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Abstract 

We solve two problems posed by E. Michael (1981) concerning whether certain 
compact-covering maps are inductively perfect, we generalize a theorem of A. Ostrovsky on 
a condition under which tri-quotient maps are inductively perfect and we present an 
example which answers a more recent question of Michael in the same general area. 
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1. Introduction and preliminaries 

In order to state the problems 
assumed to be continuous. Recall 

we need a few definitions. All maps will be 
that a surjective map f : X + Y is inducticely 

perfect if there is an X’ LX such that f[X’] = Y and f I X’ is perfect. A 

surjective map f : X + Y is (countable-)compact-cocering if every (countable and) 
compact K c Y is the image of some compact C LX. 

In [7] Michael asked the following questions (which we state verbatim): 
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Question 1.1. Let f : X + Y be a map from a separable metrizable space X onto a 
metrizable space Y, with each f-‘y compact. 

(a) If f is countable-compact-covering, must f be compact-covering? 
(b) If f is compact-covering, must f be inductively perfect? 

Question 1.2. Let f : X -+ Y be a map from a separable metrizable space X onto a 
countable metrizable space Y. If f is compact-covering, must f be inductively 
perfect? 

In [2] Question 1.1(a) is solved in the affirmative, actually without using 
separability of X. Here we present affirmative solutions to both Questions 1.1(b) 
and 1.2. These are given in Sections 2 and 3, respectively. 

Questions 1.1 and 1.2 were originally asked in [6] as special cases, involving only 
elementary concepts, of two more general questions about tri-quotient maps. 
These maps, which were introduced in [5] and which will be defined in Section 4, 
include all open maps, all inductively perfect maps, and all countable-compact- 
covering maps with regular domain, first-countable Hausdorff range, and Lindelijf 
fibres. See [6] for details. 

Ostrovsky proved in [9] that if f : X + Y is a tri-quotient map of a regular space 
X onto a paracompact space Y such that there exists a perfect extension F : X * + Y 
of f such that X is a G,-set in X *, then f is inductively perfect. In Section 4 we 
show that this remains true if we replace “G,-set” by the more general concept of 
“W,-set” (see Section 4 for the definition of a IV,-set) and obtain the same 
conclusion. This generalization of Ostrovsky’s theorem can be used to give an 
alternative proof of [5, Theorem 6.61. 

In Section 5 we describe an example which provides a negative answer to a 
recent question of Michael [S] concerning partition-completeness. 

Our topological terminology generally follows that of [31 and our set-theoretic 
terminology follows that of [41. 

Cantor-Bendixson height 1.3. Let X be a topological space and (Y be an ordinal. 
The at/z detiuatiue of X, denoted by D(*)X, is defined inductively as follows: 

@“‘X = X 

DC”+ 1)X &Wx, { x: x is an isolated point in D’“)X}, 

D(“l)X = n D(p)X for limit ordinals LY. 
P<ff 

The smallest (Y for which Dca)X = D (Ufl)X is called the Cantor-Bendixson 
height of X (abbreviated CB-height in the sequel). Note that the CB-heights of 
compact sets K are 0 or successor ordinals, and if X is a countable space, then the 
CB-height of X is a countable ordinal. 

Claim 1.4. Let X be a space, K LX be compact, and let (W,),, E o be a decreasing 
base for K in X. Zf Ci c W, is compact for all i E w, then U n E ,C,, U K is compact. 
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Proof. Suppose % is an open cover of C = U n E ,C, U K. There is a finite Z’ c Z 
such that Kc U Z’. Thus there is j E w such that W, c IJ ZY’. For each i <j there 
is a finite Zi c Z such that Ci c U gi. Then lJ(ZL: i <j} U 2Y’ is a finite subcollec- 
tion of % which covers C. 0 

Remark 1.5. In Section 2 we shall need the following fact which can easily be 
deduced from Claim 1.4 by noting that the H appearing in the fact has a 
decreasing base in X: 

Let H be a compact G,-subset of a compact space X and let (ll(: i E w> be a 
decreasing base for a compact subspace K of a space Y. If C, is compact for all 
nEw, and C,,cHX W,, then U n E ,C,, u (H X K) is a compact subset of X x Y. 

2. Solution of problem 1.1(b) 

The aim of this section is to prove Theorem 2.4, which actually gives an 
affirmative answer to both parts of Question 1.1. Note, however, that our proof 
makes use of the affirmative answer to Question 1.1(a) in [2] (see the beginning of 
the proof of Theorem 2.0). We do not know whether one can obtain a positive 
answer to Question 1.1(b) without either quoting the positive answer to Question 
l.l(a> or essentially repeating the argument from 121. We believe that the proof of 
Theorem 2.0 given here is of independent interest. 

First we concentrate on a special case. 

Theorem 2.0. Let L, M be compact metric spaces, let A c L X M, and denote by pz 
the projection map on the second coordinate. Assume pz 1 A : A +p2[ A] is count- 
able-compact-covering and, for all y EPJA], the set (pz I A)-‘{ y} is compact. Then 
pz I A is inductively perfect. 

