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Phosphodiesterase 8B Gene Variants Are Associated
with Serum TSH Levels and Thyroid Function
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Thyroid-stimulating hormone (TSH) controls thyroid growth and hormone secretion through binding to its G protein-coupled receptor

(TSHR) and production of cyclic AMP (cAMP). Serum TSH is a sensitive indicator of thyroid function, and overt abnormalities in thyroid

function lead to common endocrine disorders affecting ~10% of individuals over a life span. By genotyping 362,129 SNPs in 4,300 Sar-

dinians, we identified a strong association (p ¼ 1.3 3 10�11) between alleles of rs4704397 and circulating TSH levels; each additional

copy of the minor A allele was associated with an increase of 0.13 mIU/ml in TSH. The single-nucleotide polymorphism (SNP) is located

in intron 1 of PDE8B, encoding a high-affinity cAMP-specific phosphodiesterase. The association was replicated in 4,158 individuals,

including additional Sardinians and two genetically distant cohorts from Tuscany and the Old Order Amish (overall p value ¼ 1.9 3

10�20). In addition to association of TSH levels with SNPs in PDE8B, our genome scan provided evidence for association with

PDE10A and several biologically interesting candidates in a focused analysis of 24 genes. In particular, we found evidence for association

of TSH levels with SNPs in the THRB (rs1505287, p ¼ 7.3 3 10�5), GNAQ (rs10512065, p ¼ 2.0 3 10�4), TG (rs2252696, p ¼ 2.2 3 10�3),

POU1F1 (rs1976324, p ¼ 3.9 3 10�3), PDE4D (rs27178, p ¼ 8.3 3 10�3), and TSHR (rs4903957, p ¼ 8.6 3 10�3) loci. Overall, the results

suggest a primary effect of PDE8B variants on cAMP levels in the thyroid. This would affect production of T4 and T3 and feedback to alter

TSH release by the pituitary. PDE8B may thus provide a candidate target for the treatment of thyroid dysfunction.
Introduction

The thyroid controls several metabolic pathways through

the synthesis and release of thyroxine (T4) and its active

derivative triiodothyroxine (T3), which binds to nuclear

receptors to regulate gene expression and impact growth,

development, and metabolism.1 Consistent with its criti-

cal role in muscle, bone, central nervous system, and heart

physiology, abnormal thyroid function can lead to hyper-

thyroidism, hypothyroidism, and related childhood neu-

ropsychological abnormalities including severe cretinism.2

The key regulator of thyroid function is thyroid-stimu-

lating hormone (TSH). Secreted by the pituitary, TSH inter-

acts with the TSH receptor (TSHR) on thyroid cells to upre-

gulate cyclic AMP (cAMP) and induce Ca2þ release and

activation of phosphoinositol.3 These effectors then lead

to the expression of downstream gene targets, culminating

with pinocytosis of thyroglobulin and the release of T4 and

T3, enhanced iodide uptake, and, on a longer time scale,

growth and differentiation of thyroid follicular cells.

TSH levels are themselves controlled in several ways.

TSH production is promoted by thyrotropin-releasing hor-
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mone (TRH) and inhibited by somatostatin, both produced

by the hypothalamus.4,5 In addition, negative-feedback

control on hypothalamic release of TRH and pituitary re-

lease of TSH is exerted by the blood levels of thyroid

hormone. When the levels of T3 and T4 are low, the pro-

duction of TRH and TSH increases, and conversely, when

T3 and T4 levels are high, TRH and TSH production

decreases.6

Serum TSH concentrations are a sensitive indicator of

thyroid function. High and low TSH levels reflect hypo-

and hyperfunction of the thyroid gland, respectively. How-

ever, even within the normal range, TSH is a sensitive

measure of thyroid function, and normal (euthyroid) indi-

viduals show narrow individual variation, suggesting that

the thyroid-hormone axis is tightly regulated. TSH levels

are genetically regulated and ~40% heritable in several

populations; however, specific gene variants that influence

TSH levels are not known.7–9

To identify specific possible genetic factors affecting TSH

levels and thyroid function, we studied a Sardinian cohort7

in whom the founder-population structure can simplify

genetic analyses of complex traits and diseases. This has
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Table 1. Top SNPs Associated with TSH Levels from the GWA in SardiNIA

