for which
Cent(L) = F id ⊕ V(L(1)), have been investigated by Melville [21] and Ponomarëv [28]
under certain assumptions (e.g. in [21], when L is finite-dimensional).

Lemma 2.7. Let � : A → B be an epimorphism of K-algebras. For every f ∈ EndK(A;
ker �) := {g ∈ EndK(A) | g(ker �) ⊆ ker �}, there exists a unique f̄ ∈ EndK(B) satisfy-
ing � ◦ f = f̄ ◦ �. Moreover the following hold:

(a) The map

�End : EndK(A; ker �) → EndK(B), f �→ f̄

is a unital algebra homomorphism with the following properties:

�End(Mult(A)) = Mult(B), (2.8)

�End(Cent(A) ∩ EndK(A; ker �)) ⊆ Cent(B). (2.9)

By restriction, there is an algebra homomorphism

�Cent : (Cent(A) ∩ EndK(A; ker �)) → Cent(B), f �→ f̄ . (2.10)

If ker � = AnnA(A), every � ∈ Cent(A) leaves ker � invariant, and hence �Cent is
defined on all of Cent(A).

(b) Suppose A is perfect and ker � ⊆ AnnA(A). Then

�Cent : (Cent(A) ∩ EndK(A; ker �)) → Cent(B), f �→ f̄ (2.11)

is injective.
(c) If A is perfect, AnnB(B) = 0 and ker � ⊆ AnnA(A), then �Cent : Cent(A) →

Cent(B) is an algebra monomorphism.

The main application of this lemma will be to Lie algebras. In this case, an epimorphism
� : A → B with ker � ⊆ Z(A) is nothing but a central extension, see Section 4 for more
on central extensions and centroids.

Proof. (a) That �End is an algebra homomorphism is well-known and easily seen. Since
ker � is an ideal, all left and right multiplication operators ofA leave ker � invariant, whence
Mult(A) ⊆ EndK(A; ker �). Also, for the left multiplication operator Lx on A we have



122 G. Benkart, E. Neher / Journal of Pure and Applied Algebra 205 (2006) 117–145

� ◦ Lx = L�(x) ◦ � which shows �End(Lx) = L�(x). Since the analogous formula holds for
the right multiplication operators and since �End is an algebra epimorphism, we have (2.8).
Let � ∈ Cent(A)∩EndK(A; ker �). Then for x, y ∈ A, we have �̄(�(x)�(y))= �̄�(xy)=
��(xy)= �(x�(y))= �(x)(�̄�(y))= �(�(x)y)= �̄(�(x))�(y), which proves �̄ ∈ Cent(B).

(b) If �̄ = 0 for � ∈ Cent(A) ∩ EndK(A; ker �)), then �(A) ⊆ ker � ⊆ AnnA(A). So
�(xy) = �(x)y = 0 for all x, y ∈ A, and because A is perfect, it must be that � = 0.

(c) It follows readily from �(AnnA(A)) ⊆ AnnB(B) = 0 that ker � = AnnA(A). By
(a), �Cent : Cent(A) → Cent(B) is then a well-defined algebra homomorphism, which is
injective by (b). �

2.2. Centroids of graded algebras

We recall some concepts and results from the theory of graded algebras and graded
modules ([13, Section 11]).

Definition 2.12. (1) Let � be an abelian group written additively. An algebra A over some
base ring K is said to be �-graded if A= ⊕

�∈� A� is a direct sum of K-submodules A�

satisfying A�A� ⊆ A�+� for all �, � ∈ �. In this case, suppA = {� ∈ � |A� �= 0} is
called the support of A, and the elements of A� are said to be homogeneous of degree �. A
subalgebra (or ideal) B of A is graded if B= ⊕

�∈� (B∩A�). Then A is graded-simple
if A(1) �= 0, and every graded ideal B of A is trivial, i.e., B = 0 or B = A.

(2) A �-graded unital associative algebra A is said to be a division-graded algebra if
every nonzero homogeneous element of A is invertible.

When A is a division-graded associative algebra, suppA is a subgroup of �; A0 is
division algebra; and A is a crossed product algebra A=A0 ∗ suppA. Conversely, every
crossed product algebra over a division algebra is a division-graded associative algebra. In
particular, a commutative associative division-graded algebra A is the same as a twisted
group ring Et [suppA] for E = A0 (see for example, [26, Section 1]).

Now let B be a �-graded unital associative K-algebra. A left B-module M is �-graded
if M is a direct sum of K-submodules, M= ⊕

�∈� M�, such that B�M� ⊆ M�+� for all
�, � ∈ �. In this case, we denote by EndB(M)� the K-submodule of all f ∈ EndB(M)

satisfying fM� ⊆ M�+� for all � ∈ �. The (internal) sum of the subspaces EndB(M)� is
direct, and we set

grEndB(M) =
⊕
�∈�

EndB(M)�.

This is a �-graded associative subalgebra of EndB(M) such that M is canonically a �-
graded left module over grEndB(M). In general grEndB(M) is a proper subalgebra of
EndB(M). However, the following is proven in [13, Section 11.6, Remark]:

Lemma 2.13. If M is a finitely generated graded B-module, then grEndB(M) =
EndB(M).
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A �-graded B-module M is graded-irreducible if the only graded B-submodules
N = ⊕

�∈� (N ∩ M�) are the trivial submodules N = 0 and N = M. A straightfor-
ward adaptation of the usual proof of Schur’s Lemma gives the graded version below, in
which the equality EndB(M) = grEndB(M) follows from Lemma 2.13.

Lemma 2.14. Let B be a �-graded associative algebra and let M be a �-graded B-
module which is graded-irreducible. Then EndB(M) = grEndB(M) is a division-graded
algebra.

We now apply the above to a �-graded algebra A over K. The multiplication algebra
Mult(A) is a graded subalgebra of the �-graded algebra grEndKA, and A is a �-graded
Mult(A)-module. Then since Cent(A) = EndMult(A)A, we have

grCent(A) = grEndMult(A)A =
⊕
�∈�

Cent(A)� where

Cent(A)� = Cent(A) ∩ EndK(A)�.

By Lemma 2.13 we see that

grCent(A) = Cent(A) if A is a finitely generated Mult(A)-module. (2.15)

The graded version of Schur’s Lemma now yields the following result:

Proposition 2.16. Let A be a �-graded K-algebra that is graded-simple. Then
grCent(A)=Cent(A) is a division-graded commutative associative algebra, i.e., a twisted
group ring Et [�] over an extension field E=Cent(A)0 of K where �={� ∈ � | Cent(A)� �=
0} is a subgroup of �. Moreover, for every nonzero homogeneous a ∈ A, the evaluation
map

eva : Cent(A) → A, � �→ �(a)

is injective and has degree equal to the degree of a.

Proof. By assumption,A is a graded-irreducible Mult(A)-module. From Lemma 2.14, we
know that grCent(A)=Cent(A) is a division-graded associative algebra. It is commutative,
since A(1) is a graded ideal and hence A is perfect. The map eva is injective since the
Mult(A)-submodule generated by a is all of A, i.e., Mult(A).a = A. �

2.3. Centroids of tensor products and loop algebras

In the following all tensor products will be over a unital commutative associative ring
K. Let A and B be K-algebras. There exists a unique K-algebra structure on A ⊗ B
satisfying (a1 ⊗ b1)(a2 ⊗ b2) = (a1a2) ⊗ (b1b2) for ai ∈ A and bi ∈ B. Also, for
f ∈ EndK(A) and g ∈ EndK(B) there exists a unique map f ⊗̃g ∈ EndK(A ⊗ B) such
that (f ⊗̃g)(a ⊗ b) = f (a) ⊗ g(b) for all a ∈ A and b ∈ B. The map f ⊗̃g should not be
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confused with the element f ⊗ g of the tensor product EndK(A) ⊗ EndK(B). Of course,
one has a canonical map

	 : EndK(A) ⊗ EndK(B) → EndK(A ⊗ B) : f ⊗ g �→ f ⊗̃g. (2.17)

It is straightforward to see that if �A ∈ Cent(A) and �B ∈ Cent(B) then �A⊗̃�B ∈
Cent(A ⊗ B), and so Cent(A)⊗̃Cent(B) ⊆ Cent(A ⊗ B) where Cent(A)⊗̃Cent(B) is
the K-span of all endomorphisms �A⊗̃�B.

We will say that � ∈ Cent(A ⊗ B) has finite A-image if for every b ∈ B there exist
finitely many b1, . . . , bn ∈ B such that �(A ⊗ Kb) ⊆ A ⊗ Kb1 + · · · + A ⊗ Kbn. It is
easily seen that

Cent(A)⊗̃Cent(B) ⊆ {� ∈ Cent(A ⊗ B) | � has finite A-image}. (2.18)

Proposition 2.19. Let A be a perfect K-algebra and let B be a unital K-algebra. Then

(a) A ⊗ B is perfect, and � ∈ Cent(A ⊗ B) has finite A-image as soon as �(A ⊗ 1) ⊆
A ⊗ Kb1 + · · · + A ⊗ Kbn for suitable bi ∈ B.