We will prove Theorem 2.0 using Lemma 2.1 below. Let A be as in Theorem 
2.0. Define A+=A U {(t, 2): t EL, z E M\p,[A]}. We shall call B c L x M 
countabZe-compact-covering iff the map p2 I B : B + pz[ Bl is countable-compact- 
covering. 

Now we are ready to formulate the key lemma. Since we believe that this lemma 
is of some independent interest, we shall formulate a slightly more general version 
than is needed in the proof of Theorem 2.0. 

Lemma 2.1. Suppose L is compact and perfectly normal, M is a first-countable 
T,-space, and A c L X M. If all fibres of p2 1 A are compact, and A is countable- 
compact-covering, then A + is also countable-compact-covering. 

Proof. We shall prove the lemma only for the case that M is a Tychonoff space. 
One can prove the result for T,-spaces M by an uninspiring modification of the 
present, more transparent argument, and we shall need the lemma only for metric 
M anyway. 
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In this proof, we use the following terminology: Let U, V be nonempty sets, 
U c L, V CM. Then, relative to A as in Theorem 2.0, the pair (U, VI is said to be 
nice iff for every compact, countable K c Vnp,[A] there exists a compact C L (U 
x K) nA such that pJC1 = K. (Such a set will be called a compact Zifting of K.) 

For (Y <q, the pair (17, V> is called cr-nice iff for every compact, countable 
KG V of CB-height < CY + 1, there is a compact Cc (U X K) nA+ such that 
p2[C] = K. Note that th e d f’ t’ e mi ion of “nice” involves A, whereas the definition of 
“a-nice” involves A+. Also note that if p < (Y, then a-niceness implies p-niceness. 

Consider the following nice statements: 

st( cr, U, V) : If the pair (U, V) is nice, then it is a-nice. 

Claim 2.2. If (Y < wl, then st(a, U, V) holds for every pair (U, V) such that U is a 
nonempty closed subset of L, and V is a nonempty open subset of M. 

Proof. Assume toward a contradiction that the claim is false. Let (Y be the smallest 
ordinal such that st(a, U, V) fails for some U, V as in the assumption, and let 
(U, V) be a witness. If K is countable and compact of CB-height 0, then 
K = Kc’) = fl is a compact lifting of K, so we may assume (since st(p, U, V) holds 
for every p < a> that 

for every countable compact subset K c V of CB-height < cz there 

isacompactC&(U~V)nA+suchthatp,[C]=K. (*) 

Now let K be a compact, countable subset of V of CB-height (Y + 1. Since 
Dcn)K is finite, we may restrict our attention to the case where D’*‘K = {y) for 
some y (if K=K,U ... u K, and Ci is a compact lifting of Ki for each i < I, then 

c,u . . . U C, is a compact lifting of K). 

Case 1: y @p2[Al. 
Let <I/;: i E w) be a decreasing open neighborhood base for y such that 

Kc V, c_ V and, for all i E w, the boundary Fr(l/l:) is disjoint from K (possible, 
since K is countable and M is Tychonoff and first-countable). For all i E w, let 
Ki = K n (Vi\ 5, ,). Then Ki is countable and compact (K, is a closed subspace of 
K since cl,(~)nK=(Fr(V)uI/,)nK=I/j:nK, thus (y.nK)\y+, is closed in 
K), and of CB-height < LY, so by (*I it has a compact lifting C, c (U X b() n7A +. 
Let C = U iEWCi u (U x (y}). Clearly, p2[C] = U I EOpZICIl U {y) = K. Moreover, 
by Remark 1.5, C is a compact subset of (U X V) fTA +. 

Case 2: y EpJAl. 
Let S = {x: (x, y) EA} = (p2 I Ajp’{y}. By assumption, S is compact, so S fl U 

is a compact subspace of U (recall that U is a closed subspace of the compact 
space L). Since S n U is G, in U, there exists an external base (relative to U) {y: 
i E w} of S n U such that cl,y+ I 2 Wi for every i. 

Subclaim 2.3. For every i E w there exists an open y c V such that y E v and the 
pair (W$, I/;) is nice. 
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Proof. If not, there exist an i E o and a decreasing neighborhood base {Vi: j E w} 
of y such that I/” = I/ and for all j E w, there is a compact, countable Kj & Vj n 
p,[A] such that every compact lifting C, CA of Kj contains a point not in F x Vi. 
The set K= lJ jEw K, u {y} is countable and compact by Claim 1.4. Since (U, V) is 
nice and K c VnpJAl, there is a compact lifting C c (U x V> nA of K. Since 
p2 I C is perfect, C, = C np;‘K, is a compact lifting of Kj. Thus for all j E w, 
there exists (xi, y,) E C,\<w. X V9, so that xj 66 II$ By the compactness of C, the 
sequence ((xi, y,): j E w) has a cluster point (u, U) E C. Since yj E V’ for all j, we 
have limj,,yj = y, thus u = y. But x, E I!/\ W, implies that u P lI$. On the other 
hand, u E S n U c Wi, which is a contradiction. 0 

Proof of Claim 2.2 (continued). We may now choose for every i E w a y as in 
Subclaim 2.3 in such a way that I/ r+, c Vi and (y: i E w} is a base at y such that 
Fr(v.) n K = @ (note that if CWj, VI> is nice and G, c y, then <y, G;) is also nice). 

