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Abstract

We solve two problems posed by E. Michael (1981) concerning whether certain
compact-covering maps are inductively perfect, we generalize a theorem of A. Ostrovsky on
a condition under which tri-quotient maps are inductively perfect and we present an
example which answers a more recent question of Michael in the same general area.
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1. Introduction and preliminaries

In order to state the problems we need a few definitions. All maps will be
assumed to be continuous. Recall that a surjective map f: X - Y is inductively
perfect if there is an X'CX such that f[X']=Y and f|X' is perfect. A
surjective map f: X —» Y is (countable-)compact-covering if every (countable and)
compact K CY is the image of some compact C ¢ X.

In {7] Michael asked the following questions (which we state verbatim):
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Question 1.1. Let f: X — Y be a map from a separable metrizable space X onto a
metrizable space Y, with each f~'y compact.

(a) If f is countable-compact-covering, must f be compact-covering?

(b) If f is compact-covering, must f be inductively perfect?

Question 1.2, Let f: X — Y be a map from a separable metrizable space X onto a
countable metrizable space Y. If f is compact-covering, must f be inductively
perfect?

In (2] Question 1.1(a) is solved in the affirmative, actually without using
separability of X. Here we present affirmative solutions to both Questions 1.1(b)
and 1.2. These are given in Sections 2 and 3, respectively.

Questions 1.1 and 1.2 were originally asked in [6] as special cases, involving only
elementary concepts, of two more general questions about tri-quotient maps.
These maps, which were introduced in [5] and which will be defined in Section 4,
include all open maps, all inductively perfect maps, and all countable-compact-
covering maps with regular domain, first-countable Hausdorff range, and Lindel6f
fibres. See [6] for details.

Ostrovsky proved in [9] that if f: X - Y is a tri-quotient map of a regular space
X onto a paracompact space Y such that there exists a perfect extension F: X* > Y
of f such that X is a Gs-set in X *, then f is inductively perfect. In Section 4 we
show that this remains true if we replace “G,-set” by the more general concept of
“W,-set” (see Section 4 for the definition of a Wj-set) and obtain the same
conclusion. This generalization of Ostrovsky’s theorem can be used to give an
alternative proof of [5, Theorem 6.6].

In Section 5 we describe an example which provides a negative answer to a
recent question of Michael [8] concerning partition-completeness.

Our topological terminology generally follows that of [3] and our set-theoretic
terminology follows that of [4].

Cantor-Bendixson height 1.3. Let X be a topological space and « be an ordinal.
The ath derivative of X, denoted by DX, is defined inductively as follows:

DOX =X,
D@ by = D@X\ {x: x is an isolated point in DX},
D@WX = (| D®X for limit ordinals a.

B<a

The smallest « for which DX =D*DX is called the Cantor—Bendixson
height of X (abbreviated CB-height in the sequel). Note that the CB-heights of
compact sets K are 0 or successor ordinals, and if X is a countable space, then the
CB-height of X is a countable ordinal.

Claim 1.4. Let X be a space, K C X be compact, and let (W,), .. be a decreasing
base for K in X. If C, C W, is compact for all i € w, then U C, UK is compact.

i n€Ew-'n
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Proof. Suppose % is an open cover of C= U, . ,C, UK. There is a finite %' c %
such that K € U %’. Thus there is j € w such that W] c U%'. For each i <j there
is a finite %; C % such that C; € U %,. Then U{%;: i <j} U %" is a finite subcollec-

’

tion of % which covers C. O

Remark 1.5. In Section 2 we shall need the following fact which can easily be
deduced from Claim 1.4 by noting that the H appearing in the fact has a
decreasing base in X:

Let H be a compact Gg-subset of a compact space X and let (W: i €w) be a
decreasing base for a compact subspace K of a space Y. If C, is compact for all
ne€w,and C, CHXW, then U, ., C,U(HXK)is a compact subset of X X Y.

2. Solution of problem 1.1(b)

The aim of this section is to prove Theorem 2.4, which actually gives an
affirmative answer to both parts of Question 1.1. Note, however, that our proof
makes use of the affirmative answer to Question 1.1(a) in [2] (see the beginning of
the proof of Theorem 2.0). We do not know whether one can obtain a positive
answer to Question 1.1(b) without either quoting the positive answer to Question
1.1(a) or essentially repeating the argument from [2]. We believe that the proof of
Theorem 2.0 given here is of independent interest.

First we concentrate on a special case.

Theorem 2.0. Let L, M be compact metric spaces, let A CL XM, and denote by p,
the projection map on the second coordinate. Assume p,| A: A — p,[ Al is count-
able-compact-covering and, for all y € p,[ A), the set (p,| A)~ Yy} is compact. Then
D, | A is inductively perfect.

We will prove Theorem 2.0 using Lemma 2.1 below. Let A4 be as in Theorem
2.0. Define A*=AU{(t, 2): teL, zeM\p,[A]}. We shall cal BCL XM
countable-compact-covering iff the map p,|B: B — p,[B] is countable-compact-
covering.

Now we are ready to formulate the key lemma. Since we believe that this lemma
is of some independent interest, we shall formulate a slightly more general version
than is needed in the proof of Theorem 2.0.

Lemma 2.1. Suppose L is compact and perfectly normal, M is a first-countable
Ty-space, and A CL X M. If all fibres of p,| A are compact, and A is countable-
compact-covering, then A* is also countable-compact-covering.