(b) Every � ∈ Cent(A ⊗ B) has finite A-image if B is free as a K-module and either of
the following conditions holds:

(b.1) A is finitely generated as a Mult(A)- or as a Cent(A)-module, or
(b.2) K is a domain, and A is central and a torsion-free K-module.

(c) If Cent(A) and B are a free K-modules and the map 	 of (2.17) is injective, then

Cent(A)⊗̃Cent(B) = {� ∈ Cent(A ⊗ B) | � has finite A-image}.

Proof. (a) Since A is perfect, any a ⊗ b ∈ A ⊗ B can be written as a finite sum a ⊗ b =∑
i (a

′
ia

′′
i )⊗ b =∑

i (a
′
i ⊗ b)(a′′

i ⊗ 1), where 1 denotes the identity element of B. Hence A
is perfect, and for � as in the statement of (a) we have �(a ⊗ b) = ∑

i (a′
i ⊗ b)�(a′′

i ⊗ 1) ∈∑
j A ⊗ Kbbj .
(b.1) Set M = Mult(A), and observe that M ⊗ id ⊆ Mult(A ⊗ B) since B is unital.

Suppose A=Ma1 +· · ·+Man for a1, . . . , an ∈ A and fix � ∈ Cent(A⊗B) and b ∈ B.
There exist finite families (aij ) ⊆ A and (bij ) ⊆ B such that �(ai ⊗ b) = ∑

j aij ⊗ bij for
1� i�n, and hence �(A ⊗ b) = ∑

i,j �((M⊗̃ id)(ai ⊗ b)) = ∑
i,j (M⊗̃ id)(aij ⊗ bij ) ⊆∑

i,j A ⊗ bij .
By (a) the centroid Cent(A⊗B) is commutative. The same argument as above with M

replaced by Cent(A) then shows that every � ∈ Cent(A ⊗ B) has finite A-image if A is
a finitely generated Cent(A)-module.

(b.2) and (c): (This part of the proof is inspired by [7, Lemma 1.2].) Let {br}r∈R be a
basis of B, and let � ∈ Cent(A ⊗ B). We define �r ∈ EndK(A) by

�(a ⊗ 1) =
∑
r∈R

�r (a) ⊗ br . (2.20)
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For a1, a2 ∈ A, we then have

�(a1a2 ⊗ 1) =
∑
r∈R

�r (a1a2) ⊗ br ,

= �((a1 ⊗ 1)(a2 ⊗ 1)) = (�(a1 ⊗ 1))(a2 ⊗ 1),

=
∑
r∈R

�r (a1)a2 ⊗ br ,

= (a1 ⊗ 1)�(a2 ⊗ 1) =
∑
r∈R

a1�r (a2) ⊗ br ,

whence �r (a1a2) = �r (a1)a2 = a1�r (a2) for all ai ∈ A, so all �r ∈ Cent(A). We can now
finish the proof of (b.2): By assumption there exist scalars xr ∈ K such that �r = xr id,
hence �(a ⊗ 1) = ∑

r∈R xra ⊗ br . Fix a nonzero a ∈ A. Since almost all xra = 0, the
torsion-freeness of A implies that almost all xr = 0. Thus, there exists a finite subset F of
R such that �(a′ ⊗ 1) = ∑

r∈F xra
′ ⊗ br holds for all a′ ∈ A. By (a), this shows that � has

finite A-image.
We continue with the proof of (c). Because of (2.18), we only need to prove the inclusion

from right to left. So suppose that � ∈ Cent(A⊗B) has finite A-image. Then there exists
a finite subset F ⊆ R such that (2.20) becomes

�(a ⊗ 1) =
∑
r∈F

�r (a) ⊗ br .

For a1, a2 ∈ A and b ∈ B, we then get �(a1a2 ⊗ b) = �((a1 ⊗ 1)(a2 ⊗ b)) = (�(a1 ⊗
1))(a2 ⊗ b) = ∑

r∈F �r (a1)a2 ⊗ brb = ∑
r∈F �r (a1a2) ⊗ brb. Since A is perfect, this

implies

� =
∑
r∈F

�r⊗̃�r , (2.21)

where �r is the left multiplication in B by br .
Let {�s | s ∈ S} be a K-basis of Cent(A). Then there exists a finite subset T ⊆

S and scalars xrs ∈ K (r ∈ F, s ∈ T) such that �r = ∑
s∈T xrs�s . We then get

� = ∑
r∈F

∑
s∈T xrs�s⊗̃�s = ∑

s∈T �s⊗̃
s for 
s = ∑
r∈F xrs�r , and it remains to show

that 
s ∈ Cent(B). For ai ∈ A, bi ∈ B(i = 1, 2) we have
∑
s∈T

�s(a1a2) ⊗ 
s(b1b2) = �(a1a2 ⊗ b1b2) = (�(a1 ⊗ b1))(a2 ⊗ b2),

=
∑
s∈T

�s(a1)a2 ⊗ 
s(b1)b2,

=
∑
s∈T

�s(a1a2) ⊗ 
s(b1)b2.

Because A(1) = A, this implies
∑

s∈T �s(a) ⊗ (
s(b1b) − 
s(b1)b) = 0 for all a ∈ A
and b, b1 ∈ B, and then

∑
s∈T �s⊗̃�s = 0 where �s ∈ EndK(B) is defined as �s(b) =


s(b1b)−
s(b1)b. Since by assumption 	 is injective, we also have
∑

s∈T �s ⊗�s =0. So
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by the linear independence of the �s , we see that �s = 0. But then �s ∈ Cent(B) follows,
and hence � ∈ Cent(A)⊗̃Cent(B). �

Remark 2.22. Let A and B be K-algebras such that A is a finitely generated Mult(A)-
module and B is unital commutative associative K-algebra which is free as a K-module. It
is shown in [6, Lemma 2.3] that then

Cent(A) ⊗ Cent(B)
�−→ Cent(A)⊗̃Cent(B) = Cent(A ⊗ B).

Indeed, Eq. (2.20), (which in fact holds even if A is not perfect), together with (b.1)
of Proposition 2.19 shows that Cent(A)⊗̃Cent(B) = Cent(A ⊗ B). The isomorphism
Cent(A)⊗ Cent(B)�Cent(A)⊗̃Cent(B) follows from the linear independence of the set
(br)r∈R.

From now on, unless explicitly stated otherwise, all algebras will be over some field F.
For easier reference we state the following consequence of Proposition 2.19.

Corollary 2.23. Let A and B be algebras over a field F such that A is perfect and B is
unital. Then

Cent(A) ⊗ Cent(B)�Cent(A)⊗̃Cent(B),

= {� ∈ Cent(A ⊗ B) | � has finite A-image}.
Moreover, we have

Cent(A)⊗̃Cent(B) = Cent(A ⊗ B)

in either one of the following cases:

(a) A is finitely generated as Mult(A)-module, e.g., dimF A< ∞, or
(b) Cent(A) = F id, in which case Cent(A ⊗ B) = id ⊗ Cent(B).

Proof. Over fields the map 	 is injective ([13, Section 7.7, Proposition 16]). All assertions
then follow from Proposition 2.19. �

Remark 2.24. When g is a simple Lie algebra with Cent(g) = F id (which is always true
when F is algebraically closed and g is finite-dimensional) Melville [21, 3.2, 3.4, 3.5] has
shown Cent(g⊗B) = F id ⊗ Cent(B) for B= F[x1, . . . , xn] a polynomial ring or an ideal
B = tmF[tn] of the polynomial ring F[t]. Actually the proof given in [21, 3.2] works for
any unital commutative associative F-algebra B. Part (b) of Corollary 2.23 was proven
by Allison–Berman–Pianzola ([5, Lemma 4.2]) under the assumption that B is a unital
commutative associative F-algebra.

Example 2.25. Suppose A is the centreless Virasoro Lie algebra (often called the Witt
algebra). Thus,A has a basis consisting of the elements {ai | i ∈ Z} and multiplication given
by [ai, aj ] = (j − i)ai+j . Suppose � ∈ Cent(A). Then j�(aj ) = �([a0, aj ]) = [a0, �(aj )].
Since {x ∈ A | [a0, x] = jx} = Faj , we see that �(aj ) = �j aj for some scalar �j . But then
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�i+j (j − i)ai+j =�([ai, aj ])=[ai, �(aj )]= (j − i)�j ai+j (with j = 0) shows that �i =�0
for all i. Hence Cent(A)=F id—this can also be derived easily from Proposition 3.1 below.
Applying part (b) of the previous proposition, we obtain that Cent(A⊗B)= id ⊗Cent(B)

for any unital algebra B.

Corollary 2.26. Let A be a central, perfect F-algebra, B be a unital commutative as-
sociative F-algebra, and C be a unital subalgebra of B such that B is a free C-module
with a C-basis containing the identity element 1 of B. Suppose further that L is B/C-
form of A⊗FC, i.e., a C-algebra L such that L⊗CB�(A⊗FC)⊗CB�A⊗FB. Then
CentF(L) = C id.