For all i E w, let K, = K\ I$ Then Ki is of CB-height < (Y. Also K, + 1 \Ki = (y 
\y+*> n K is closed in K (for cl,(y) n K c (Fr(I/;) u y> n K = 4 n K). Thus 
K,, 1 \Ki is a compact, countable subspace of V, of CB-height < (Y, so by the 
choice of (Y it has a compact lifting Ci z (cl,(W,) x y> nA +. (We use one more 
monotonicity property of niceness: If (w, v) is nice, then so is (cl,(Wi), y>.> Let 
C = lJ irwCl U ((S n U> x {y}>. Note that clL(Wi+,)c y and thus (7 it,,,clL(v) = 
S n U.) Now Remark 1.5 implies that C c (U x V) nA+ is compact. Since p2[C] 
= K, this is the lifting required in Case 2. 0 

Proof of Lemma 2.1 (continued). Assume A is countable-compact-covering. Then 
the pair (L, M) is nice. Let K ZM be countable and compact. Suppose K has 
CB-height <(Y + 1. By Claim 2.2, the pair (L, M) is a-nice, hence K has a 
compact lifting C CA+. 0 

Proof of Theorem 2.0. Let A be as in the assumptions of Theorem 2.0. Then in 
particular, A satisfies the assumptions of Lemma 2.1, and thus A+ is also 
countable-compact-covering. By 121, the set A + is also compact-covering. Hence 
there exists a compact set C CA + such that (pz I A+)[C] = M. Let C = C nA, and 
f =pz I c’. Then f is a perfect mapping of C onto p*[Al: Note first that if 
y l pZ[Al, there exists x such that (x, y) E C. Since C is contained in the union of 
the disjoint sets d and L X (M\p,[A]), it follows that (x, y) E C. Hence f is 
onto. Also, for y ep2[A], we have f-‘(y) =p;‘(y} n i; = (p;‘(y) n7A) n C, which 
is compact. 

It remains to show that the map f is closed. If B c C is closed, then B = 
cl LxM(B) n C. If Y ~p~[cl~~,JB)l np2[Al, then there is an x such that (x, y) E 
cl LxM(B) c C. Since y l p~[Al, the point (x, y) E clL,,(B) n c = B. Thus f[B] 

=P,[BI =P&&M (B)] npJA1. Since the closed subset cl,,,(B) of the compact 
metric space L X M is compact, its continuous image p2[clLxM(B)I is also com- 
pact. Hence f[Bl is closed in p,[A], and we have shown that f is a closed and 
thus a perfect mapping. q 
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The next theorem covers the general case and thus yields a positive answer to 

Question 1.1(b). 

Theorem 2.4. Let f : X+ Y be a countable-compact-covering map from a separable 
metrizable space X onto a metrizable space Y such that each fibre f-‘( y} is compact. 
Then f is inductively perfect. 

Proof. We apply Theorem 2.0. We assume X and Y are embedded in I” and, in 
the notation of Theorem 2.0, let L = M = I”‘. Let A = r( f >, the graph of f, and 
let px = p’ 1 r( f ), py =p2 I T( f >. Clearly, py is countable-compact-covering. Also 
p y ‘( y} = f- ‘( y} x (y} is compact for all y E Y. Thus Theorem 2.0 implies that p y 
is inductively perfect. Thus there exists B cr( f > such that py I B is a_perfect 
mapping of Z? onto Y. Let C = (x EX: (x, f(x)) EBI =p,[Bl, and let f =f I C. 
Then f: C + Y is continuous, and if y E Y, then there is b E B such that 
p_,(b) = y. Since y = f(x) for some x EX with (x, y> E B (so x E C), the function 
f is onto. 

If y E Y, the inverse image f’(y1 =px[p;‘(y) n Bl =P~[(P~ I B)-‘(IYII. Since 

py ) B is perfect, (py I B)-‘(y} is compact, so fP’Iyl is also compact. Suppose E is 
closed in C. Then f-[ E] = (p’, I B)[ pi ‘( E)]. Since pi ‘E is closed in B (for 
pi ‘E c B and px is continuous on B), and since the map py I B is closed, f is also 

a closed map. 0 

3. Solution of problem 1.2 

Let (X, m,) be a metric space, and let f: X + Y be a continuous surjection of 
X onto a topological space Y. By Z?’ we denote the family of all nonempty compact 
subsets of X. On Z2, we define two functions: 

d(K, L) =inf{E>O: (VqEL)(IpEK)[m(p, q) <E]} 

(where m is the metric on X>, 

p(K, L) = max(d(K, L), d(L, K)}. 

The function p is a metric, sometimes called the Hausdorff metric, which 
induces a compact T,-topology on Z, which we shall refer to as the hyperspace 
topology. 