Proof. We shall prove the lemma only for the case that M is a Tychonoff space.
One can prove the result for Ts-spaces M by an uninspiring modification of the
present, more transparent argument, and we shall need the lemma only for metric
M anyway.
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In this proof, we use the following terminology: Let U, V' be nonempty sets,
UcL,VcM. Then, relative to A as in Theorem 2.0, the pair (U, ) is said to be
nice iff for every compact, countable K C VN p,[ A] there exists a compact C (U
X K)N A such that p,[C]=K. (Such a set will be called a compact lifting of K.)

For a <w,, the pair (U, V') is called a-nice iff for every compact, countable
KcV of CB-height <a+1, there is a compact CC(UXK)NA"* such that
p,[C]1=K. Note that the definition of “nice” involves A, whereas the definition of
“a-nice” involves 4 ". Also note that if 8 < @, then a-niceness implies B-niceness.

Consider the following nice statements:

st(a, U, V'): If the pair (U, V') is nice, then it is a-nice.

Claim 2.2. If a <w,, then st(a, U, V') holds for every pair (U, V') such that U is a
nonempty closed subset of L, and V is a nonempty open subset of M.

Proof. Assume toward a contradiction that the claim is false. Let « be the smallest
ordinal such that st(a, U, V') fails for some U, V' as in the assumption, and let
(U, V) be a witness. If K is countable and compact of CB-height 0, then
K=K©®=¢ is a compact lifting of K, so we may assume (since st(8, U, V') holds
for every 8 < a) that

for every countable compact subset K C IV of CB-height < « there

is a compact C € (U X V) NA™* such that p,{C] =K (+)
c 2 .

Now let K be a compact, countable subset of V' of CB-height « + 1. Since
D@K is finite, we may restrict our attention to the case where D®K = {y} for
some y (if K=K, U --- UK, and C; is a compact lifting of K, for each i </, then
C,U -+ U, is a compact lifting of K).

Case 1: y € p,[ Al

Let (V;: i€w) be a decreasing open neighborhood base for y such that
KcV,cV and, for all i €w, the boundary Fr(V)) is disjoint from K (possible,
since K is countable and M is Tychonoff and first-countable). For all i € w, let
K, =KN (W \V,, ) Then K, is countable and compact (K; is a closed subspace of
K since ¢l (V) NK=Fr(V)UV)NK=V,NK, thus (;NK)\V,,, is closed in
K), and of CB-height <a, so by () it has a compact lifting C,c(U X V,)NA™.
Let C=U,.,C,UUXx{y}. Clearly, p,[C]=U,.,p,lC;]U{y} =K. Moreover,
by Remark 1.5, C is a compact subset of (UX V)NA~.

Case 2: y €p,[ A].

Let S ={x: (x, y)€A4}=(p,| A) {y}. By assumption, S is compact, so SN U
is a compact subspace of U (recall that U is a closed subspace of the compact
space L). Since S N U is G; in U, there exists an external base (relative to U) {W:
i€w} of SN U such that cl, W, , C W, for every i.

Subclaim 2.3. For every i € w there exists an open V,CV such that y € V; and the
pair (W, V) is nice.
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Proof. If not, there exist an i € w and a decreasing neighborhood base {IV/: j € o}
of y such that V° =V and for all j € w, there is a compact, countable K, c Vin
p,[ Al such that every compact lifting C; € A4 of K, contains a point not in W, X V7.
The set K= U ;. K; U {y} is countable and compact by Claim 1.4. Since (U, V') is
nice and K <V Np,[A], there is a compact lifting C c(UX V)N A of K. Since
p,1C is perfect, C,=Cnp, 1K is a compact lifting of K;. Thus for all j € w,
there exists (x;, y}) € C\ (W, X V’) so that x; & W,. By the compactness of C, the
sequence ((x;, y,): j € w) has a cluster point (u v) € C. Since y; € V4 for all j, we
have lim;_,.y; =y, thus v =y. But x, € U\ W, implies that u & W,. On the other

I

hand, u € S§ " U C W,, which is a contradiction. O

Proof of Claim 2.2 (continued). We may now choose for every i€w a V, as in

I

Subclaim 2.3 in such a way that V;,, €V} and {V;: i €} is a base at y such that
Fr(V,) N K = ¢ (note that if (W, V) is nice and G, C V;, then (W, G,) is also nice).
For all i € w, let K; =K\ V. Then K; is of CB-height <a. Also K;,,\K;=(V,
\Vi,)NK is closed in K (for cl,(V)NKc(Fr(V,)UV)NK=V,NnK). Thus
K, \\K; is a compact, countable subspace of V; of CB-height <a, so by the
choice of « it has a compact lifting C, C (cl,(W,) X V)N A*. (We use one more
monotonicity property of niceness: If (W, V}) is nice, then so is (cl, (W), V)).) Let
C=U,;.,C,ulSNnU)x{y}. Note that cl, (W, ;) W, and thus N, cl, (W)=
SN U.) Now Remark 1.5 implies that C c(U X V') ﬂA+ is compact. Since p,[C]
= K, this is the lifting required in Case 2. O

Proof of Lemma 2.1 (continued). Assume A is countable-compact-covering. Then
the pair (L, M) is nice. Let K CM be countable and compact. Suppose K has
CB-height <a + 1. By Claim 2.2, the pair (L, M) is a-nice, hence K has a
compact lifting CcA*. O

Proof of Theorem 2.0. Let A be as in the assumptions of Theorem 2.0. Then in
particular, A satisfies the assumptions of Lemma 2.1, and thus A" is also
countable-compact-covering. By [2], the set 4" is also compact- covering. Hence
there exists a compact set C €A™ such that (p, | ANNC]=M.Let C=CnN A, and
f=p,l C. Then f is a perfect mapping of C onto polAl: Note first that if
y €p,[ A], there exists x such that (x, y) € C. Since C is contained in the union of
the disjoint sets C and L X (M\p,[A)), it follows that (x, y) € C. Hence fis
onto. Also, for y € p,[ 4], we have f~{y} =p; 4y} N C = (p; {y} N A) N C, which
is compact.