Proof. Since B is a free and hence faithfully flat C-module, there exists a C-subalgebra
L′ of A⊗FB which is isomorphic to L as a C-algebra (see for example, [34, Chapter
17]). Therefore, we can assume that L is a subalgebra of the C-algebra A⊗FB. It follows
from the assumptions that C id ⊆ CentF(L), where a ⊗ b �→ a ⊗ cb for all c ∈ C.
Conversely, let � ∈ CentF(L) and extend� to a F-linear map �̃ on L⊗CB by setting
�̃ = � ⊗ id. Since L⊗CB�A⊗FB and CentF(A⊗FB)�id⊗FB by Corollary 2.23, it
follows that there exists c ∈ B such that �̃ is given by x⊗Cb �→ x⊗Ccb for all x ∈ L,
b ∈ B. Let (bi)i∈I be a C-basis of B containing 1, say b0 = 1. We can write c in the form
c = ∑

i cibi for unique ci ∈ C. Then �̃(x⊗C1) = x⊗Cc = ∑
i x⊗Ccibi = ∑

i xci⊗Cbi .
Since �̃(x⊗C1) = �(x)⊗C1 ∈ L⊗C1, it follows that xci = 0 for i �= 0 and �(x) = c0x,
i.e., � = c0 id. Thus, CentF(L) ⊆ C id, and we have the desired conclusion. �

Remark 2.27. The assumptions on B and C are fulfiled for example when B = F[t, t−1],
a Laurent polynomial ring, and C = F[tm, t−m] for some positive m ∈ N. Indeed, in this
case {t i | 0� i < m} is a C-basis of B as required. Let A be a Lie algebra and � be an
automorphism of A of period m. Assume � ∈ F is a primitive mth root of unity, and form
the loop algebra L(A, �) = ⊕

i∈Z Ai⊗FFt i where Ai is the �i-eigenspace of �. That
L(A, �) is indeed a C-form of A⊗FB is shown by Allison–Berman–Pianzola [5, Theorem
3.6]. In this particular situation, the result Cent(L(A, �)) = C id from Corollary 2.26 can
be found in [5, Lemma 4.3(d)]. When A is taken to be a finite-dimensional split simple
Lie algebra over a field F of characteristic 0, the loop algebra L(A, �) is an example of a
centreless core of an extended affine Lie algebra. Later in Corollary 4.13, we will see that
the cores of extended affine Lie algebras are always central.

Corollary 2.28. Let A be an algebra over a ring K and set C = CentK(A).

(a) Every K-linear automorphism f of A determines a K-linear automorphism fC : C →
C, � �→ fC(�) = f ◦ � ◦ f −1 of the associative K-algebra C. The map

 : AutK(A) → AutK(C), f �→ fC

is a group homomorphism whose kernel is AutC(A), the C-linear automorphisms
of A.

(b) Let A be a perfect, central algebra over a field F and B be a unital commutative asso-
ciative F-algebra. Then, after identifying AutF(B) with a subgroup of AutF(A⊗FB)
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via g �→ id ⊗ g, we have

AutF(A⊗FB) = AutB(A⊗FB)�AutF(B) (semidirect product).

Proof. (a) is straightforward. For (b) we note that Cent(A⊗FB)= id⊗B�B by Corollary
2.23. Every g ∈ AutF(B) extends to an automorphism �(g) = id ⊗ g of A⊗FB. The map
� : AutF(B) → AutF(A⊗FB) is a group homomorphism which satisfies ( ◦ �)(g) = g,
i.e., � is a section of . The claim then follows from standard facts in group theory. �

Remark 2.29. For special choices of A and B, the automorphism group AutF(A⊗FB)

has been investigated by several authors; for example, by Benkart–Osborn [8] when A is
the algebra of n×n-matrices over F and B is an arbitrary algebra with an Artinian nucleus,
or by Pianzola [27] when A is a finite-dimensional split simple Lie algebra over a field F of
characteristic 0 and B is an integral domain with trivial Picard group and with a maximal
ideal m which satisfies B/m�F.

An analogous result holds for derivations; we leave the proof as an exercise to the reader.

Corollary 2.30. Let A be an algebra over a ring K and set C = CentK(A).

(a) Every K-linear derivation d ofA determines a K-linear derivation dC : C → C, � �→
dC(�) := [d, �] = d ◦ � − � ◦ d of C. The map

� : DerK(A) → DerK(C), d �→ dC

is a K-linear Lie algebra homomorphism whose kernel is DerC(A), theC-linear deriva-
tions of A.

(b) Let A be a perfect, central algebra over a field F and B be a unital commutative asso-
ciative F-algebra. Then, after identifying DerF(B) with a subalgebra of DerF(A⊗FB)

via e �→ id ⊗ e, we have

DerF(A⊗FB) = DerB(A⊗FB)�DerF(B) (semidirect product).

Remark 2.31. The result in Corollary 2.30(b) complements [7, Theorem 1], which de-
scribes DerF(A⊗FB) when A is a finite-dimensional perfect F-algebra and B is as above

DerF(A⊗FB) = (DerF(A)⊗FB) ⊕ (CentF(A)⊗FDerF(B)). (2.32)

We note that (2.32) is not a semidirect product in general.

3. Centroids of Lie algebras with toral subalgebras

3.1. A general result

In this section, L is a Lie algebra over some field F, which will be assumed of char-
acteristic 0 from Section 3.2 on. Recall that a subalgebra h is a toral subalgebra of L if
L = ⊕

�∈h∗ L�, where L� = {x ∈ L | [h, x] = �(h)x for all h ∈ h}. Necessarily h is
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abelian, and [L�, L�] ⊆ L�+� for �, � ∈ h∗. If L� �= 0, then � is a weight (relative to
h) and suppL = {� ∈ h∗ |L� �= 0} is the set of weights.

Proposition 3.1. Let L be a Lie algebra with a toral subalgebra h.

(a) If � ∈ Cent(L), then �(L�) ⊆ L� for all � ∈ h∗, �(h) ⊆ Z(L0), and � is uniquely
determined by its restriction to L0.

(b) Let J be a Cent(L)-invariant ideal, and suppose there exists 0 �= � ∈ h∗ such that
dim(J ∩ L�) = 1 and the ideal of L generated by J ∩ L� is J. Then

Cent(L) = F id ⊕ {� ∈ Cent(L) |�(J) = 0},
� F id ⊕ HomL/J(L/J,CL(J)), (3.2)

where CL(J) is the centralizer of J in L. In particular, if J = L(1) satisfies the
assumptions above, then

Cent(L) = F id ⊕ {� ∈ EndF(L) | [�(L),L] = 0 = �(L(1))},
= F id ⊕ V(L(1)),

� F id ⊕ HomF(L/L(1),CL(L(1))). (3.3)

Proof. (a) For all h ∈ h and x� ∈ L� we have �(h)�(x�) = �[h, x�] = [h, �(x�)] which
implies �(L�) ⊆ L�. Also [�(h),L0] = �[h,L0] = 0, proving �(h) is central in L0.
For 0 �= � there exists t� ∈ h such that �(t�) = 1. The last claim then follows from
�(x�) = �[t�, x�] = [�(t�), x�].

(b) Suppose � ∈ Cent(L). Our assumptions imply that there exists a scalar � such that
� |J∩L� =� id. Thus J∩L� is contained in the kernel of �=�−� id, which is an ideal of
L since � ∈ Cent(L). As J ∩ L� generates J, we have �|J = 0. This proves Cent(L)

is contained in the right-hand side. The other direction is obvious. The second part of (3.2)
and the statement concerning L(1) follow from Lemma 2.1. �

Corollary 3.4. Let L be a Lie algebra with a toral subalgebra h and suppose that L(1) is
generated by elements ei, fi, (1� i�n) such that the following conditions hold:

(i) �∨
i = [ei, fi] ∈ h, and these elements act on the generators ej , fj by

[�∨
i , ej ] = ai,j ej and [�∨

i , fj ] = −ai,j fj (1� i, j �n),

where ai,j ∈ F.
(ii) The matrixA= (ai,j ) is indecomposable in the sense that after possibly renumbering

the indices we have a1,2a2,3 · · · an−1,n �= 0. Moreover, ai,i �= 0 for all i = 1, . . . , n.
(iii) For some i and some � ∈ h∗, we have L� = Fei .