The function d is not a metric; however, the family (B,(K): E > 0, K E 2”) 
(where B,(K) = (L E A?: d(K, L) < E)) is still the base for a topology. We shall 
refer to the latter as the d-topology. Whenever topological properties of 3? are 
considered, and no topology is specified, we have in mind the d-topology. 

The hyperspace topology is richer than the d-topology. Therefore, the d-topol- 
ogy is still compact, but not T2. In fact, the d-topology is not even T’, but only T,. 
It also follows immediately that the d-topology is hereditarily Lindelof. 

Also, suppose K, L, R, S E Z are such that Kc L. Then 

(a) d(K, RI 2 d(L, R), 
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(b) d(R, K) G&R, L), 
(c) d(R, S> = 0 iff S c R, 
(d) d(L, S)<d(L, R) +d(R, S>. 

Definition 3.0. We say that a function f : X -+ Y has Property A if there exists an 
indexed family {z?: y E Y) of nonempty subspaces of R such that for all y E Y 
and KEZ,,: 

6) K c~~‘{Y), 

(ii) for every F > 0 there exists a neighborhood U of y such that for all y’ E lJ 
there exists K’ E AFy, such that d(K, K ‘) < F. 

The solution of Michael’s Problem 1.2 is an immediate consequence of the 

following two theorems: 

Theorem 3.1. Suppose X is a metric space, Y is a first-countable zero-dimensional 
space, and f : X - Y is a countable-compact-covering surjection such that euery fibre 

off is separable. Then f has property A. 

Martin’s axiom for families of size less than K, MA,, is the statement: 
“Whenever (P, < ) is a nonempty partial order satisfying the ccc, and 9 is a 
family of <K dense subsets of P, then there is a filter g in P such that 
G n D f k!i for each D ~9.” [4, p. 541. 

Theorem 3.2. Suppose MA, holds, Y is zero-dimensional and second-countable, 
~Y[<K, andf:X * Y is a surjection of a metric space X onto Y that has Property A. 
Then f is inductively perfect. 

Remark 3.3. To see how the answer to Michael’s question follows from Theorems 
3.1 and 3.2, note that MA,{, is a theorem of ZFC, and that every metric space of 
cardinality less than that of the continuum is zero-dimensional. 

Proof of Theorem 3.1. For y E Y, let zV be the family of all K E Z such that 

(I) K c_f-‘{y}, 
(II) for every compact, countable E c Y there exists a compact C 2X such that 

C n f-‘(y) c K and f [Cl = E. 
Since (I) is the same as (i) of Definition 3.0, it suffices to prove (ii) of that 

definition. 

Definition 3.4. Let E be a compact, countable subset of Y, let y E Y, and let 
K E A? be such that K 5 f-‘{y). We say that E eliminates K if there is no compact 
CcX with f[C]=E and Cnf-‘{y}cK. 

Claim 3.5. (a) If E eliminates K cf-‘{ y}, then y E E. 
(b) Let y E Y. Then fly is the family of all Kc f-‘{ y) such that K E A? and no 

compact, countable E c Y eliminates K. 
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Cc> If E eliminates K c f - ‘(~1, and U is a clopen neighborhood of y 
E n U also eliminates K. 

(d) If E c F are compact, countable subsets of Y, and if E eliminates 
does F. 

in Y, then 

K, then so 

(e) If E eliminates some K c f- ‘( y), then there is some neighborhood V of K such 
that E eliminates every L E V which is a subset of fP’(y}. 

Proof. (a) and (b) are obvious. For the proof of (c), note that both E n U and 
E \ U are compact, countable, and, if C, D are compact subsets of X such that 
f[C]=En U, f[Dl=E\U, then CUD is a compact subset of X with f[CUD] 
= E such that (CUD)nf-‘(y) = Cnf-l(y). For (d), note that if C is compact 

with f [Cl = F, then D = C n f-‘E is also compact with f [ D] = E. 
Now suppose (e) is false, and let E and K L f-‘(y) witness this fact. Then for 

every F > 0 there is a compact lifting D(s) &X of E such that (D(F)) n fP ‘( y) E 
B,(K). Fix such D(E) for every F > 0. 

Subclaim 3.6. Let E > 0. There is a clopen neighborhood U of y such that D(E) n 
fP’U E B,(K). 

Proof. Suppose not. Then, since Y is zero-dimensional and has countable pseu- 
docharacter, we find a sequence (Un)nEw of clopen neighborhoods of y with 

n U,=IYI, (*I rzE&l 
and a sequence (w,),~~ of points in D(F) such that f(w,> E U,, and 

d(D(e) nf-‘(y}, {w,}) aE forall nEW. (**) 

By compactness of D(E), the sequence (w,), EO must cluster at some point 
w E D(E). It follows from (*> that w E f-‘(y}, which by the monotonicity property 
of the d-function mentioned at the beginning of this section and the choice of 
D(E) contradicts (* *). 0 

Proof of Claim 3.5 (continued). Now let (~~1~ EW be a sequence of positive reals 

such that (8,) L 0. 
Using Subclaim 3.6, find a decreasing sequence (II,),,, of clopen neighbor- 

hoods of y such that 

D(s,) nfPIU,EBBn(K) forall nEti. (!) 