AffymetrixCode Chr Position dbSNP Allele (þ/�) Freq (þ) Effecta SEb H2 c p Value

SNP_A-2026717 5 76554198 rs4704397 A/G 0.43 0.21 0.03 2.32% 1.3 3 10�11

SNP_A-2046779 5 76566105 rs6885099 G/A 0.44 0.21 0.03 2.28% 1.8 3 10�11

SNP_A-1875128 5 76571567 rs2046045 G/T 0.44 0.21 0.03 2.28% 3.0 3 10�11

SNP_A-4219180 9 133168819 rs657152 A/C 0.25 0.18 0.04 1.35% 2.4 3 10�7

SNP_A-1799335 8 21883108 rs2291317 C/T 0.56 0.14 0.03 1.06% 5.5 3 10�6

SNP_A-1860723 11 60939964 rs17704641 T/C 0.18 0.17 0.04 0.98% 5.6 3 10�6

SNP_A-1952455 1 225872467 rs499689 A/G 0.57 0.14 0.03 1.04% 6.0 3 10�6

SNP_A-4262573 2 222132815 rs2288629 A/C 0.77 0.16 0.04 0.96% 9.2 3 10�6

SNP_A-1810205 8 21913213 rs17616085 G/A 0.56 0.14 0.03 1.00% 1.0 3 10�5

SNP_A-2063584 8 21916371 rs3816786 T/A 0.56 0.14 0.03 0.99% 1.2 3 10�5

SNP_A-1928725 2 85876014 rs4832006 T/C 0.18 0.17 0.04 0.97% 1.4 3 10�5

SNP_A-2125590 5 76524001 rs6453293 A/G 0.60 0.14 0.03 1.03% 1.9 3 10�5

SNP_A-1942513 8 21892330 rs1809498 C/G 0.55 0.13 0.03 0.94% 2.0 3 10�5

SNP_A-1954621 3 184155898 rs7641401 T/C 0.71 0.14 0.03 0.90% 2.3 3 10�5

SNP_A-4232593 8 21883779 rs4871903 A/G 0.54 0.13 0.03 0.97% 2.3 3 10�5

SNP_A-2212237 2 17907614 rs300154 G/A 0.47 0.13 0.03 0.87% 2.6 3 10�5

SNP_A-2148594 5 76497909 rs4361497 G/C 0.69 0.14 0.03 0.88% 3.2 3 10�5

SNP_A-4265227 1 211014978 rs6656559 A/T 0.31 0.14 0.03 0.88% 3.3 3 10�5

SNP_A-2071751 6 83147795 rs9344274 T/A 0.25 0.14 0.03 0.86% 3.4 3 10�5

SNP_A-1849293 6 166027614 rs2983521 A/T 0.76 0.15 0.03 0.85% 3.6 3 10�5

SNP_A-2293888 5 76553738 rs13158164 C/G 0.11 0.20 0.05 0.83% 3.7 3 10�5

SNP_A-2039694 8 123942518 rs11779768 A/G 0.70 0.14 0.03 0.86% 3.8 3 10�5

SNP_A-2276572 4 182013064 rs2545308 G/A 0.59 0.13 0.03 0.87% 3.8 3 10�5

SNP_A-2192297 8 21889911 rs2306641 C/T 0.57 0.13 0.03 0.87% 3.9 3 10�5

SNP_A-4274055 2 3406189 rs4849999 C/T 0.91 0.22 0.05 0.83% 3.9 3 10�5

The table summarizes the top 25 association signals observed in the GWA scan in the Sardinian cohort. Chromosome assignments and physical position refer

to the NCBI build 35 map. Alleles are ordered such that the first allele (þ) is associated with increased TSH levels. SNPs in bold fall in the PDE8B gene

region.
a The effect size is measured in standard-deviation units and is estimated as the b coefficient of the regression model when the normalized trait is used