It remains to show that the map f is closed. If B< C is closed, then B =
cly i (BYNC. If y €plel, ., (B)] Np,[A), then there is an x such that (x, y) e
cl«x(B) CC. Since y € p,[ A], the point (x, y) €cl; ,,(B)NC =B. Thus f[B
=py[ Bl=p,lcl; ,,(B)] Np,[A] Since the closed subset cl, . ,,( B) of the compact
metric space L X M is compact, its continuous image p,[cl, ,.,,(B)] is also com-
pact. Hence f[B] is closed in pol A], and we have shown that f is a closed and
thus a perfect mapping. O
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The next theorem covers the general case and thus yields a positive answer to
Question 1.1(b).

Theorem 2.4. Let f: X = Y be a countable-compact-covering map from a separable
metrizable space X onto a metrizable space Y such that each fibre f~'{y} is compact.
Then f is inductively perfect.

Proof. We apply Theorem 2.0. We assume X and Y are embedded in /“ and, in
the notation of Theorem 2.0, let L =M =1°. Let A =T(f), the graph of f, and
let py,y=p,| (), py=p,| [(f). Clearly, p, is countable-compact-covering. Also
py v} =Ff""y} x{y} is compact for all y €Y. Thus Theorem 2.0 implies that p,
is inductively perfect. Thus there exists B CI'(f) such that p,|B is a perfect
mapping of B onto Y. Let C ={x € X: (x, f(x)) € B} =p,[B], and let f=flc.
Then f:C—>Y is continuous, and if y €Y, then there is b&B such that
p_y(b) =y. Since y = f(x) for some x € X with (x, y) € B (so x € C), the function
f is onto.

If y €Y, the inverse image f~'(y} =py[py {y} N Bl=px[(py | B)"{y}]. Since
py | B is perfect, (p, | B)™'{y} is compact, so f~ Yy} is also compact. Suppose E is
closed in C. Then flE]l=(py|Blpyx'(E)). Since py'E is closed in B (for
px'E CB and py is continuous on B), and since the map p, | B is closed, f is also
a closed map. 0O

3. Solution of problem 1.2

Let (X, m,) be a metric space, and let f: X - Y be a continuous surjection of
X onto a topological space Y. By # we denote the family of all nonempty compact
subsets of X. On # 2, we define two functions:

d(K, L) =inf{e >0: (Vg€ L)(3p€K)[m(p, q) <el}
(where m is the metric on X),
p(K, L) =max{d(K, L), d(L, K)}.

The function p is a metric, sometimes called the Hausdorff metric, which
induces a compact T,-topology on #, which we shall refer to as the hyperspace
topology.

The function d is not a metric; however, the family {B(K): ¢ >0, K& .7}
(where B(K)={L e7: d(K, L) <¢}) is still the base for a topology. We shall
refer to the latter as the d-topology. Whenever topological properties of # are
considered, and no topology is specified, we have in mind the d-topology.

The hyperspace topology is richer than the d-topology. Therefore, the d-topol-
ogy is still compact, but not T,. In fact, the d-topology is not even T, but only 7,
It also follows immediately that the d-topology is hereditarily Lindeldf.

Also, suppose K, L, R, § € # are such that K C L. Then

(a) d(K, R)>d(L, R),
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(b) d(R, K) <d(R, L),
() d(R, S)=0iff SCR,
(d) d(L, S)<d(L, R)+d(R, ).

inaexedad iami

Definition 3.0. We say that a function f: X — Y has Property A if there exists an
nt h
Pt 1

indeved famail y . v Vl of nonem
lz/ -y j O none

and K€ #Z:

() Kcf Yy

(i) for every £ > 0 there exists a neighborhood U of y such that for all y' € U
there exists K' € 7, such that d(K, K') <e.

The solution of Michael’s Problem 1.2 is an immediate consequence of the

How mg two theorems:

=t

Theorem 3.1, Suppose X is a metric space, Y is a first-countable zero-dimensional
space, and f: X - Yis a countable-compact-covering surjection such that every fibre
of f is separable. Then f has property A.

Martin’s axiom for families of size less than kx, MA,_, is the statement:
“Whenever (P, <) is a nonempty partial order satisfying the ccc, and & is a
family of <« dense subsets of P, then there is a filter & in P such that
GND=+@ for each De@.” [4, p. 54].

Theorem 3.2. Suppose MA,_ holds, Y is zero-dimensional and second-countable,
|Y <k, and f: X = Y is a surjection of a metric space X onto Y that has Property A.
Then f is inductively perfect.