Then Cent(L)�F id⊕HomF(L/L(1),CL(L(1))). In particular,L is central ifL=L(1)

or CL(L(1)) = 0.
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Proof. Let i be as in (iii), and note that � �= 0 since �(�∨
i )=ai,i �= 0 . By Proposition 3.1(b),

it suffices to show that the ideal J of L generated by ei contains all the generators ej , fj of
L(1). This follows from the indecomposibility of the matrix A by upward and downward
induction starting from i. Indeed, assume ej ∈ J. Relation (i) implies that �∨

j ∈ J and

then, since aj,j �= 0, that fj ∈ J. Moreover, ej+1 = a−1
j,j+1[�∨

j , ej+1] ∈ J and similarly
fj+1 ∈ J. �

3.2. Centroids of Kac-Moody algebras

From now on we assume F is a field of characteristic 0. Corollary 3.4 applies to contragred-
ient Lie algebras over F in the sense of [22, Chapter 4]. In particular, it applies to Kac-Moody
algebras. We will elaborate on this important special case.

Assume A := (ai,j )
n
i,j=1 is a generalized Cartan matrix of rank �. Thus, ai,i = 2 for

i = 1, . . . , n; the entries ai,j for i �= j are nonpositive integers; and ai,j = 0 if and
only if aj,i = 0. We will assume that the matrix A is indecomposable as in Corollary
3.4(ii). A realization of A is a triple (h, �, �∨) consisting of an F-vector space h and
linearly independent subsets � = {�1, . . . , �n} ⊂ h∗ and �∨ = {�∨

1 , . . . , �∨
n } ⊂ h such that

〈�i | �∨
j 〉 = aj,i (1� i, j �n), and dim h= 2n − �. The Kac-Moody Lie algebra g := g(A)

associated to A is the Lie algebra over F with generators ei, fi, (1� i�n) and h, which
satisfy the defining relations

(a) [ei, fj ] = �i,j�∨
i 1� i, j �n;

(b) [h, h′] = 0 h, h′ ∈ h;
(c) [h, ei] = 〈�i |h〉ei and [h, fi] = −〈�i |h〉fi h ∈ h, i = 1, . . . , n;
(d) (ad ei)

1−ai,j ej = 0 = (ad fi)
1−ai,j fj 1� i �= j �n.

The Lie algebra g is graded by the root lattice Q := ⊕n
i=1 Z�i , so that g = ⊕

�∈Q g�,
where g� = {x ∈ g | [h, x] = 〈� |h〉x for all h ∈ h} are the root (weight) spaces of
the toral subalgebra h. Condition (i) of Corollary 3.4 follows from relations (a) and (c)
above, while (ii) holds since ai,i = 2 for all i and since the Cartan matrix A is assumed
to be indecomposable. Finally, (iii) is well-known, see e.g. [18, (1.3.3)]. Therefore, we
obtain

Corollary 3.5. Let g = g(A) be the Kac-Moody Lie algebra corresponding to the
indecomposable generalized Cartan matrix A. Then g(1) is central and Cent(g) = F id ⊕
HomF(g/g(1),Cg(g(1))).

Remark 3.6. WhenA is invertible, dim h=n, h=⊕n
i=1 F�∨

i , andg=g(1), so that Cent(g)=
F id in that case.

WhenA is an affine Cartan matrix (associated to an affine Dynkin diagram), thenA has
rank n − 1. The centre is one-dimensional, spanned by c say. We may suppose h= h′ ⊕ Cd

in this case, where h′ =⊕n
i=1 F�∨

i and g=g(1) ⊕Fd. (Readers familiar with affine algebras
will recognize d as the degree derivation.) Corollary 3.5 then says that g(1) is central and
Cent(g) = F id ⊕ HomF(Fd, Fc) for each affine Kac-Moody Lie algebra.
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3.3. Centroids of Lie tori

First we introduce the notion of a root graded Lie algebra. We prove a result concerning
the centroid of a special class of root graded Lie algebras but postpone giving the precise
description of the centroid for general root graded Lie algebras until Section 5. We then
specialize consideration to certain root graded Lie algebras called Lie tori and describe their
centroids. Our rationale for doing this is that centreless Lie tori play a critical role in the
theory of extended affine Lie algebras (EALAs)—they are precisely the centreless cores of
EALAs. The centroid of the core is another key ingredient in the structure of the EALA.

Let g be a finite-dimensional split simple Lie algebra over a field F of characteristic 0
with root space decomposition g = h ⊕ ⊕

�∈�g g� relative to a split Cartan subalgebra h.
Such a Lie algebra is the F-analogue of a finite-dimensional complex Lie algebra, and the
set of roots �g is the finite reduced root system. Every finite irreducible root system � is
one of the reduced root systems �g or is a nonreduced root system BCr (see for example,
[15, Section 1.1]).

Definition 3.7. Let L be a Lie algebra over a field F of characteristic 0, and let � be a
finite irreducible root system. Then L is said to be graded by the root system � or to be
�-graded if

(i) L contains as a subalgebra a finite-dimensional split “simple” Lie algebra g, called
the grading subalgebra, with split Cartan subalgebra h;

(ii) h is a toral subalgebra of L, and the weights of L relative to h are in � ∪ {0},

L =
⊕

�∈�∪{0}
L�.

(iii) L0 = ∑
�∈� [L�,L−�];

(iv) either � is reduced and equals the root system �g of (g, h) or � = BCr and �g is of
type Br , Cr , or Dr .

The word simple is in quotes, because in all instances except two, g is a simple Lie
algebra. The sole exceptions are when � is of type BC2, �g is of type D2 = A1 × A1, and
g is the direct sum of two copies of sl2; or when � is of type BC1, �g is of type D1, and
g= h is one-dimensional.

The definition above is due to Berman–Moody [7] for the case � = �g. The extension to
the nonreduced root systems was developed by Allison–Benkart–Gao in [3]. The �-graded
Lie algebras for � reduced have been classified up to central extensions by Tits [33] for
� = A1 (see also [10]); by Berman–Moody [12] for � = Ar , (r �2), Dr , E6, E7, and E8; by
Benkart–Zelmanov [10] for �= Br , Cr , F4 and G2 (see also [2] for Cr ); and by Neher [23],
who studied Lie algebras 3-graded by a locally finite root system �, which in our setting
means � �= E8, F4, G2, or BCr . Central extensions of Lie algebras graded by reduced root
systems have been described by Allison–Benkart–Gao in [2]. The Lie algebras graded by
the root systems BCr have been classified in [3] for r �2 and in [9] for r = 1. As a result,
the �-graded Lie algebras are determined completely up to isomorphism.
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Examples of Lie algebras graded by a (not necessarily reduced) � include the affine
Kac-Moody Lie algebras, the toroidal Lie algebras, the intersection matrix Lie algebras
introduced by Slodowy in his study of singularities, and the cores of EALAs, to name
just a few (see [3, Examples 1.16–1.23] for further discussion of examples). Any finite-
dimensional simple Lie algebra over a field F of characteristic 0 which has an ad-nilpotent
element (or equivalently, by the Jacobson–Morozov theorem has a copy of sl2) is graded by
a finite root system (see [31]). Thus, the notion encompasses a diverse array of important
Lie algebras.

Definition 3.8. Let L be a �-graded Lie algebra with grading subalgebra g, and let � be
an abelian group. We say that L is (�, �)-graded if L has a �-grading

L =
⊕
�∈�

L� with g ⊆ L0. (3.9)

This notion was introduced and studied byYoshii in [35] where it was termed a refined root
grading of type (�, �). In any (�, �)-graded Lie algebra, each spaceL� is an h-submodule,
so L� = ⊕

�∈�∪{0}L�
� for L�

� = L� ∩ L�. Thus, L has a grading by � ⊕ Q(�), where
Q(�) is the root lattice of �,

L =
⊕

�∈�∪{0}, �∈�

L�
� with [L�

�, L
�
�] ⊆ L

�+�
�+� (3.10)

for �, � ∈ � ∪ {0} and �, � ∈ �. Since the centre of any graded Lie algebra is a graded
subspace, Z(L) = ⊕

�∈� Z(L)� ⊆ ⊕
�∈� L�

0.

Lemma 3.11. (1) Let L be a (�, �)-graded Lie algebra. Then

Cent(L) =
⊕
�∈�

Cent(L)�

is a �-graded commutative associative algebra, where Cent(L)� is the subspace of
centroidal transformations that are homogeneous of degree � with respect to the
�-grading (3.9).

(2) If the �-graded Lie algebra L is graded-simple, its centroid Cent(L) is a commu-
tative associative division-graded algebra, hence it is isomorphic to a twisted group ring
Et [�] for the extension field E = Cent(L)0 of F and for the subgroup � = supp Cent(L)

of �.

Proof. Any �-graded Lie algebraL is perfect, so Cent(L) is commutative. As a Mult(L)-
module, L is generated by h. Indeed, [L�, h] = L� for 0 �= � ∈ � and then L0 =∑

�∈� [L−�, [L�, h]] by (iv) in Definition 3.7. Since h is finite-dimensional, it follows
from (2.15) that Cent(L) = grCent(L) with respect to the � ⊕ Q(�)-grading (3.10).
However, by Proposition 3.1 (a), every � has degree 0 with respect to the Q(�)-grading
of L, which proves the first part of the lemma. The last part now follows from
Proposition 2.16. �
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Definition 3.12. A (�, �)-graded Lie algebra L is called a Lie torus of type (�, �), or
simply a Lie torus, if

(i) whenever L�
� �= 0 for � ∈ � and � ∈ �, then there exists an sl2-triple (e, h, f ) ∈

L�
� × L0

0 × L−�−� such that

(a) L�
� = Fe and L−�−� = Ff , and

(b) [h, x] = 〈�, �∨〉x for all x ∈ L
�
�, � ∈ � ∪ {0}, � ∈ �;

(ii) the group � is generated by suppL = {� ∈ � |L� �= 0}; and
(iii) if � = BCr for r = 1, 2, then �g �= Dr .