Let D = U .,,(D(e,) nf-‘(U,\U,+$ U K. 
Then f [ D] = E U {y} = E. The set D is compact by Claim 1.4, since (!) implies 

that there exists a decreasing base (W,),,, of K in X such that each DC&,) n 
f-‘W,\U,+,) 5z W,. If x ED and x E K, there exists n E w such that x E D(E,) n 
fPIW,\U,+,). Thus f(x)+y. H ence D n f-‘y c K. This contradicts the assump- 

tion that E eliminates K. 0 
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Corollary 3.7. For every y E Y, the set Zy is a closed, nonempty subspace of Z. 

Proof. Closedness follows immediately from Claim 3.5(b) and (e). To show that fly 
is nonempty, assume otherwise. That is, consider some y E Y such that every 
nonempty compact K Lf-‘{y} is eliminated by some compact, countable E, 2 Y. 

By Claim 3.5(e) again, for each K we find an open neighborhood V, of K in the 
d-topology on 2? such that E, eliminates all compact L E I/ such that L G f- ‘{y}. 
Since the d-topology on 2’ is hereditarily Lindelof, there is a sequence (K,), E w 

of compact subsets of f-l(y) such that every compact L c f- l(y) is eliminated by 
some EK,. Choose a decreasing sequence (U,), ~ w of clopen subsets of Y such that 

n .E,U,={y}.Let E= U n E _,(EK, n U,). A standard argument shows that E is a 
countable, compact subset of Y. Moreover, by what was said above and Claim 
3.5(c), every compact L Lf-‘(y) is eliminated by some E, n U,. It follows now 
from Claim 3.5(d) that E eliminates all compact L cf-‘(yj: which is impossible, 
since there is a compact C CX with f [Cl = E. Then C f? fP’(y} is obviously 
compact, is nonempty by Claim 3.5(a), and is certainly not eliminated by E. So we 
have reached a contradiction. 0 

Let us remark that the proof of Corollary 3.7 gives in fact something stronger, 
namely: 

Claim 3.8. Let y E Y and G ~2?‘\2?~. Then there is a single compact, countable 
E c Y such that E eliminates all compact L E G such that L c f ~ ‘{y). 

Proof of Theorem 3.1 (continued). Now we are ready to show that (ii) of Definition 
3.0 holds. Let y E Y and K E A? be such that K cfP’{y). Let (U,),,, be a 
decreasing sequence of clopen sets such that {U,: n E w) is a neighborhood base of 
y. Suppose that for some fixed F > 0 we can find a sequence (y,),,, such that 
y, E U, and Zy, n B,(K) = 6 for every n E w. Passing to a subsequence if neces- 
sary, we may for simplicity assume that y, E U, \ U,, + , for every n E w. We show 
that there is a compact, countable E G Y that eliminates K. This will prove (ii). 

Note that by Claim 3.8, for every n E w we may choose a compact, countable 
subset E,, of Y that eliminates all sets in B,(K) n 2 n9( f ~ '{ y,}> (where 9(X) 
denotes the family of all subsets of a set X). By Claim 3.5(c), we may assume that 

J% ~K\K+, for all n E w. Now let E = U n twE, u {y}. By Claim 1.4, E is 
compact. 

Let us show that E eliminates K. If C is a compact subset of X such that 
f[Cl =E, then by th e c once of E, and Claim 3.5(d), we find a sequence (w,),~~ h 
of elements of C such that f(w,> =y, and 

d(K, {w,}) 2.z for all n EW. (@I 

Since C is compact, this sequence clusters at some w E C. Now w E f ~ ‘( y) n C, 
since {U,,: n E w) is a base at y. But by (a), d(K, (WI> > E, hence w E K. Thus 
C n f-‘(y) is not a subset of K, and we have shown that E eliminates K. q 
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Proof of Theorem 3.2. In this proof we shall use a more set-theoretical language 
than in the rest of the paper. In particular, partial orders will be referred to as 
“forcing notions”. The following theorem will be referred to as the A-system 
lemma : “If & is any uncountable family of finite sets, there is an uncountable 
9 c&’ which forms a A-system, i.e., there is a fixed set r such that a n b = r 
whenever a and b are distinct members of 9.” For a proof see [4, p. 491. The set r 
will be called the kernel of the A-system. 