Remark 3.3. To see how the answer to Michael’s question follows from Theorems

21 and 2 nata that NMA i¢ o thanram of ZE and that avary moetr
L. alilu J.A, 1HHuULe uiiat 1Vlnx 1D a uulvulvill vl 2.1 \_/, LU Lilak L/V\./l_y 11iviy

cardinality less than that of the continuum is zero-dimensional.

Proof of Theorem 3.1. For y €Y, let #, be the family of all K € # such that

(D Kcf 'y}

(II) for every compact, countable £ CY there exists a compact C C X such that
Cmf’l{y}CK and f[C]=E.

DIIILC \1] lb L 1€ Sainc
definition.

[als}

oY
\J O

)
[72]

Definition 3.4. Let £ be a compact, countable subset of Y, let y €Y, and let
K € # be such that K Cf~{y). We say that E eliminates K if there is no compact
C cX with f[C]=E and Cnf~ Yy} cK.

aim 3.5. (a) If E eliminates K (_] Yy}, theny € E.
(b) Let y € Y. Then #, is the family of all K< f~'{y) such that K€ # and no
oL imi .
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(c) If E eliminates K C =y}, and U is a clopen neighborhood of y in Y, then
E N U also eliminates K.

(d) If E C F are compact, countable subsets of Y, and if E eliminates K, then so
does F.

(e) If E eliminates some K Cf~ 'y}, then there is some neighborhood V of K such
that E eliminates every L € V which is a subset of f~'{y}.

Proof. (a) and (b) are obvious. For the proof of (¢c), note that both EN U and
EN\U are compact, countable, and, if C, D are compact subsets of X such that
fICI=EnU, flD]=E\U, then CUD is a compact subset of X with f[C U D]
=E such that (CUD)Nf Yy} =Cnf Yy}. For (d), note that if C is compact
with f[C]1=F, then D =CnNf"'E is also compact with f[D]=E.

Now suppose (e) is false, and let E and K Cf '{y} witness this fact. Then for
every ¢ > 0 there is a compact lifting D(¢) X of E such that (D(e))Nf Yy} e
B_(K). Fix such D(¢) for every € > 0.

Subclaim 3.6. Let £ > 0. There is a clopen neighborhood U of y such that D(g) N
f U eB(K).

Proof. Suppose not. Then, since Y is zero-dimensional and has countable pseu-
docharacter, we find a sequence (U,) of clopen neighborhoods of y with

nEw

N U, ={», (*)

new

and a sequence (w,) of points in D(e¢) such that f(w,) € U, and

d(D(e) nf~ Yy}, {w,})=¢ forall ncw. (*%)

By compactness of D(e), the sequence (w,),., must cluster at some point
w € D(¢). It follows from (*) that w € f~'{y}, which by the monotonicity property
of the d-function mentioned at the beginning of this section and the choice of
D(¢g) contradicts (x x). 0O

Proof of Claim 3.5 (continued). Now let (¢,), ., be a sequence of positive reals
such that (g,) \ 0.

Using Subclaim 3.6, find a decreasing sequence (U)
hoods of y such that

D(e,)Nf'U,€B,(K) foralln€aw. @)

Let D=U,_(D(e,) N f UNU,, ) UK.

Then f[D]=EuU{y}=E. The set D is compact by Claim 1.4, since (!) implies
that there exists a decreasing base (W), ., of K in X such that each D(g,) N
fFFYUNU,, )W, If xeD and x & K, there exists n € » such that x € D(g,) N
f YWUN\U,, ). Thus f(x)#y. Hence D Nf~'y C K. This contradicts the assump-
tion that E eliminates K. O

of clopen neighbor-

neEew
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Corollary 3.7. For every y €Y, the set #Z, is a closed, nonempty subspace of # .

Proof. Closedness follows immediately from Claim 3.5(b) and (e). To show that 7,
is nonempty, assume otherwise. That is, consider some y €Y such that every
nonempty compact K Cf~'{y} is eliminated by some compact, countable E, CY.
By Claim 3.5(e) again, for each K we find an open neighborhood V), of K in the
d-topology on # such that E eliminates all compact L € V such that L c f~{y}.
Since the d-topology on # is hereditarily Lindeldf, there is a sequence (K,), .,
of compact subsets of f~'{y} such that every compact L < f {y} is eliminated by
some £ 1< Choose a decreasing sequence (U,), . , of clopen subsets of Y such that
NyeoU, ={y}. Let E= U, (Eg NU,). A standard argument shows that E is a
countable, compact subset of Y. Moreover by what was said above and Claim
3.5(c), every compact L Cf~ 'y} is eliminated by some Ex nU,. It follows now
from Claim 3.5(d) that F eliminates all compact L Cf™ Y y} Wthh is impossible,
since there is a compact C cX with f[C]=E. Then CnNf Yy} is obviously
compact, is nonempty by Claim 3.5(a), and is certainly not eliminated by E. So we
have reached a contradiction. O

Let us remark that the proof of Corollary 3.7 gives in fact something stronger,
namely:

Claim 3.8. Let y €Y and G CH#\#,. Then there is a single compact, countable
E C Y such that E eliminates all compact L € G such that L Cf Y{y}.