In (b), �∨ is the usual coroot, and 〈�, �∨〉 comes from the usual inner product on the real
span of the root system �. An sl2-triple in (i) is assumed to satisfy the canonical relations,
[e, f ] = h, [h, e] = 2e, and [h, f ] = −2f . We point out that no condition is imposed
on dim L�

0; however, when � is free of finite rank, one knows that dim L�
0 �m for some

positive integer m that does not depend on � by [24, Theorem 5(a)]. In [24], Neher considers
Lie tori only for � = Zn; while in [37], the above notion is referred to as a �-torus, and the
term Lie torus is reserved for the case � = Zn. Here we consider Lie tori for an arbitrary
�, since the determination of the centroid is exactly the same as for � = Zn.

A centreless Lie torus is graded-simple by [37, Lemma 4.4]. It is assumed in [37] that
�g is of type Br when � is of type BCr ; however, the same proof as given there works in
our more general setting.

The following result provides a proof of [24, Theorem 7(a)]:

Proposition 3.13. LetL be a centreless Lie torus of type (�, �). Then Cent(L) is a twisted
group ring Ft [�] for some subgroup � of �. In particular,

(i) Cent(L)0 = Fid, and
(ii) if ��Zn, then Cent(L) is isomorphic to a Laurent polynomial ring in r variables,

where 0�r �n.

Proof. We know from Lemma 3.11 and [37, Lemma 3.4] that Cent(L)=⊕
�∈� Cent(L)�

is a commutative associative division-graded algebra. Since Cent(L)� → L�
� is injective

for each � and � by Proposition 2.16, it follows that all homogeneous spaces Cent(L)� are
at most one-dimensional. In particular (i) holds. It also follows that Cent(L) is a twisted
group ring for a subgroup � of �. When �=Zn, this subgroup is isomorphic to Zr for some
0�r �n. But any twisted group ring over Zr is in fact a group ring, and hence isomorphic
to a Laurent polynomial ring, (compare [11, Lemma 1.8]). �

4. The centroid of an EALA and its core

We will prove in Corollary 4.13 below that the core of a tame EALA is central, and from
this result, the centroid of the EALA itself can easily be determined. Since the core of an



134 G. Benkart, E. Neher / Journal of Pure and Applied Algebra 205 (2006) 117–145

EALA is a central extension of a centreless Lie torus, and since we know the centroid of
centreless Lie tori by Proposition 3.13, it is natural to base our investigation on a general
result which describes the behaviour of the centroid under a central extension, see Lemma
4.3 below. We start by recalling some facts about central extensions and 2-cocycles, which
also serves to establish our notation.

Throughout we consider Lie algebras over an arbitrary field F. We recall that a central
extension of a Lie algebra L is a pair (K, �) consisting of a Lie algebra K and a surjective
Lie algebra homomorphism � : K → L whose kernel lies in the centre Z(K) of K. If
K is perfect, then K is said to be a cover or covering of L. In this case L is necessarily
perfect also. A homomorphism (resp. isomorphism) from a central extension f : K → L
to a central extension f ′ : K′ → L is a Lie algebra homomorphism (resp. isomorphism)
g : K → K′ satisfying f = f ′ ◦ g.

A central extension u : L̂ → L is a universal central extension if there exists a unique
homomorphism from L̂ to any other central extension K of L. This universal property
implies that any two universal central extensions of L are isomorphic as central extensions.
A Lie algebra L has a universal central extension if and only if L is perfect. In this case,
the universal central extension L̂ is perfect, and L̂ is a covering of every covering of L.

Examples of central extensions can be constructed in terms of 2-cocycles which are
bilinear maps � : L × L → C into some vector space C satisfying

�(x, x) = 0 and �([x, y], z) + �([y, z], x) + �([z, x], y) = 0 (4.1)

for all x, y, z ∈ L. Given such a 2-cocycle, the vector space E = L ⊕ C becomes a Lie
algebra with product

[x ⊕ c, y ⊕ c′]E = [x, y] ⊕ �(x, y). (4.2)

(Here we are using the notation x ⊕ c to designate that x ∈ L and c ∈ C.) This is a
central extension of L, which we denote E(L, �), with respect to the projection map
E(L, �) → L, x ⊕ c �→ x. Since we are considering Lie algebras over a field, every
central extension f : K → L is isomorphic as central extension to some E(L, �), see
e.g. [22, 1.9].

Lemma 4.3. Let � : K → L be a central extension of the Lie algebra L written in the
form (4.2), and suppose that Z(L) = 0. Then Z(K) = C. Moreover, � ∈ EndF(K) lies
in the centroid Cent(K) if and only if there exist � ∈ Cent(L), � ∈ HomF(L, C) and
� ∈ EndF(C) such that

�(x ⊕ c) = �(x) ⊕ (�(x) + �(c)), and (4.4)

�(x, �(y)) = �([x, y]) + �(�(x, y)) (4.5)

for all x, y ∈ L and c ∈ C. In this case, �(x, �(y)) = �(�(x), y).

Proof. If x ⊕ c ∈ Z(K), then (4.2) implies that x ∈ Z(L) = 0, hence Z(K) ⊆ C. The
other inclusion is obvious.

Now assume � ∈ Cent(K). By Lemma 2.7 (a), � leaves Z(K) = C invariant, hence
has the form (4.4) for �, � as in the statement of the lemma and some � ∈ EndF(L). Since



G. Benkart, E. Neher / Journal of Pure and Applied Algebra 205 (2006) 117–145 135

�Cent(�) = �, it follows from Lemma 2.7 (a) that � ∈ Cent(L) (this is also immediate
from the computation below). It now remains to characterize when a map of the form (4.4)
belongs to the centroid of K. For x, y ∈ L and c, c′ ∈ C we have

�([x ⊕ c, y ⊕ c′]K) = �([x, y] ⊕ �(x, y)),

= �([x, y]) ⊕ (�([x, y]) + �(�(x, y))),

[x ⊕ c, �(y ⊕ c′)]K = [x, �(y)] ⊕ �(x, �(y)).

Combined they show that � ∈ Cent(K) if and only if � ∈ Cent(L) and (4.5) holds. �

Next we will construct a special class of 2-cocycles for Lie algebras with a nondegenerate
invariant bilinear form and describe the centroid of the corresponding central extension in
Proposition 4.11. Later this will be applied to determine the centroid of the core of an
EALA.

Let � be an abelian group. We say � : K → L is a �-graded central extension if
both L and K are graded by �, say L = ⊕

�∈� L� and K = ⊕
�∈� K�, and if � is

homogeneous of degree 0, i.e., �(K�) ⊆ L�. Every �-graded central extension � : K →
L is isomorphic to a central extension E(L, �) where � : L × L → C is a �-graded
2-cocycle, i.e., C = ⊕

�∈� C� is a �-graded vector space and � is a 2-cocycle satisfying
�(L�,L�) ⊆ C�+� for all �, � ∈ �. WhenK is perfect, such a �-graded central extension
� : K → L is called a �-covering. In particular, if L is perfect, the universal central
extension L̂ is a �-covering of L.

Let L = ⊕
�∈� L� be a �-graded Lie algebra over F. We denote by HomZ(�, F) the

F-vector space of additive maps � : � → F. For any � ∈ HomZ(�, F), the corresponding
degree derivation �� of L is defined by

��(x) = �(�)x (x ∈ L�). (4.6)

There is a linear map

HomZ(�, F) → D := {�� | � ∈ HomZ(�, F)} � �→ ��,

into the space D of degree derivations, which is an isomorphism if � is spanned by the
support of L, i.e., if

� = spanZ{� ∈ � |L� �= 0}. (4.7)

Indeed, if �� = 0 then �(�) = 0 for all � ∈ � with L� �= 0 whence � = 0. We note that
(4.7) is essentially a notational convenience; if it is not fulfiled, one can always replace �
by the subgroup generated by the support of L. Assuming (4.7), we have a well-defined
linear map

ev : � → D∗, � �→ ev(�)

into the dual space D∗ of D given by

ev(�)(��) = �(�), � ∈ �, �� ∈ D. (4.8)
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We denote by Der(L)�, the vector space of F-linear derivations of L of degree �, and we
set

gr Der(L) =
⊕
�∈�

Der(L)�,

which is obviously a graded subalgebra of Der(L). It is well-known (see for example [16,
Proposition 1]) that grDer(L) = Der(L) if L is finitely generated as Lie algebra.