(e.g., an effect size of 1.0 implies that each additional copy of the allele being evaluated increases trait values by 1.0 standard deviation).
b SE represents the standard error of the effect.
c H2 represents the amount of phenotypic variability explained by the marker and, thus, under an additive model, the amount of the heritability of the trait

explained by the marker.
recently facilitated the finding of genes associated with

susceptibility to asthma,10 obesity-related traits,11 uric

acid,12 lipid levels,13 height,14 and severity of b-thalasse-

mia.15 Here we report analyses that point to common var-

iants in PDE8B [MIM 603390],16 a gene that encodes

a high-affinity cAMP-specific phosphodiesterase (PDE), as

genetic modulators of TSH levels. The association was rep-
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licated in another group of Sardinians and in samples of

Italians from Tuscany and of Old Order Amish from Penn-

sylvania.17,18 Furthermore, our sample provides evidence

for association with single-nucleotide polymorphisms

(SNPs) in the PDE10A gene [MIM 610652],19 as well as thy-

roid-hormone receptor, b (THRB) [MIM 190160]20 (p ¼ 7.3 3

10�5) and G protein, q polypeptide (GNAQ) (p ¼ 2.0 3 10�4)
Figure 1. Results of Genome-wide Association Scan for TSH Levels
For each marker, the �log10 of the p value resulting from an association test that evaluates its additive effect on the phenotype is plot-
ted. The position of PDE8B is annotated.
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Figure 2. Association with TSH Levels and Linkage-Disequilibrium Patterns in the Region Surrounding PDE8B
(A) The top panel summarizes association between the SNPs and TSH levels in each individual (�log10 of the p value). The SNP showing
strongest association (rs4704397) is highlighted and indicated with a red square. Other SNPs are colored according to their degree of
disequilibrium with rs4704397, ranging from high (red) to intermediate (green) to low (blue). r2 values of rs4704397 with rs6885099
and rs2046045 (red dots) are r2 ¼ 0.98 and r2 ¼ 0.97, respectively. The transcript for all genes in the region is indicated in the next
panel, with an arrow indicating transcript direction.
(B) The two panels summarize the patterns of disequilibrium in SardiNIA and in the CEPH from Utah (CEU; Utah residents with ancestry
from northern and western Europe) HapMap populations. r2 values are colored as in (A) with GOLD,30 which schematically draws the LD
plot according to the physical position of markers, resulting in a line divided according to marker-marker distance. The gray bar marks the
region of association and facilitates comparisons between the panels.
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[MIM 600998],21 among genes in a focused analysis of 24

candidates for involvement in the dynamic regulation of

thyroid function. Overall, our results suggest that PDE8B,

by affecting cAMP concentrations in the thyroid, may alter

thyroid-hormone levels in the serum and affect TSH re-

lease from the pituitary. PDE8B variants thus modulate

thyroid physiology and may affect the course of thyroid

disease.

Material and Methods

Sample Description
We recruited and phenotyped 6,148 individuals, males and fe-

males, ages 14–102 yr, from a cluster of four towns in the Lanusei

Valley of Sardinia.7 During physical examination, a blood sample

was collected from each individual and divided into two aliquots.

One aliquot was used for DNA extraction and the other to charac-

terize several blood phenotypes, including evaluation of serum

TSH levels. TSH was measured with the Siemens TSH assay (Immu-

lite 2000) according to the manufacturer’s instruction. The

method is a solid-phase, chemiluminescent, competitive analog

immunoassay and has analytical sensitivity of 0.004 mIU/ml and

upper limit of 75 mIU/ml of TSH. This method is a third-generation

TSH assay and has a sensitivity and detection range comparable

to the methods used to evaluate TSH levels in the other cohorts

studied (see below).

Thyroid ultrasound examination was also performed on all the

individuals enrolled in the study, with a portable real-time instru-

ment using a 7.5-MHz linear transducer. Subjects were examined

in the supine position, with neck hyperextended, by transverse

and longitudinal scans to evaluate overall thyroid size and echo-

texture. Thyroid volume was calculated for each lobe according

to the ellipsoid formula (length 3 breadth 3 width 3 0.523) (nor-

mal range 10.7 5 4.6 ml to 11.5 5 3 ml). Goiter was scored when

the total thyroid volume was above the mean thyroid volume. Re-

duction of thyroid volume associated with diffuse alteration of

echotexture indicative of chronic thyropathies was also detected.

Presence, structure, size, and vascularization of nodules were de-

termined by ultrasound and color-Doppler sonography. Records

of self-reported thyroid disease status (i.e., autoimmune thyroid-

itis, thyroid cancer, partial or total thyrectomy) and hormone-

replacement therapy were available for all subjects.