Proof of Theorem 3.1 (continued). Now we are ready to show that (ii) of Definition
3.0 holds. Let yeY and K<.# be such that Kcf '{y}. Let (U),., be a
decreasing sequence of clopen sets such that {U,: n € w} is a neighborhood base of
y. Suppose that for some fixed ¢ >0 we can find a sequence (y,),., such that
v, €U, and #, NB(K) = ¢ for every n € w. Passing to a subsequence if neces-
sary, we may for simplicity assume that y, € U \U,,, for every n € . We show
that there is a compact, countable E ¢ Y that ehmmates K. This will prove (ii).

Note that by Claim 3.8, for every n € w we may choose a compact, countable
subset E, of Y that eliminates all sets in B.(K)N.# N@(f Yy, }) (where (X)
denotes the family of all subsets of a set X). By Claim 3.5(c), we may assume that

cUNU,,, for all n€w. Now let E=U E,u{y}. By Claim 14, E is

compact

Let us show that E eliminates K. If C is a compact subset of X such that
fIC1=E, then by the choice of E, and Claim 3.5(d), we find a sequence (w,)
of elements of C such that f(w,) =y, and

nEew

new

d(K,{w,})=¢e forallneaw. (@)

Since C is compact, this sequence clusters at some w € C. Now w €f {y} N C,
since {U,: n € w} is a base at y. But by (@), d(K, {w}) » ¢, hence w & K. Thus
CNf Yy} is not a subset of K, and we have shown that E climinates K. O
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Proof of Theorem 3.2. In this proof we shall use a more set-theoretical language
than in the rest of the paper. In particular, partial orders will be referred to as
“forcing notions”. The following theorem will be referred to as the A-system
lemma: “If & is any uncountable family of finite sets, there is an uncountable
# c« which forms a A-system, i.e., there is a fixed set r such that anb=r
whenever a and b are distinct members of .%.” For a proof see [4, p. 49]. The set r
will be called the kernel of the A-system.

We shall construct an appropriate forcing notion P. First, we choose a count-
able base % for Y that consists of clopen subsets of Y such that . & U {#}} is a field
of subsets of Y. Next, we choose a countable dense (in the topology induced by p)
subset .% of #, and, for every y €Y, a countable dense (in the topology induced
by p) subset .Z, of #,. Now our forcing notion P will consist of pairs of the form
p={f,, s,, where:

(1) f, is a function such that

(a) dom(f,) is a partition of Y into finitely many elements of %. We shall
denote dom(f,) by #, in the sequel.

(b) For every Ue %,, f,(U) is a set of the form B,(K) for some K €.% and
g € Q1 U{o} such that 2, Nf,(U)# @ for all y € U.

(2) s, is a function whose domain is a finite subset Y, of Y. Instead of s,(y) we
chall write K

SILALL VWIILL Iy .

(a) If Ue #, and y € U N dom(s,), then K € f,(U).
(b) K, €%, for all y € dom(s,).
We define a partial order < on P as follows: p <gq iff
(3) %, is a refinement of %,
(4) it U’ c U, where U’ € %,, U € %, then f,(U") cf,(U),
(5) s, 25

p =%g
Claim 3.9. (P, <) satisfies the ccc.

Proof. We actually show that P has R, as a precaliber. Of course, MA  implies
that every ccc forcing notion of size <« has X, as a precaliber. However, the
present proof does not use Martin’s axiom. Let 4" be an uncountable subset of P.
There are only countably many objects that can appear as first coordinates of
elements of P. Thus, there is f such that for an uncountable A” C A" we have
f, =1 for all p€A". By the A-system lemma, there exists an uncountable A cA”
such that the family {Yp: p €A’} forms a A-system. Let us denote its kernel by v.
Since v is finite, the set [T, . ,.%, is countable. Therefore, there exist a function
g€ll,.,%, and an uncountable 4 cA’ such that (y, gy €s, for all yev
and p € A. Now it follows immediately from the definition of P that if p, g €A,
then r={(f,s,Us,)€Pand r<p,q. O

Claim 3.10. For every € > 0 and y €Y the following set is dense in P:

D:={p: y €Y, and there exists a U € %, such that y € U and f,(U) CB(K))}.
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Proof. Let y €Y. As a first step, we show that the set D, ={p: y € Y} is dense in
P.If peP and y ¢Y,, then by (1a) there exists U € % such that y € U, and by
b)), Zz,nf,U) 0. Srnce #, is dense in %, we may choose K, €.7,Nf, w).

Then a=<f, 5, U {{y, K, >}> €D, and clearly, q<p.

Next we show that for every nelghborhood V of y the set DV {pe D,: there
exists a U € #, such that ye U c I’} is dense in P. Let p eD and let IV be a
neighborhood of y. Let U be the element of %, that contains y. Srnce F# is a base
for Y,wefinda U’ €% suchthat ye U’ cU ﬂ V. Since & U {@#} is a field of sets,
the family %, = (%, \{UDU{U’, U\NU'} is a legitimate partition of Y (in the
nontrivial case where U'’'+# U at least). Thus we can put f(W) f,(W) for
wez \{U}, f{U)=fU\U)=f,U), and 5,=5,. Then g €D}, and q<p.