Let (. | .) be an invariant �-graded bilinear form on L, i.e., (L� |L�)=0 for all �+� �=
0. We denote by SDer(L) = SDerF(L) the subalgebra of Der(L) consisting of skew
derivations � ofL: (�x | y)=−(x | �y) for all x, y ∈ L. It is easily seen that � ∈ grDer(L)

is skew if and only if every homogeneous component of � is, so that

grSDer(L) := SDer(L) ∩ grDer(L) =
⊕
�∈�

SDer(L)�,

where SDer(L)� = SDer(L) ∩ Der(L)�. Moreover

D ⊆ SDer(L)0 and IDer(L) ⊆ grSDer(L),

where IDer(L) = IDerF(L) = {adx | x ∈ L} denotes the ideal of inner derivations of L.
Let S=⊕

�∈� S� be a graded subspace of grSDer(L), and let Sgr∗ be the graded dual
space. Thus,

Sgr∗ =
⊕
�∈�

(Sgr∗)� where (Sgr∗)� = (S−�)∗. (4.9)

We may assume (S−�)∗ ⊆ S∗ by defining f |S� = 0 for f ∈ (S−�)∗ and � �= −�. Then
it is easy to verify that

�S : L × L → Sgr∗, �S(x, y)(d) = (d(x) | y) (4.10)

for x, y ∈ L and d ∈ S is a �-graded 2-cocycle. Thus E(L, �S) = L ⊕ Sgr∗ with
product [x ⊕ c, y ⊕ c′]E = [x, y] ⊕ �S(x, y) for all x, y ∈ L, c, c′ ∈ Sgr∗ is a �-graded
central extension of L.

Proposition 4.11. Let L = ⊕
�∈� L� be a perfect �-graded Lie algebra with a

nondegenerate invariant graded bilinear form such that (4.7) holds. Let S ⊆ grSDer(L)

be a �-graded subspace such that

evS : � → (D ∩ S)∗, � �→ ev(�)|D∩S (4.12)

is injective, where the evaluation map ev is as in (4.8). Let K = E(L, �S) = L ⊕ C

where C = Sgr∗.

(i) Suppose � ∈ Cent(K) is homogeneous of degree �. Then there exists � ∈ Cent(L),
� ∈ HomF(L, C), and � ∈ EndF(C) all of degree � such that

(a) �(x ⊕ c) = �(x) ⊕ (�(x) ⊕ �(c)) for all x ∈ L, c ∈ C.
(b) � = 0 if � �= 0.
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(ii) If K is perfect, then Cent(K)� = 0 for all � �= 0. In particular, if K is a Lie torus,
then K is central.

Proof. (i) Observe first that Z(L) = 0. This follows from the computation ([x, y] | z) =
(x | [y, z]) = 0 for all x, y ∈ L, z ∈ Z(L) and the fact that L is perfect and the form is
nondegenerate.

Now suppose � ∈ Cent(K) has degree �, and apply Lemma 4.3 to conclude that �(x ⊕
c) = �(x) ⊕ (�(x) + �(c)) where � ∈ Cent(L), � ∈ HomF(L, C), and � ∈ EndF(C), and
all have degree �. For x� ∈ L�, y ∈ L, and �� ∈ D ∩ S we have by (4.5)

�S(�(x�), y)(��) = (���(x�) | y) = �(� + �)(�(x�) | y),

= �S(x�, �(y))(��) = (��(x
�) | �(y)) = �(�)(x� | �(y)),

= �(�)(�(x�) | y),

where in the last equality we used Lemma 2.1 (f). Hence �(�)(�(x�) | y)=0 for all x� ∈ L�

and � ∈ �. Suppose � �= 0. Then there exists a � ∈ D ∩ S such that �(�) �= 0. From this
we see (�(x�), y) = 0 and nondegeneracy forces � = 0. Thus, (b) holds.

(ii) In the preceding paragraph we have shown that Z(L) = 0, and � = 0 whenever
� �= 0. If � : K → L is the cover map and K is perfect, it follows from Lemma
2.7 (c) that �Cent : Cent(K) → Cent(L) is an algebra monomorphism which takes � to
�. In particular, if � �= 0, then � has degree �, forcing both � and � to be 0. Therefore,
�Cent : Cent(K) = Cent(K)0 → Cent(L)0 = F id by Proposition 3.13 (i). Consequently,
K is central. �

As an application of Proposition 4.11, we can now determine the centroid of a tame EALA
E and of its core K, which is the ideal of E generated by the root spaces corresponding to
the nonisotropic roots. The reader is referred to [1, Chapter I] for the precise definition of a
tame EALA over F = C and to [25] for arbitrary fields F of characteristic 0. An EALA has
an invariant nondegenerate bilinear form, which when restricted to the core K is �-graded
for � = Zn for some n�0. Tameness says that the ideal K satisfies CE(K) = Z(K).

Corollary 4.13. Let E be a tame extended affine Lie algebra, let K be its core and set
D = E/K. Then K is central and

Cent(E) = F id ⊕ V(K)�F id ⊕ HomD(D, Z(K)).

Proof. It is known that K is a Lie torus with ��Zn (see [38, Corollary 7.3] for F = C

or [25, Proposition 3(a)] for arbitrary F). Moreover, by [25, Theorem 6], K is obtained
from the centreless Lie torus L = K/Z(K) by the construction of Proposition 4.11.
Thus K is central by part (ii) of that proposition. Since K is a Cent(E)-invariant ideal of
E, Cent(E) = F id ⊕ V(K) follows from (2.2). Finally, V(K)�HomD(D, Z(K)) by
Lemma 2.1(b) and the fact that AnnE(K) = CE(K) = Z(K) because of tameness. �

Example 4.14. Finite-dimensional split simple Lie algebras are examples of tame EALAs.
In this case E=K and Z(K)=0, so the result above simply says that E is central—which
is of course well-known.
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Another class of examples of tame EALAs are the affine Lie algebras (see [4]). In this
case, K = E(1) and D and Z(K) are both one-dimensional, so that our result recovers
Corollary 3.5.

However there are many other examples of extended affine Lie algebras besides the two
just mentioned, e.g. toroidal algebras extended by some derivations.

5. Centroids of Lie algebras graded by finite root systems

In this section, we will describe the centroid of Lie algebras graded by finite root systems.
The case of reduced root systems will be treated in Section 5.1, while the nonreduced case
will be done in 5.2. As a prelude to that, we begin with a general result about Lie algebras L
which are completely reducible relative to the adjoint action of a subalgebra g. By gathering
together isomorphic summands, we may assume that such Lie algebras are written in the
form

L =
⊕

k

(Vk ⊗ Ak),

where the Vk are nonisomorphic irreducible g-modules; the subspace Ak indexes the copies
of Vk; and the g-action is given by x.(vk ⊗ ak) = [x, vk ⊗ ak)] = x.vk ⊗ ak for x ∈ g,
vk ∈ Vk , ak ∈ Ak .

Lemma 5.1. Assume L is a Lie algebra which is completely reducible relative to the
adjoint action of a subalgebra g, and let L=⊕

k(Vk ⊗Ak) be its decomposition relative to
g. Assume Endg(Vk) = F id for each irreducible g-module Vk . If � ∈ Cent(L), then there
exist transformations �k : Ak → Ak such that �(vk ⊗ ak) = vk ⊗ �k(ak) for all vk ∈ Vk ,
ak ∈ Ak .

Proof. Assume {ai
k | i ∈ Ik} is a basis for Ak , and let �i

k denote the projection of L onto
the summand Vk ⊗ ai

k . Fix j ∈ Ik .Then for any � ∈ Cent(L) and any i ∈ Ik , we have

(�i
k ◦�) : Vk ⊗a

j
k → Vk ⊗ai

k is a g-module homomorphism. Thus, it determines an element

of Endg(Vk)=F id, and there exists a scalar �i,j ∈ F, so that (�i
k ◦�)(vk ⊗a

j
k )=�i,j vk ⊗ai

k

for all vk ∈ Vk . When � �= k, (�i
k ◦ �) : V� ⊗ a

j
� → Vk ⊗ ai

k is a g-module homomorphism
determining an element of Homg(V�, Vk). Such a homomorphism must be the zero map

since Vk and V� are irreducible and nonisomorphic. Consequently, �(vk ⊗ a
j
k ) ∈ Vk ⊗ Ak

for all vk ∈ Vk , and

�(vk ⊗ a
j
k ) =

∑
i∈Ik

�i,j vk ⊗ ai
k = vk ⊗

⎛
⎝∑

i∈Ik

�i,j a
i
k

⎞
⎠ .