Each participant signed an informed consent form. All study

methods have been approved by the local ethics committee.

GWAS Genotyping
During the study, we genotyped 4,305 individuals selected from

the whole sample to represent the largest available families, re-

gardless of their phenotypic values. Specifically, 1,412 were geno-

typed with the 500K Affymetrix Mapping Array Set and 3,329 with

the 10K Mapping Array Set, with 436 individuals genotyped with

both arrays. This genotyping strategy allowed us to examine the

majority of our cohort in a cost-effective manner because geno-

types for the SNPs that passed quality-control checks could be

propagated through the pedigree via imputation.11,22 TSH mea-

surements were available for 4,300 individuals among the 4,305
The Am
genotyped. A total of 362,129 SNPs passed initial quality-control

checks11 and were tested for association with TSH levels with an

additive model. Further details of the strategy for imputation

and data analysis are given in the Statistical Analysis section be-

low. An additional 1,236 individuals were genotyped with the

10K Mapping Array Set but were not included in the genome-

wide association scan (GWAS) because no close relatives were

typed with the 500K Mapping Array Set. These individuals were,

however, included in the fine-mapping analysis.

Replication and Fine Mapping
We designed a ParAllele Custom Chip (from Affymetrix) to repli-

cate and refine the regions associated with TSH levels as well as

other traits studied in the SardiNIA Project.7,15 Specifically, for

the locus associated with TSH levels, we included 70 markers

that were chosen as SNP tags of markers falling in the coding re-

gions of the PDE8B gene and that also passed reliability criteria

in the design phase. SNP rs6885099 showed the strongest associa-

tion with TSH levels in an initial analysis performed on a subset of

phenotyped individuals and was thus included in the custom chip

(instead of rs4704397, which ranked second in the initial analy-

sis). Genotyping was performed in Sardinian individuals selected

for replication or for fine-mapping efforts. In particular, for replica-

tion, we genotyped and analyzed 1,858 individuals from the Sardi-

NIA cohort (stage 2), who were unrelated (kinship coefficient ¼ 0)

to the individuals in stage 1.

For fine mapping, we genotyped a subset of 634 individuals

from stages 1 and 2 including 100 couples (mothers and fathers)

already typed with the 500K Mapping Array Set and 434 individ-

uals representing children from the larger sibships.

InCHIANTI
The InCHIANTI study is an ongoing epidemiological study in two

Italian towns in the Chianti area (Tuscany). A detailed description

of the study design and data-collection methods has been pub-

lished.17,23 Plasma TSH levels were measured with commercial

kits (Vitros TSH Reagent, Ortho-Clinical Diagnostics, Johnson &

Johnson Medical S.p.A Section) by chemiluminescent assay. The

assay has an analytical sensitivity of 0.003 mIU/ml. The intra-assay

coefficients of variation (CVs) were 3.9% to 5.3% over the range

0.06–80.11 mIU/ml. SNP rs4704397 was genotyped in this cohort

by TaqMan Single SNP genotyping assays (Applied Biosystems).

Old Order Amish
The Old Order Amish (OOA) study participants reported here were

from ongoing studies of cardiovascular disease and longevity;

none were ascertained on the basis of thyroid disease.18,24 A total

of 1,136 individuals from these two studies had serum TSH mea-

sured by Quest Diagnostics (Nichols Institute) with a standardized

third-generation assay and were previously genotyped for

rs4704397 with the 500K Affymetrix Mapping Array Set.

Statistical Analysis
To evaluate the additive effect of each marker, we fitted a simple

regression model and used a variance-component approach to

account for correlation between different observed phenotypes

within each family. Gender, age, and age squared were included
(C) The bottom panel summarizes the results of the fine mapping in the PDE8B gene. The association results are for all SNPs in the
SardiNIA sample genotyped with either the 500K or 10K Mapping Array Set or the ParAllele custom chip. The top three markers, all in
intron 1, are highlighted. The transcripts for all the PDE8B isoforms are indicated at the bottom.
erican Journal of Human Genetics 82, 1270–1280, June 2008 1273



as covariates in all analyses, and the trait was normalized with

quantile normalization to avoid inflation of type I error rates.