We shall construct an appropriate forcing notion P. First, we choose a count- 
able base ~8 for Y that consists of clopen subsets of Y such that &Z’ U {fl} is a field 
of subsets of Y. Next, we choose a countable dense (in the topology induced by p) 
subset _%7 of ~$7, and, for every y E Y, a countable dense (in the topology induced 
by p) subset Zy of Zy. Now our forcing notion P will consist of pairs of the form 
p = (f,, s,), where: 

(1) f, is a function such that 
(a) dom(f,) is a partition of Y into finitely many elements of G’. We shall 

denote dom(f,) by ZP in the sequel. 
(b) For every U E Z$, f,(U) is a set of the form B,(K) for some K ~3 and 

F E Q+u (4 such that Zy n f,(U) f fl for all y E U. 
(2) s,, is a function whose domain is a finite subset Y, of Y. Instead of s,(y) we 

shall write K,. 
(a) If U E ZP and y E U n dom(s,), then K, E f,(U). 
(b) K, •3~ for all y E dom(s,). 

We define a partial order s on P as follows: p s q iff 
(3) ZP is a refinement of ZVq’,, 
(4) if U’ c U, where U’ E Z$, U E 2Vq, then f,(U’> cf&U>, 
(5) sp 2s4. 

Claim 3.9. (P, s ) satisfies the CCC. 

Proof. We actually show that P has K, as a precaliber. Of course, MA, implies 
that every ccc forcing notion of size < K has Et, as a precaliber. However, the 
present proof does not use Martin’s axiom. Let A”’ be an uncountable subset of P. 
There are only countably many objects that can appear as first coordinates of 
elements of P. Thus, there is f such that for an uncountable A” GA”’ we have 
f, = f for all p EA”. By the A-system lemma, there exists an uncountable A’ CA” 
such that the family {Y,: p EA’} forms a A-system. Let us denote its kernel by U. 
Since u is finite, the set rIy E1; X_ is countable. Therefore, there exist a function 

C&E,. Zy and an uncountable A GA’ such that (y, g(y)) E sP for all y E u 
and p EA. Now it follows immediately from the definition of P that if p, q EA, 
then r= (f, s,us,) EP and rsp, q. q 

Claim 3.10. For every F > 0 and y E Y the following set is dense in I’: 

D; = (p: y E Y, and there exists a U E ~2~ such that Y E U and f,(U) GB,(K,)}. 
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Proof. Let y E Y. As a first step, we show that the set D, = {p: y E Y,> is dense in 
P. If p E P and y $6 Y,, then by (la) there exists U E Z$ such that y E U, and by 
(lb), G!z?~ nf,(U) # @. Since <Zy is dense in Zy, we may choose K, EZ~ nf,(U>. 

Then q = (f,, sp U ((y, K,)}) ED~, and clearly, q sp. 

Next we show that for every neighborhood I/ of y the set Dr = (p E 0,: there 
exists a U E Z’p such that y E U 2 I’} is dense in P. Let p ED, and let I/ be a 
neighborhood of y. Let U be the element of Z2p that contains y. Since 9’ is a base 
for Y, we find a U’ ~9 such that y E U’ c U n I/. Since 28’ U {@} is a field of sets, 
the family 22” = (~p\\U}> U (U’, U\U’) is a legitimate partition of Y (in the 
nontrivial case where U’ # U at least). Thus we can put f,(W) =f,(W) for 
WE%~\(U), f,(U’)=f,(U\U’>=f,(U>, and sq=sp. Then qEDr, and qsp. 

Now we are ready to tackle our task proper. Let e > 0, and let p E P. We want 
to construct q sp such that q ED;. We may assume y E Y,, i.e., (y, KY> ES,, for 
some K,. Choose E’ such that 0 <F’ G E and B,,(K,) cfp(U>, where y E U. By 
Property A, there is a neighborhood I/ of y such that for each y’ E I/ there is 
some K’ E Zyr with d( K,, K’) < E’. Fix such a V. Replacing I’ by a smaller 
neighborhood if necessary, we may assume that V n Y, = (y). As was shown above, 
we may replace p by a condition p’ sp such that p’ E Dr and fJU’> = f,(U), 
where U’ E gpg is such that y E U’ c V. Then U’ n Y, = (y}. Now put sy = sp,, 
Zq = Z$,,, f,(U’> =B,,(K,), and let f,(W)=fJW) for WZ U’. It is not hard to 
see that qED; and qsp’sp. 0 

Proof of Theorem 3.2 (continued). By MA,, if 1 Y 16 K, there exists a filter F c P 
that meets each of the sets D,” for y E Y and E E Q+n(O, w>. 

Let X’ = U(K,: there exist p E F and y E Y such that (y, KY> ES$. We show 
that the restriction of f to the subspace X’ of X is a perfect map onto Y. Since 
F n DJ # fl for every y E Y, the restriction f 1 X’ is onto. Moreover, since every 
two elements of F are compatible, it follows that for every y E Y there is exactly 
one K, such that (y, KY> E sp for all p E F n 0,. Therefore, X’ n f-‘(y} = K,, 

and thus every fibre of f I X’ is compact. 
Now let M LX’ be closed in X’ and let y E cl,(f[MI). Let K, =X’ n f-‘(y). 