Define �k(a
j
k )=∑

i∈Ik
�i,j a

i
k for each j ∈ Ik and extend this linearly to all of Ak . Then

�(vk ⊗ ak) = vk ⊗ �k(ak) for all vk ∈ Vk, ak ∈ Ak. �
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5.1. Lie algebras graded by reduced root systems

Suppose that L is a Lie algebra graded by the reduced root system � as in Definition
3.7. Then L is completely reducible relative to the adjoint action of the grading subalgebra
g, and by results in ([12,10,23]) we know that

L�(g⊗ A) ⊕ (W ⊗ B) ⊕ D,

where the following hold:

(1) W is the irreducible g-module with highest weight the highest short root of g; thus W
and B are zero when � is simply laced.

(2) The sum a= A ⊕ B is a unital algebra called the coordinate algebra of L. In all cases
except for type C2, a is an associative, alternative, or Jordan algebra depending on �.
The unit element 1 of a lives in A, and g is identified with g⊗ 1.

(3) D is the sum of the trivial one-dimensional g-modules. Moreover, D can be identified
with a quotient space, D = 〈a, a〉 = 〈A, A〉 + 〈B, B〉, of the skew-dihedral homology
of a, and D acts by inner derivations on a. Thus, 〈�, �〉() = D�,�() for all �, �,  ∈ a,
where D�,� is the inner derivation determined by �, �.

(4) The multiplication in L is given in terms of the product on a as follows (note here we
do not use ⊕ to separate summands to simplify the expressions):

(� = A1, Br , (r �3), Dr , (r �4), E6, E7, E8, F4, G2) (5.2)

[x ⊗ a, y ⊗ a′] = [x, y] ⊗ aa′ + (x|y)〈a, a′〉
[d, x ⊗ a] = x ⊗ da = −[x ⊗ a, d]
[x ⊗ a, u ⊗ b] = xu ⊗ ab = −[u ⊗ b, x ⊗ a]
[d, u ⊗ b] = u ⊗ db = −[u ⊗ b, d]
[u ⊗ b, v ⊗ b′] = �u,v ⊗ (b, b′) + (u ∗ v) ⊗ (b ∗ b′) + (u|v)〈b, b′〉,
(� = Ar , (r �2), Cr , (r �2)) (5.3)

[x ⊗ a, y ⊗ a′] = [x, y] ⊗ 1
2 (aa′ + a′a) + (x ◦ y) ⊗ 1

2 (aa′ − a′a) + (x|y)〈a, a′〉,
[d, x ⊗ a] = x ⊗ da = −[x ⊗ a, d]
[x ⊗ a, u ⊗ b] = (x ◦ u) ⊗ 1

2 (ab − ba) + [x, u] ⊗ 1
2 (ab + ba) = −[u ⊗ b, x ⊗ a]

[u ⊗ b, v ⊗ b′] = [u, v] ⊗ 1
2 (bb′ + b′b) + (u ◦ v) ⊗ 1

2 (bb′ − b′b) + (u|v)〈b, b′〉
[d, u ⊗ b] = u ⊗ db = −[u ⊗ b, d]
for all a, a′ ∈ A, b, b′ ∈ B, x, y ∈ g, u, v ∈ W , and d ∈ D.

(5) In (4), (|) denotes the Killing form when applied to g, and the unique g-invariant bilinear
form when applied to W. The maps � ∈ Homg(W ⊗W, g) and ∗ ∈ Homg(W ⊗W, W)

in (5.2) are unique up to scalars. In (5.2), the product in the coordinate algebra a=A⊕B

is given by (a + b)(a′ + b′) = (aa′ + (b, b′)) + (ab′ + a′b + b ∗ b′). The algebra g in
(5.3) can be realized as a matrix Lie algebra slr+1 or sp2r respectively. So for any two
matrices w, z, we have [w, z] = wz − zw and w ◦ z = wz + zw − (2/n)tr(wz), where
n = r + 1 or 2r and tr denotes the trace.
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Proposition 5.4. Assume L�(g⊗ A) ⊕ (W ⊗ B) ⊕ D is a Lie algebra graded by a finite
reduced root system. Then � ∈ Cent(L) if and only if there exist maps �a ∈ Cent(a) and
�D ∈ Cent(D) such that �a(A) ⊆ A, �a(B) ⊆ B, and

�((x ⊗ a) + (u ⊗ b) + d) = (x ⊗ �a(a)) + (u ⊗ �a(b)) + �D(d), (5.5)

�D(〈�, �′〉) = 〈�, �a(�
′)〉 = 〈�a(�), �′〉, (5.6)

(�a ◦ d)(�) = (d ◦ �a)(�), (5.7)

�D(d)(�) = (�a ◦ d)(�), (5.8)

for all �, �′ ∈ a and d ∈ D.

Proof. Applying Lemma 5.1, we see that corresponding to � ∈ Cent(L) are maps �A ∈
EndF(A), �B ∈ EndF(B), and �D ∈ EndF(D) such that �(x ⊗ a) = x ⊗ �A(a), �(u ⊗
b) = u ⊗ �B(b) and �(d) = �D(d) for x ⊗ a ∈ g⊗ A, u ⊗ b ∈ W ⊗ B, and d ∈ D. Set
�a(a ⊕ b) = �A(a) + �B(b) and observe that �a(A) ⊆ A and �a(B) ⊆ B clearly hold.

Now suppose x ⊗ a, y ⊗ a′ ∈ g⊗ A, and consider �([x ⊗ a, y ⊗ a′]). When � is as in
(5.2), then

�([x ⊗ a, y ⊗ a′]) = [x ⊗ a, �(y ⊗ a′)] ⇐⇒
[x, y] ⊗ �a(aa′) + (x|y)�D(〈a, a′〉) = [x ⊗ a, y ⊗ �a(a

′)]
= [x, y] ⊗ a�a(a

′) + (x|y)〈a, �a(a
′)〉.

Equating components shows that �a(aa′) = a�a(a
′), and �D(〈a, a′〉) = 〈a, �a(a

′)〉 hold
for all a, a′ ∈ A. Similarly, using �([x ⊗ a, y ⊗ a′]) = [�(x ⊗ a), y ⊗ a′], we obtain
�a(aa′) = �a(a)a′ and the second equality in (5.6) for all a, a′ ∈ A.

Now when � is as in (5.3), then

�([x ⊗ a, y ⊗ a′]) = [x, y] ⊗ 1
2 �a(aa′ + a′a)

+ (x ◦ y) ⊗ 1
2 �a(aa′ − a′a) + (x|y)�D(〈a, a′〉) while

(5.9)

[x ⊗ a, �(y ⊗ a′)] = [x ⊗ a, y ⊗ �a(a
′)]

= [x, y] ⊗ 1
2 (a�a(a

′) + �a(a
′)a)

+ (x ◦ y) ⊗ 1
2 (a�a(a

′) − �a(a
′)a) + (x|y)〈a, �a(a

′)〉.
In particular, if � = Ar for r �2, we may set x = e1,1 − e2,2 = y (matrix units) and get
[x, y] = 0, but x ◦ y �= 0. Then equating components in these expressions, we obtain that

�a(aa′ − a′a) = a�a(a
′) − �a(a

′)a

holds for all a, a′ ∈ A, (as does the first equality in (5.6)). Then putting that relation back
in, we determine that

�a(aa′ + a′a) = a�a(a
′) + �a(a

′)a

for all a, a′ ∈ A. Combining these gives �a(aa′) = a�a(a
′) for all a, a′ ∈ A.
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When � = Cr for r �2, then the summands on the right side of (5.9) lie in different
components, so equating them gives the same information as obtained in the A case.

Applying � to all the various other products in (5.2) and (5.3) and arguing similarly will
complete the proof of the proposition. �

For the centroidal transformation �a ∈ Cent(a) coming from an element � ∈ Cent(L)

as in Proposition 5.4, it follows that �a(1) ∈ A∩Z(a), as �a preserves the space A and the
unit element of the coordinate algebra a belongs to A.

The inner derivations of the coordinate algebra a involve certain expressions in the left
multiplication and right multiplication operators which can be found in [2, (2.41)]. For any
� ∈ Cent(L), the associated transformation �a belongs to Cent(a), so it commutes with
the left and right multiplication operators of a. It also commutes with the involution � on a
when � is of type Cr , as �a preserves the spaces A and B, which are the symmetric elements
and skew-symmetric elements respectively relative to �. Thus, �a commutes with the inner
derivation D�,� for all �, � ∈ a, and

�a ◦ D�,� = D�a(�),� = D�,�a(�). (5.10)

As

〈�, �〉() = D�,�(), (5.11)

we have

(�a ◦ 〈�, �〉)() = 〈�a(�), �〉() = 〈�, �a(�)〉() = �D(〈�, �〉)(), (5.12)

so that for z := �a(1),

z〈�, �〉() = 〈z�, �〉() = 〈�, z�〉() = �D(〈�, �〉)()

for all �, �,  ∈ a. Combining this with Proposition 5.4, we obtain the following:

Corollary 5.13. Assume L is a �-graded Lie algebra as in Proposition 5.4, and let � ∈
Cent(L). Then there exists an element z (=�a(1) ∈ A) in the centre Z(a) of the coordinate
algebra a of L such that

�(x ⊗ a) = x ⊗ za,

�(w ⊗ b) = w ⊗ zb,

�(〈�, �〉) = 〈z�, �〉 = 〈�, z�〉, (5.14)

for all x ⊗ a ∈ g⊗ A, w ⊗ b ∈ W ⊗ B, �, � ∈ a.