For individuals genotyped with a sparse map, we used a modified

version of the Lander-Green algorithm25,26 to estimate IBD shar-

ing at the location of the SNPs being tested and identify stretches

of haplotype shared with close relatives who were genotyped at

higher density and probabilistically infer missing genotypes.22

In brief, in the statistical approach to estimate each genotype,

we first calculated the likelihood of the observed genotype data.

Then, we assigned each missing genotype to a specific value and

updated the likelihood pedigree. The ratio of the two likelihoods

gave a posterior probability for the proposed genotype conditional

on all available data. Furthermore, instead of assigning the most

likely genotype, we estimated an expected genotype score, repre-

senting the expected number of copies of a reference allele (a frac-

tional number between 0 and 2), which allowed us to partially

account for uncertainty in genotype assignment. The genotype

scores were then used in a variance-component-based association

test as described.22 Because of computational constraints, we di-

vided large pedigrees into subunits with ‘‘bit-complexity’’26 of 19

or less (typically, 20–25 individuals) before analysis. False-discov-

ery rates (FDRs) were calculated with R’s p.adjust() procedure via

the method of Benjamini and Hochberg.27

In SardiNIA stage 2 replication and in InCHIANTI samples, asso-

ciation with TSH was tested as in the SardiNIA GWA sample, ex-

cept that no imputation was required. Association analyses to

test for additive effects in the Old Order Amish sample were carried

out under a variance-component framework implemented in

SOLAR;28 these analyses modeled the effect of genotype on TSH

levels while adjusting for the effects of age and sex and accounting

for a background polygenic contribution to variation in TSH levels

occurring because of the relationships existing among the exam-

ined individuals.29 The choice of SOLAR was based on the pres-

ence of larger pedigrees in the OOA families and the lack of a re-

quirement for genotype imputation in these samples.

For fine mapping in the SardiNIA sample, we merged all avail-

able genotypes from all the platforms (500K Mapping Array Set,

10K Mapping Array Set, ParAllele custom chip) for a total of

6,062 nonoverlapping individuals. Because fewer markers were

analyzed than in the GWAS, larger pedigrees were divided into

units of bit-complexity of 21 or less before analysis. Missing geno-

types for individuals typed with only one platform were inferred

with the same approach used in the GWA analysis. We then eval-

uated the additive effect of each marker by using allele dosages as

above.

Results

Genome-wide Association Scan for TSH

Levels in Sardinians

Genome-wide association analyses were carried out in

4,300 volunteers characterized for circulating TSH levels

(see Material and Methods).7,11 Analyses revealed three

SNPs with genome-wide significant association at a single

chromosome 5 locus (p < 10�10, see Table 1 and Figure 1).

These SNPs and three other SNPs among our top 25 sig-

nals lie in intron 1 or upstream of the PDE8B gene (Table 1

and Figure 2).16 Their locations and linkage-disequilibrium

(LD) relationships in the SardiNIA and CEU HapMap pop-

ulations are illustrated in Figure 2.30,31 A quantile-quantile
1274 The American Journal of Human Genetics 82, 1270–1280, Jun
(QQ) plot (Figure 3) shows that most of the deviation from

the null hypothesis is accounted for by markers falling in

the PDE8B gene. After those markers were removed, the

corresponding QQ plot (blue line) suggests that there are

nevertheless likely to be some additional true signals (see

below). The three SNPs that showed the strongest ge-

nome-wide significant association (rs4704397, p ¼ 1.3 3

10�11; rs6885099, p ¼ 1.8 3 10�11; rs2046045, p ¼ 3.0 3

10�11) are all in strong linkage disequilibrium (Figure 2,

average pairwise r2> 0.98). Among these, the SNP showing

strongest association, rs4704397, explains 2.3% of the var-

iance of TSH levels. Each copy of the minor A allele is asso-

ciated with an average increase of 0.13 mIU/ml in TSH levels.