Now we are ready to tackle our task proper. Let >0, and let p € P. We want
to construct g <p such that g € D;. We may assume y €Y, ie,, {(y, K ) €s, for
some K . Choose & such that 0<s <e and B_(K )Cf (U) where yEU By
Property A, there is a neighborhood V" of y such that for each y’ €V there is
some K'e€.#, with d(K, K')<e'. Fix such a V. Replacing V' by a smaller
neighborhood 1f necessary, we may assume that V'NY, = {y}. As was shown above,
we may replace p by a condition p’ <p such that p EDV and f,(U")=f, (U)
where U’ € %, is such that ye U’ cV. Then U'NY, —{y} Now put s, =5,
U, =%, fq(U') =B,(K ), and let f(W)=f, (W) for e U’. 1t is not hard to
see that g €D and g <p'<p. O

Proof of Theorem 3.2 (continued). By MA , if |Y | <k, there exists a filter F C P
that meets each of the sets D] for y €Y and ¢ € Q"N (0, ).

Let X' = U{K,: there exist p € F and y € Y such that (y, K ) €s,}. We show
that the restriction of f to the subspace X' of X is a perfect map onto Y. Since
F ﬁDy1 + (} for every y €Y, the restriction f| X' is onto. Moreover, since every
two elements of F are compatible, it follows that for every y € Y there is exactly
one K, such that (y, K,) €s, for all p € FND,. Therefore, X'Nf {y}=K
and thus every fibre of f| X’ is compact.

Now let M C X' be closed in X' and let y € cl, (f[M]). Let K, =X"Nf~ Yy}
For every n €  choose some p, € D)/"*VNF. Let U, €%, be such that ye U,
Choose y,€U,Nf[M] and x, such that fix)=y,. Pick q, <p, such that
q, € Dl It follows that (y,, K >E€s,, and since g, <pn, we have K, €

1/(n+1)(K ), ie, d(K,, K,) < 1/(n + 1). Since x,€K,, we also have
d(K , {x,})< 1/(n +1). It follows that the set {x,: n € w} has some cluster point
X in K, (by compactness of K ), and therefore x € M (since M is closed in X’
and K, cX’). Now f(x)=y. We have thus shown that f| X’ is a closed map. O

4. Generalization of a result by Ostrovsky

The main result of this section is the following.
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Theorem 4.0. Suppose f: X = Y is a tri-quotient map of a regular space X onto a
paracompact space Y. If there exists a perfect extension f* : X*— Y of f such that X
is a Wy=set in X*, then f is inductively perfect.

It should be noted that in Theorem 4.0 we do not require X* to have any
separation properties whatsoever.

A surjective map f: X — Y is called tri-quotient [5, Definition 6.1] if one can
assign to each open U in X an open U* in Y such that:

(@) U* cflU],

b) X*=Y,

(c) UcV implies U* CV *,

(d) if ye U* and # is a cover of f~{y} N U by open subsets of X, then there
is a finite & €% such that y € (U F)*.

The correspondence U — U * is called a t-assignment for f.

The formal definition of a Wj-set will make its natural appearance at the
beginning of the proof of Theorem 4.0. Let us first put Theorem 4.0 into the
perspective of related theorems. Substituting in Theorem 4.0 “G;” for “W;”, one
obtains Ostrovsky’s theorem [9, Theorem 1]. It will be evident from the definition
of a Wj-set that every Gj-set is Wy, but the converse is false.

Ostrovsky obtains as a corollary to his theorem the following result of Michael
[5, Theorem 1.6]:

A tri-quotient map f: X—Y of a éech-complete regular space X onto a
paracompact space Y is inductively perfect.

However, as Ostrovsky mentioned in his paper, the following result of Michael
[5, Theorem 6.6] is not a corollary of [9, Theorem 11].

Theorem 4.1. A tri-quotient map f: X — Y of a sieve-complete regular space X onto a
paracompact space Y is inductively perfect.

We shall show later in this paper that Theorem 4.1 is in fact a consequence of
Theorem 4.0. Let us now turn to the proof of Theorem 4.0. We shall use the
convenient terminology of sieves developed in [1] to express concepts originally
introduced by Wicke and Worrell under different names (see e.g. [11] or the
bibliography to [1]).

Proof of Theorem 4.0. Assume X, f, f* and X* are as stated in the hypothesis.
Let {#,, %, T,'necs be a strong W-sieve of X in X7, with %, ={X"). Thus each
#,={U,: a€A,)} is an open collection in X* which covers X (i.e., U%, 2X),
and m,: A, ., > A, is such that

(D If €A, then XN U, = U{XNU;: B em,; {a}}, and

(2 if @ €A, |, then cly+(U,) C U,

A sequence (a,: n€w) will be called a m-chain for {%,, %,, T,onco iff
a, €A, and 7w la,, )=«a, for all n€w. That {#,, &, m,)necs IS a strong
W-sieve means that for every m-chain (,: n € w) we have cly+(U, )<cU, andif
X € Npe,U,,then x EX. X is a Wy-set in X iff there exists a strong W-sieve of
X in X7
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Michael in [5] calls a sieve finitely additive if every collection %, and every
collection {Us: B €m,; ()} is closed under finite unions. We form the finitely
additive strong sieve (%[, B,, p, ne. associated with (%, &, T, e, as in
[5, Lemma 2.3]:

Let B, ={B<lw,]°“: B+ @}, and for B€%,, let Uy = U{U,: a € B}. Define
P, B, ,—B, by p(B)={mla) acB}. Let " NX denote the family of
coverings (#fnX),={U;NnX: B}, with & and p as just defined. Then
{#FnX),, B, Pyonew is asieve of X in X. We may use the tri-quotient map f
with the f-assignment U — U * to obtain the sieve (¥ N X)*, &, p,dnecooOnY,
where (" N X))} ={(Uyn X)*: Be%,) (see [5, Lemma 6.2] for details).