Theorem 5.15. Let L = (g ⊗ A) ⊕ (W ⊗ B) ⊕ 〈a, a〉 denote a Lie algebra graded by
a finite reduced root system � with coordinate algebra a = A ⊕ B. Then Cent(L)�Za,
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where Za is the set of elements z in Z(a) ∩ A which satisfy the following properties:

(a) 〈z�, �〉 = 〈�, z�〉 for all �, � ∈ a;
(b)

∑
t 〈�t , �t 〉 = 0 implies

∑
t 〈z�t , �t 〉 = 0.

More specifically, if z ∈ Z(a) ∩ A satisfies (a) and (b), and if � ∈ EndF(L) is given by
(5.14) above, then � ∈ Cent(L); and every element of Cent(L) has this form.

Proof. Suppose z ∈ Za, and define � as in (5.14). We need to know that the action of �
on 〈a, a〉 is well-defined. But that is apparent from condition (b). Also, to make sense of the
definition, we must have za ∈ A and zb ∈ B for a ∈ A, b ∈ B, which is of course obvious in
case a=A, i.e., � is simply laced. If � is not simply laced and � �= F4 or G2, the condition
follows from the fact that the subspaces A and B are the symmetric and skew-symmetric
elements with respect to an involution of a ([10]).

In case � = F4 or G2, the algebra a is a unital algebra over the commutative associative
subalgebra A = A.1, while the subspace B is the kernel of an A-linear trace functional
a → A, and hence AB ⊂ B. The fact that � ∈ Cent(L) can be verified directly using
Proposition 5.4. Now for the other direction, apply Corollary 5.13 to deduce � has the form
in (5.14). If

∑
t 〈�t , �t 〉= 0, then � must map that expression to 0, so that

∑
t 〈z�t , �t 〉= 0.

�

A �-graded Lie algebra L with trivial centre has the following form L = (g ⊗ A) ⊕
(W ⊗ B) ⊕ Da,a, where Da,a is the space of all inner derivations. In this particular case,
Dz�,� = D�,z� for all �, � ∈ a and all z ∈ Z(a) ∩ A. Moreover, zD�,� = Dz�,�, so that (b)
holds as well. Therefore, Theorem 5.15 implies:

Corollary 5.16. Let L = (g ⊗ A) ⊕ (W ⊗ B) ⊕ Da,a denote the centreless Lie algebra
graded by a finite reduced root system � with coordinate algebra a=A⊕B. Then Cent(L)

�Z(a) ∩ A.

Any �-graded Lie algebra K = (g ⊗ A) ⊕ (W ⊗ B) ⊕ 〈a, a〉 with coordinate algebra
a=A⊕B is a cover of the centreless �-graded Lie algebra L= (g⊗A)⊕ (W ⊗B)⊕Da,a
with that same coordinate algebra via the map which is the identity on (g⊗A)⊕(W ⊗B) and
sends 〈�, �〉 to D�,�. By Theorem 5.15 and Corollary 5.16, there is always an embedding

Cent(K) → Z(a) ∩ A�Cent(L).

Of course, we already knew that from Lemma 2.7(c).

Example 5.17. Let K= (g⊗ F[t, t−1])⊕ Fc be the derived algebra of an untwisted affine
algebra. As an application of general results, we have seen in Corollary 3.6 and then again
in Example 4.14 that K is central. An alternate proof of this fact comes from specializing
Theorem 5.15.

Indeed, K is a �-graded Lie algebra with grading subalgebra the split simple Lie algebra
g. The element c is central, and [x ⊗ tm, y ⊗ tn] = [x, y] ⊗ tm+n + (x | y)〈tm, tn〉 for all
x, y ∈ g, where 〈tm, tn〉=m�m,−nc. The centreless �-graded Lie algebra L with the same
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coordinate algebra is just the loop algebra L := g⊗F[t, t−1], whose centroid according to
Corollary 5.16 is Cent(L)=F[t, t−1], since a=A=F[t, t−1] is a commutative associative
algebra (compare Remark 2.24 and Remark 2.27 with � = id). By Theorem 5.15, we know
that each element � ∈ Cent(K) is determined by an element z=∑

p kptp ∈ Za=a, which
satisfies 〈ztm, tn〉 = 〈tm, ztn〉 for all m, n ∈ Z. Thus,

∑
p

kp(m + p)�m+p,−n =
∑
p

kpm�m,−n−p.

must hold. If kq �= 0 for some q �= 0, then choosing m, n so that m=−n−q �= 0, we obtain
m + q = m, a contradiction. So it must be that z= k01. Consequently, Cent(K) = F id.

5.2. Lie algebras graded by nonreduced root systems (the BCr case)

For simplicity, we will assume r �3. Exceptional behaviour occurs for small ranks, and
somewhat different arguments need to be used for them. We will not address those cases
here. In what follows, we will apply results from [3] without specifically quoting chapter
and verse.

When r �3, each BCr -graded Lie algebra L admits a decomposition,

L = (g⊗ A) ⊕ (s⊗ B) ⊕ (V ⊗ C) ⊕ D,

relative to the grading subalgebra g. The spaces s and V are irreducible g-modules and D is
the sum of the trivial g-modules. Moreover,

(a) The sum a = A ⊕ B is a unital algebra with involution � whose symmetric elements
are A and skew-symmetric elements are B.

(b) The algebra a is associative in all cases except when g is of type C3. In that exceptional
case a is an alternative algebra, and the set A of symmetric elements must be contained
in the nucleus (associative centre) of a.

(c) The space C is a left a-module, and it is equipped with a hermitian or skew-hermitian
form �(, ) depending on whether �g is of type Br , Dr or Cr .

(d) b= a⊕ C is an algebra (the coordinate algebra of L) with product given by

(� + c) · (�′ + c′) = ��′ + �(c, c′) + �.c′ + �′�.c.

Now suppose � ∈ Cent(L). Then by Lemma 5.1 (compare also Proposition 5.4), it
follows that there are transformations �a, �C , and �D such that

�((x ⊗ a) + (s ⊗ b) + (v ⊗ c) + d) = (x ⊗ �a(a)) + (s ⊗ �a(b))

+ (v ⊗ �C(c)) + �D(d).

SinceM=(g⊗A)⊕(s⊗B)⊕〈a, a〉 is a subalgebra having exactly the same multiplication
as in (5.3) (think of s as playing the role of W in the reduced case), we obtain just as before
that there exists an element z ∈ Za such that �(x ⊗ a) = x ⊗ za, �(s ⊗ b) = s ⊗ zb, and
�(〈�, �′〉) = 〈z�, �′〉 = 〈�, z�′〉 for all a ∈ A, b ∈ B, �, �′ ∈ a, x ∈ g, and s ∈ s.
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Note that �([x ⊗ 1, u ⊗ c]) = �(x.u ⊗ c) = x.u ⊗ �C(c), which must equal [�(x ⊗
1), u ⊗ c] = [x ⊗ z, u ⊗ c] = x.u ⊗ z.c for all x ∈ g, v ∈ V , and c ∈ C. Thus, �C(c) = z.c.
Applying the formulas in [3, (2.8)], we determine from the relation �([u ⊗ c, v ⊗ c′]) =
[�(u⊗c), v ⊗c′]=[u⊗c, �(v ⊗c′)] that �(〈c, c′〉)=〈z.c, c′〉=〈c, z.c′〉 for all c, c′ ∈ C.
Since D = 〈a, a〉 + 〈C, C〉, this determines � completely.

Theorem 5.18. Let L=(g⊗A)⊕(s⊗B)⊕(V ⊗C)⊕〈b, b〉 denote a Lie algebra graded
by BCr for r �3 with coordinate algebra b=a⊕C where a=A⊕B. Then Cent(L)�Za,
where Za is the set of elements in Z(a) ∩ A which satisfy the following properties:

(a) 〈z�, �′〉 = 〈�, z�′〉 for all �, �′ ∈ b;
(b)

∑
t 〈�t , �

′
t 〉 = 0 implies

∑
t 〈z�t , �

′
t 〉 = 0 for all �t , �

′
t ∈ b.

More specifically, if z ∈ Z(a) ∩ A satisfies (a) and (b), and if � ∈ EndF(L) is given by

�(x ⊗ a) = x ⊗ za,

�(s ⊗ b) = s ⊗ zb,

�(v ⊗ c) = v ⊗ z.c,

�(〈�, �′〉) = 〈z�, �′〉 = 〈�, z�′〉, (5.19)

for all x ⊗ a ∈ g⊗ A, s ⊗ b ∈ s⊗ B, v ⊗ c ∈ V ⊗ C, and �, �′ ∈ b, then � ∈ Cent(L);
and every element of Cent(L) has this form.
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