Replication of the Association of rs4704397/PDE8B

in Other Populations

To confirm the association of rs4704397 with TSH levels,

we analyzed two additional cohorts, one comprising

1,164 Tuscan subjects from the genetically distinct In-

CHIANTI study population17,23 and the second 1,136 indi-

viduals from the founder population of the Old Order

Amish.18,24 We also analyzed a replication cohort of 1,858

individuals enrolled in the SardiNIA study but unrelated

to the first group (designated here as stage 2 analysis). The

features of these cohorts are given in Table 2, and the results

of association are summarized in Table 3. Analysis revealed

that SNP rs4704397 or its surrogate rs6885099 was associ-

ated with the TSH trait in all the cohorts tested, with the

same direction of effect as observed in our original sample

(Table 3). Notably, the effect size in the replication samples

Figure 3. Quantile-Quantile Plot of SNPs Associated with TSH
Level in the SardiNIA Study
Red dots represent all the 362,129 SNPs analyzed in the GWAS. Blue
dots represent all analyzed SNPs not located within the PDE8B
gene. The gray area corresponds to the 90% confidence region
from a null distribution of p values generated from 100 simula-
tions.
e 2008



Table 2. Characteristics of Samples Used in Genome-wide and Follow-Up Analyses

Population Study n (% female) Mean Age (SD) Mean TSH (SD) % Under Treatment
% Recorded
Disease Status

SardiNIA 4300 (56.2%) 43.6 (17.6) 2.04 (3.2) 2.5% 81%

Follow-up samples
SardiNIA stage 2 1858 (59.9%) 44.6 (17.4) 2.23 (4.4) 2.2% 81%

InCHIANTI 1164 (55.9%) 68.8 (15.4) 1.92 (4.7) 6.1% 100%

Old Order Amish 1136 (47.0%) 49.9(16.7) 2.19 (2.5) 6.8% NA

The table shows the mean and standard deviation (SD) for age and TSH values for each study group, as well as the percentage of individuals under thyroid-

hormone therapy and of individuals with clear reports of disease status (i.e., thyroid cancer, surgery, and autoimmune thyroiditis). NA, not assessed.
was about half that observed in the initial GWAS (0.25 ver-

sus 0.12). This may be due to less accurate estimates of ef-

fect size as a result of reduction in sample size and conse-

quent decrease of statistical power, or it may reflect the

‘‘winner’s curse’’ phenomenon, where effect-size estimates

for markers that reach statistical significance may be in-

flated. The combined p value from stage 2 analyses in the

three cohorts was highly significant (p ¼ 2.0 3 10�10),

leading to a cumulative-association p value of 1.9 3 10�20.

Table 3 also summarizes the distribution of the TSH

levels for each genotype class for the SNP rs4704397 and

shows that in all the samples, individuals carrying at least

one copy of the minor A allele have higher circulating

levels of TSH than those homozygous for the major G al-

lele, showing a trend for an additive model. In the Amish

sample, the mean TSH value for individuals with the A/G

genotype appears slightly higher than that observed for

the A/A subjects. This could result from the different fre-

quency of the rare A allele and the lower frequency of

the A/A genotype in the Amish compared with the other

cohorts; this lower frequency would yield less accurate

mean-value estimates for this genotype class compared to

values in the other cohorts.

We also repeated association analyses in all cohorts after

stratifying subjects into two groups, one group including

individuals with TSH levels in the normal range (0.4–4.0

mIU/ml), with no reported history of thyroid disease, and

not taking thyroid medications (group 1, Table 4), and
The Am
the other group including the remaining subjects (group

2). The results confirmed the association of rs4704397 in

both the unaffected and the thyroid-affected individuals

(Table 4). Because of the reduction in sample size, the p

value was lower in the two subsets, but the effect size of

the associated A allele was larger in group 2 individuals

(in all but the OOA cohort), suggesting a potential involve-

ment of PDE8B activity in the course of thyroid disease.

Further analysis in a larger subgroup of thyroid-affected

Sardinian subjects, including all the individuals from

group 2 as well as individuals with nodules and goiters

(formerly in group 1), showed stronger association when

compared to the remaining subjects, again confirming

a larger effect size of the A allele in thyroid-affected indi-

viduals (see Table S1 available online). Despite the consis-

tently larger effect in thyroid-affected individuals in sev-

eral studies, this difference does not reach statistical

significance (Cochran’s Q statistic32 p ¼ 0.49, I2 ¼ 0%);

consequently, larger studies will be necessary to test this

hypothesis further. Association analysis of rs4704397 in

males and females did not suggest gender-specific effects

(Table S2). Signals for other loci that did not reach ge-

nome-wide significance (Table 1) did not replicate strongly

in other cohorts and have in general not been followed up

further. For two SNPs, rs657152 on chromosome 9 (in the

ABO blood group gene [MIM 110300], with borderline Bon-

ferroni p value) and SNP rs2983521 on chromosome 6 (in

PDE10A,19 a gene that belongs to the same enzyme family
Table 3. Summary of Association Results for SNP rs4704397 in All Cohorts