By the paracompactness of Y, there is a locally finite sieve {%,,, &, D, )neco ON
Y such that cl (W) c(Uy N X)* for all Be®, and all n €w (see [5, Lemma
2.2)).

For all n€w and Be&%,, define Vy=UsNf "Wy Then VzcU, 5N
f'W, 8=V, foreach n>0and B€Z,, .

Let X = Uf{cly+(Vy): Be®,). Then X is closed in X* since {f'Wj:
B €%} is locally finite in X*, as it is the inverse image of the locally finite
collection 7%;,.

If y €Y, there is B €%, such that y € Wj. Since Wy c Uy Cf[U;], the inter-
section f~Y{y} NV, #@. Thus £ =f* | X} maps X onto Y. Moreover, f! is
perfect, since X,/ is a closed subspace of X*.

If xeX,,,, then xecly(Vy) for some BEF, ;. Thus xcly(V, p)
Hence X, CX,, .

Note that for all n €w and y €Y the inclusion (£, )~ Yy} c(f)~ Yy} holds.
Since these sets are compact and nonempty,

N (v} #¢ forallyey. (*)
HEwW

Let X'=N,c,X,. Then X' is closed in X* and (*) implies that also the
map f* 1 X' '=N,c.fr is a perfect map of X' onto Y.

It remains to show that X’ C X. So suppose x € X’. Because {f~'W,: BEZ } is
locally finite in X* for all n € o, the collections %, ={B €%,: x € cl+(V})} are
nonempty and finite; and if B€ ¥, |, then p(B)e%,.

By Konig’s lemma, there is a p-chain (B,: n € w) for {¥F, #,, p,dnec. such
that x € cl (V) for all n €w. For all B&%, we have cly+(Vy) Ccly+(Uy) C
U, s since {#[, #,, p,one. is a strong sieve. Hence x € N, Uy . For each
ne€ow,let #,={U,€%, a€B, and x € U}. Then .#, is finite and nonempty. If
U,e#, ,, then U_ €4, since B,=p, (B, )={mla). a€B,,,}. Thus by
Koénig’s lemma again, there is a w-chain {a,: n €w) for (¥, &, 7, )ne. such
that x € U, . Since (U, A, T onew 18 @ W-sieve of X in X7, this implies that
x€X. Thus X' CX, and we have shown that f| X’ =f* | X’ is a perfect map of
X'CcXontoY O

Now we want to show that Theorem 4.1 is indeed a consequence of Theorem
4.0. We shall work with the Wallman extension wX of a T\-space X. As a reference
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for the basic facts about wX we recommend [3, pp. 176—178]. For the convenience
of the reader we use here the terminology from the above-mentioned source.

Thus for a given space X, by 2(X) (or simply &, since our space will always be
the same) we denote the family of nonempty closed subsets of X, by F(X) (or
simply F) the family of all ultrafilters on 2. For each nonempty open U C X we
denote U*={gFeF:34eF)AcU].

The family {U *: U is nonempty open in X} is a base for wX. We need the
following lemma.

Lemma 4.2. Suppose U, V are nonempty open subsets of X such that cl,(V)cU.
Then cl, x(V*)cU*.

Proof. We show the contrapositive. Suppose .# & U *. Then no closed subset of U
is in .#, in particular, cl (V) & .#. It follows now from [3, p. 177(3)] that there is
B €% such that BNl (V) =4§. Fix such B. Let W=X\cl,(V). Then BC W,
and hence ¥ € W*. Note that VN W=, and hence by [3, p. 177(9)], also
V*NW*=@. It follows that & & cl, ,(V), and we have proved the lemma. O

Proof of Theorem 4.1 from Theorem 4.0. Let f, X and Y be as in the assumptions
of Theorem 4.1, and note that Y is Tychonoff. We may treat f as a map from X
into BY. By [3, p. 178, Theorem 3.6.21], there exists a continuous extension
F:wX —> BY of f. Fix such F, and let f*=F|F~'Y. Then f* is a perfect
extension of f, and by Theorem 4.0, we shall be done if we prove the following:

Lemma 4.3. Let f, f*, X, Y be as above, and denote X*=F~'Y. Then X is a
Wy-subset of X*.

Proof. This is similar to a result from [11]. Let ¥ = (%, &,, 7, )nec. be a strong
sieve (i.e., for every m-chain (a,: n € w) and every n € w, the inclusion cl U, <
U, holds) for X in X that witnesses sieve-completeness. Thus every filter F of
closed subsets of X that meshes with a w-chain of 5” clusters in X.

Now form a sieve .t in X't as follows: =A%, ,, T Inew, Where
#F ={Uy: Aew} for all n € w, with U] = (UA)* NX* (The *-operation is the
one from the description of the Wallman extension, not the z-assignment for f). By
Lemma 4.2, this is a strong sieve. Now it suffices to show that it is a W-sieve for X.
So suppose we are given a 7-chain (A,: n € w), and that ¥ € N, ¢, U . We need
to show that ¥ € X. If not, then % is a free ultrafilter of closed subsets of X.
Since for every n and every B € & we have cl, (Uf) N B # @, it follows from the
proof of Lemma 4.2 that cl (U, )N B # @ for every B €.%. In other words, the
filter & meshes with {U, : n € ), and therefore, by the choice of ., the filter &
clusters at some x € X. But since . is a filter of closed sets, this means that
x € N . The latter contradicts the assumption that . is a free ultrafilter on &,
so we are done. O
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Remark 4.4. The assertion of Lemma 4.3 cannot be strengthened to “X is a

..... t ~F V17 Tha gim + coint ~
US'DUUDCL or A . 1Lic DllllplCSL euantereAample is a map from any sieve-com

plete, not Cech- complete Tychonoff space X onto the one-point space Y (see, e.g.,
[1] or [11] for such an X).