For every n E w choose some p,, E D, ‘m + ‘) n F. Let U, E %& be such that y E U,. 
Choose y, E U, n f[Ml and x, such that f(x,> =y,. Pick q, spn such that 

4, E D;,. It follows that ( y,, Kyn) E sqn, and since q, sp,, we have Kyn E 
B l,cn+l)(Ky), i.e., d(K,, Ky,> < l/(n + 1). Since x, E Kyn, we also have 
d( K,, {x,,}) < l/(n + 1). It follows that the set {x,: n E w) has some cluster point 
x in K, (by compactness of K,), and therefore x EM (since M is closed in X’ 
and K, LX’). Now f(x) =y. We have thus shown that f I X’ is a closed map. 0 

4. Generalization of a result by Ostrovsky 

The main result of this section is the following. 
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Theorem 4.0. Suppose f : X + Y is a tri-quotient map of a regular space X onto a 
paracompact space Y If there exists a perfect extension f f : X+ + Y of f such that X 
is a W,-set in X+, then f is inductively perfect. 

It should be noted that in Theorem 4.0 we do not require X+ to have any 
separation properties whatsoever. 

A surjective map f : X--j Y is called tri-quotient [5, Definition 6.11 if one can 
assign to each open U in X an open U * in Y such that: 

(a> U* cf[Ul, 
(b) X” = Y, 
(c) UCI/ implies U*LV*, 
Cd) if y E U * and w is a cover of f-l{ y) I? U by open subsets of X, then there 

is a finite FzW such that y l (l_lF)*. 
The correspondence U * U * is called a t-assignment for f 
The formal definition of a W,-set will make its natural appearance at the 

beginning of the proof of Theorem 4.0. Let us first put Theorem 4.0 into the 
perspective of related theorems. Substituting in Theorem 4.0 “Gg” for “W,“, one 
obtains Ostrovsky’s theorem [9, Theorem 11. It will be evident from the definition 
of a W,-set that every G,-set is W,, but the converse is false. 

Ostrovsky obtains as a corollary to his theorem the following result of Michael 
[5, Theorem 1.61: 

A tri-quotient map f : X + Y of a Tech-complete regular space X onto a 
paracompact space Y is inductively perfect. 

However, as Ostrovsky mentioned in his paper, the following result of Michael 
[5, Theorem 6.61 is not a corollary of [9, Theorem 11. 

Theorem 4.1. A tri-quotient map f : X + Y of a sieve-complete regular space X onto a 
paracompact space Y is inductively perfect. 

We shall show later in this paper that Theorem 4.1 is in fact a consequence of 
Theorem 4.0. Let us now turn to the proof of Theorem 4.0. We shall use the 
convenient terminology of sieves developed in [l] to express concepts originally 
introduced by Wicke and Worrell under different names (see e.g. 1111 or the 
bibliography to [ 11). 

Proof of Theorem 4.0. Assume X, f, f’ and X+ are as stated in the hypothesis. 

Let (&,, dn, T~),~, be a strong W-sieve of X in X+, with go = {X’]. Thus each 
& = (17,: a =A,) is an open collection in X+ which covers X (i.e., U ‘%!,, 2X), 
and x,,: Anfl +A, is such that 

(1) If (Y E A,, then XI? U, = lJ{X n UP: p E ~;‘{a)}, and 

(2) if a~A,,+i, then cl,+(U,) c UT,Cau). 
A sequence ((Y,: n E w) will be called a z--chain for (‘2Zn,, tin, TV>,,, iff 

a, EA, and n-J(Y,,+ i> = (Y,, for all n E w. That ( Zn, tin, r,, >, E w is a strong 
W-sieve means that for every r-chain (LY,: n E w> we have cl,+(Uan+,) c lJa, and if 

XEl-l n ~ ,U& then x E X. X is a W,-set in Xf iff there exists a strong W-sieve of 
X in X+. 
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for the basic facts about WX we recommend [3, pp. 176-1781. For the convenience 
of the reader we use here the terminology from the above-mentioned source. 

Thus for a given space X, by g(X) (or simply g, since our space will always be 
the same) we denote the family of nonempty closed subsets of X, by F(X) (or 
simply F) the family of all ultrafilters on _~8. For each nonempty open U CX we 
denoteU*={~~F:(3A~~)[A~U]). 

The family {U *: U is nonempty open in X} is a base for wX. We need the 
following lemma. 

Lemma 4.2. Suppose U, V are nonempty open subsets of X such that cl,(V) c (I. 
Then cl,,(V*) L U*. 

Proof. We show the contrapositive. Suppose FE U *. Then no closed subset of U 
is in F, in particular, cl,(V) P 97 It follows now from [3, p. 177(3)] that there is 
B E F such that B n cl,(V) = @. Fix such B. Let W=X\cl,(V). Then B L W, 
and hence FE W*. Note that V n W = @, and hence by [3, p. 177(9)], also 
V * n W * = @. It follows that FE cl,,(V), and we have proved the lemma. 0 

Proof of Theorem 4.1 from Theorem 4.0. Let f, X and Y be as in the assumptions 
of Theorem 4.1, and note that Y is Tychonoff. We may treat f as a map from X 
into PY. By [3, p. 178, Theorem 3.6.211, there exists a continuous extension 
F: wX+pY of f. Fix such F, and let f’= F I F-‘Y. Then f’ is a perfect 
extension of f, and by Theorem 4.0, we shall be done if we prove the following: 

Lemma 4.3. Let f, ff, X, Y be as above, and denote Xf= F-‘Y. Then X is a 
W&-subset of Xf. 