Population Study n A/A A/G G/G Freq(A) Effecta (SE) p Value

SardiNIAb 4300 1.60 (1.50) 1.38 (1.21) 1.20 (1.14) 0.44 0.25 (0.04) 1.3 3 10�11

Stage 2
SardiNIA stage 2c 1858 1.84 (1.43) 1.67 (1.30) 1.49 (1.32) 0.44 0.13 (0.03) 1.1 3 10�4

InCHIANTI 1164 1.50 (2.12) 1.32 (1.14) 1.26 (1.18) 0.41 0.12 (0.04) 0.0021

Old Order Amish 1136 1.75 (1.54) 1.80 (1.42) 1.55 (1.33) 0.33 0.12 (0.05) 7.0 3 10�5

Meta-analysis
Stage2 4158 2.0 3 10�10

Overall 8458 1.9 3 10�20

The table summarizes association results for rs4704397 in all cohorts. For each study, genotype medians (IRQ range) of unadjusted TSH values are reported

in mIU/ml; effect sizes (SE) and p values are given relative to the normalized trait.
a The effect size is measured in standard-deviation units and is estimated as the b coefficient of the regression model when the normalized trait is used

(e.g., an effect size of 1.0 implies that each additional copy of the allele being evaluated increases trait values by 1.0 standard deviation).
b SardiNIA genotype medians are relative only to individuals directly genotyped with the 500K Mapping Array Set.
c Results are for rs6885099, in strong LD (r2 ¼ 0.98) with rs4704397, which was not genotyped (see Material and Methods).
erican Journal of Human Genetics 82, 1270–1280, June 2008 1275



Table 4. Results of Association Analysis of rs4704397 in Healthy and Thyroid-Affected Individuals

Group 1 Group 2

Population Study n Effecta (SE) p Value n Effecta (SE) p Value

SardiNIA 3785 0.18 (0.03) 1.5 3 10�8 515 0.26 (0.08) 1.3 3 10�3

Stage 2
SardiNIA stage 2b 1645 0.12 (0.03) 7.9 3 10�4 213 0.24 (0.10) 0.013

InCHIANTIc 994 0.08 (0.05) 0.067 191 0.24 (0.10) 0.016

Old Order Amishd 962 0.15 (0.05) 5.7 3 10�4 174 0.11 (0.11) 0.104

Meta-analysis Meta-analysis
Stage 2 3601 5.4 3 10�7 578 1.5 3 10�4

Overall 7386 4.3 3 10�14 1093 7.2 3 10�7

We compared association results in two subgroups. Group 1 identifies healthy subjects and consists of individuals with TSH levels in the normal range of

0.4–4 mIU/dl and with no history of thyroid disease (thyroid medications, thyroid cancer, surgery, or autoimmune thyroiditis). Group 2 consists of the

remaining subjects.
a The effect size refers to the minor allele frequency (MAF) allele; it is measured in standard-deviation units and is estimated as the b coefficient of the

regression model when the normalized trait is used (e.g., an effect size of 1.0 implies that each additional copy of the allele increases trait values by 1.0

standard deviation).
b Results are for rs6885099, in strong LD (r2 ¼ 0.98) with rs4704397, which was not genotyped (see Materials and Methods).
c Thryoid autoimmunity and thyroid cancer information were not reported in the InCHIANTI database. Old Older Amish database did not contain any in-

formation regarding thyroid disease, so only out-of-range TSH values and history of taking thyroid-hormone therapy were considered to define group 2.
d Old Older Amish database did not contain information regarding thyroid disease, so only out-of-range TSH values and history of taking thyroid-hormone

therapy were considered to define group 2.
as PDE8B), some further testing was performed. SNP

rs657152 did not replicate in the Amish or InCHIANTI co-

horts, whereas rs2983521 was replicated in InCHIANTI,

with a one-sided p value of 0.048, but was not supported

in the Amish samples (data not shown). Thus, its involve-

ment in the variability of TSH remains suggestive, requir-

ing study in additional cohorts.