5. Partition-completeness does not suffice

[ T T,

It has been open whether the result of Michael
Theorem 4.1 in the previous section remains true if “sieve- complete is weakened
to “partition-complete” (see [8, Section 4]). In the present section we show that
this is not the case. Our example has interest independent of the study of
partition-completeness. The following fact summarizes all the information about

this concept needed in the present section.

Fact 5.0. (a) Each sieve-complete space is partition-complete.
(b) Every scattered space is partition-complete.

We refer the reader interested in the definition of partition-completeness or the
proof of Fact 5.0 to [10] and the references given therein.

Since open maps are among the chief examples of tri-quotient maps, and a map
with compact range is inductively perfect iff it is compact-covering, the following
answers the question from [8].

...IAE1

Example 5.1. There exi an open map j: f ITOiM a4 1yCnonoil space
one nonisolated point onto a compact Ha usdorff space Y which is not compact-
covering.

Note that a space X as in Example 5.1 is necessarily scattered.

Remark 5.2. All fibres of the map we are going to construct are compact, and f is
countable-compact-covering.

Constrction 5.3, ILet « be an uncounta lv Card‘nal and let A(x) =1 U{x* 1

nenon Do, all 2y allldl 0L ‘ VK N .9

b

where every ordinal in A(x) is isolated, and every neighborhood of x* contains all
but finitely many of the ordinals in . In other words, A(k) is the one-point
compactification of the discrete space of size «.

Now let A consist of all pairs (8, «) such that

- either B =a =x%,

~ora,Bexkand B=a+w,

- ora€k, BEw, and a=A + B for some li

Let f be the projection of 4 on the second coordmate ie, f(B, a)=a,
flx*, x*)=x*

Clearly, f is continuous and each fibre of f has either one or two points, so the
fibres are compact.
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Claim 5.4. f is not compact-covering.

Proof. It suffices to show that there is no compact subspace C A4 such that
fIC] = A(x).

Suppose there were such a C, and let
X={a<k:(Anew)(n, a)eC]}.

Case 1: X is uncountable.

Then there is some n € w such that (n, a) € C for uncountably many a. But
then (n, x*) € cl 4,,2(C). However, (n, x*) & C, so C is not closed in A(k)?,
hence C is not compact, a contradiction.

Case 2. X is countable.

Let @ <k be a limit ordinal such that [a, @ + @) N X =@. Since f|C is a
surjection onto A(k), for every y € [a, a + w) we must either have (a + 0, y) €C,
or (n, y) € C for some n € w. By the choice of a, the former will hold throughout
the interval. But then C contains infinitely many elements of the form (a + o, 7y),
so the point (@ + w, x*) € cl 4, 2(C), and we get a similar contradiction as in the
first case. O

Claim 5.5. The map f is open.

Proof. It suffices to show that for every a € A, there is a neighborhood base #(a)
such that f[U]is open in A(x) for every U € %(a).

For (B, a) €A\{(x*, x*)}, let B(B, a)={(B, a)}}. Since a and B are iso-
lated points in A(«), this works.

Let @(x*, x*)={{(AW\F) X (A)\G)NA: F,G are finite subsets of
A\ {x*}

Now let us see which « do not belong to

FICCA(R)NF) X (A(x)\G)) NA].
These are precisely the « such that
aceG
or
a = A + n for some limit ordinal A, and bothn € Fand a + w € F.

One can now see that the complement of f[((A(x)\F) X (A(k)\ G)) NA] in
A(x) has a cardinality of at most |G| +|F|? and is thus finite. It follows that
FICAINF) X (A()\ G)) N A] is an open neighborhood of x* in A(x). So the
sets in B(x*, x*) have the desired property, and we have proved the claim. O

Finally, let us prove the second part of Remark 5.2, i.e., the following.
Claim 5.6. f is countable-compact-covering.

Proof. Let E € A(k) be countable and compact. If E is finite, there is nothing to
prove, so assume E is infinite.
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Then x* € E.
Let L(E) be the set of all limit ordinals A <« such that [A, A + @) NE # @.
Arrange L(E) into a sequence (A,: k € w), and let

C={(n, A +n):k€w, A, +n€E, n>k}
U{(Ay+o, g +n) k€w, Ay +n€E, n<kju{(x*, x*)}.

Clearly, fI[C]=E.

To show that C is compact, it suffices to prove that no point of the form
(B, x*) is a cluster point of C, in other words, that for every 8 <« the set C
contains only finitely many points of the form (8, a). Now, if 8 = n, then the only
points with first coordinate B that may be contained in C are: (n, A+
n),...,(n, A,_+n). If B=A, +o for some k, then the only points with first
coordinate 8 that can belong to C are: (A, + w, Ap),...,(A, + w, A, + k). In either
case, there are only finitely many possibilities, so we are done. O
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