Proof. This is similar to a result from [ll]. Let P= ( z?/~(,, tin, T~TT,),, E w be a strong 
sieve (i.e., for every r-chain (LY,: n E w> and every n E o, the inclusion clxUa,+, G 
lJa, holds) for X in X that witnesses sieve-completeness. Thus every filter .F of 
closed subsets of X that meshes with a r-chain of 9 clusters in X. 

Now form a sieve P’+ in X+ as follows: P = (%‘, dn, rnTT,), E w, where 
Zz = (U,‘: A E&J for all n E w, with Ui = (U,)* n X+ (The * -operation is the 
one from the description of the Wallman extension, not the t-assignment for f 1. By 
Lemma 4.2, this is a strong sieve. Now it suffices to show that it is a W-sieve for X. 
So suppose we are given a r-chain (A,: n E WI, and that .FE fj n ,,U,‘,. We need 
to show that ~“EX. If not, then 9 is a free ultrafilter of closed subsets of X. 
Since for every n and every B E F we have ~1,~ <U,*> n B # @, it follows from the 
proof of Lemma 4.2 that clx(UA,) n B f fl for eve6 B E 7. In other words, the 
filter 7 meshes with {U A,: n E o), and therefore, by the choice of 9, the filter 9 
clusters at some x E X. But since F is a filter of closed sets, this means that 
x E l-j 9. The latter contradicts the assumption that 9 is a free ultrafilter on g, 
so we are done. q 
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Claim 5.4. f is not compact-covering. 

Proof. It suffices to show that there is no compact subspace C CA such that 

f [cl =A(K). 

Suppose there were such a C, and let 

X= (&! <K: (hEW)[(l’Z, Ci) EC]}. 

Case 1: X is uncountable. 
Then there is some II E w such that (n, (Y) E C for uncountably many LY. But 

then (n, x *) E cl,+, Z(C). However, (n, x*) %?A C, so C is not closed in A(K)‘, 

hence C is not compact, a contradiction. 
Case 2: X is countable. 
Let a < K be a limit ordinal such that [a, (Y + w) n X = @. Since f 1 C is a 

surjection onto A(K), for every y E [a, (Y + w) we must either have (a + w, y) E C, 
or (n, y) E C for some n E w. By the choice of CY, the former will hold throughout 
the interval. But then C contains infinitely many elements of the form (LY + w, y), 
so the point ((Y + w, x *) E cI~(~#C), and we get a similar contradiction as in the 

first case. 0 

Claim 5.5. The map f is open. 

Proof. It suffices to show that for every a EA, there is a neighborhood base 22’(a) 

such that f [U] is open in A(K) for every U EL%‘(a). 

For (P, a)~A\{(x*, x*1), let A?@, a) = {I@, a)}}. Since CY and p are iso- 
lated points in A(K), this works. 

Let 9(x*, x*) = {((A(K)\F) x (A(K)\G)) nA: F, G are finite subsets of 

&K)\(X*)}. 
Now let us see which LY do not belong to 

f[((A(KhF) x(A(K)\G)) nAl. 

These are precisely the CY such that 

cwEG 

or 

(Y = A + n for some limit ordinal A, and both n E F and cx + w E F. 

One can now see that the complement of f[((A(K)\F) X (A(K)\G)) nA1 in 

A(K) has a cardinality of at most [G( + 1 F I*, and is thus finite. It follows that 
f[((A(K)\F)x(A(K)\G))nA] is an open neighborhood of x* in A(K). So the 

sets in Z&x*, x*) have the desired property, and we have proved the claim. 0 

Finally, let us prove the second part of Remark 5.2, i.e., the following. 

Claim 5.6. f is countable-compact-covering. 

Proof. Let E CA(K) be countable and compact. If E is finite, there is nothing to 
prove, so assume E is infinite. 
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Then x* EE. 
Let L(E) be the set of all limit ordinals A <K such that [A, A + w) n E # @. 

Arrange L(E) into a sequence (A,: k E a>, and let 

C=((n, A,+n): kEw, A,+~EE, ok} 

U{(A,+w, A,+n): kew, A,+n=E, n<k}u{(x*, x*)}. 

Clearly, f[C] = E. 
To show that C is compact, it suffices to prove that no point of the form 

(p, x*) is a cluster point of C, in other words, that for every p < K the set C 
contains only finitely many points of the form (p, a). Now, if p = II, then the only 
points with first coordinate /3 that may be contained in C are: (n, A, + 

n),..., (n, A,_, + n). If p = A, + w for some k, then the only points with first 
coordinate p that can belong to C are: (Ak + w, Ak), . . . , (A, + o, A, + k). In either 
case, there are only finitely many possibilities, so we are done. q 
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