Fine Mapping in the PDE8B Locus

To identify possible coding and/or functional variants in-

volved in the regulation of PDE8B activity in the context

of TSH variation, we genotyped 70 additional SNPs falling

in the PDE8B gene or in the neighboring 5 kb upstream

and downstream regions in 2,492 Sardinians. We analyzed

all the available markers (39 from the GWAS and 70 from

the custom chip) in the individuals genotyped with at least

one platform and for whom TSH values were available (n¼
6,062). As shown in Figure 2C and Table S3, the strongest

association signals all pointed to intron 1, common to all

five PDE8B isoforms, in which ten significant SNPs were lo-

cated. The top three SNPs confirmed the previous top three

markers detected in the GWAS, though with a shifted rank

order (rs6885099, p¼ 1.69 3 10�14; rs4704397, p¼ 1.01 3

10�12; rs2046045, p ¼ 3.76 3 10�12). Several of the SNPs

show linkage disequilibrium (r2 > 0.5) with SNPs in neigh-

boring regions (Figures 2A and 2B), suggesting that the

functional variant(s) may lie outside of intron 1. However,

it seems likely that they will reside in a noncoding se-

quence, because sequence analysis of all the PDE8B exons

in 20 subjects homozygous for the rare and 20 for the com-

mon alleles of the top two associated SNPs, rs4704397 and

rs6885099, did not reveal any coding variants (data not

shown). In addition to intron 1, we also found evidence

of association for two new SNPs within intron 10 of
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PDE8B1. The functional relevance of these variants re-

mains to be elucidated. Further studies, including large-

scale resequencing and molecular analyses, will be neces-

sary to verify the effects of the associated variants on the

regulation of the TSH levels.

Association Analysis of Candidate Genes

with TSH Levels

Our GWA analysis implicated PDE8B as the only gene with

a significant effect on variation of TSH. Because PDE8B var-

iants contribute only 2.3% of TSH variation, which repre-

sents a small part of the total genetic component of the

trait (~40%), we expected other genes to contribute to

TSH levels, albeit with smaller effects. To begin to look

for such genes, we carried out in the SardiNIA cohort a sub-

analysis focusing on candidate genes, where a less strin-

gent significance threshold would increase power. We se-

lected 24 candidate genes on the basis of their reported

function in cAMP metabolism, TSH signaling, and the reg-

ulation of thyroid function. No linkage and association

studies showing a correlation with TSH levels had previ-

ously been performed for any of these candidates. When

markers falling in the candidates and already genotyped

in the GWAS were tested for their association with TSH

levels, as expected none reached genome-wide significant

association (Table 5). However, substantive evidence of as-

sociation was detected for some genes involved in the bio-

logical activity and negative feedback of thyroid hormone

(THRB),20 in signaling of TSH (TSHR [MIM 603372] and

GNAQ),21,33 in thyroid-hormone production (TG [MIM

188450]),33 and in phosphodiesterases involved in the ca-

tabolism of cAMP (PDE4D [MIM 600129])34,35 (see Discus-

sion for more details). Among the various PDE genes,

PDE4D and PDE7B [MIM 604645]36 were included in the
2008



Table 5. Tag SNPs that Show Strongest Association with TSH in Previously Identified Candidate Genes in the TSH Signaling
Pathways and Thyroid Function

Gene
# Affymetrix
SNPs

# HapMap
SNPs

Coverage
(0.5)

Coverage
(0.8)

Best
p Value SNP

Allele
(þ/�) Freq (þ) Effecta H2

THRB 58 382 0.67 0.45 7.3 x10�5 rs1505287 G/A 0.67 0.16 1.27%
GNAQ 20 204 0.91 0.75 2.0 x10�4 rs10512065 G/A 0.85 0.13 0.49%
TG 76 489 0.95 0.86 2.2 x10�3 rs2252696 A/C 0.47 0.08 0.37%
POU1F1 1 9 1.00 0.78 3.9 x10�3 rs1976324 G/A 0.66 0.12 0.74%
PDE4D 119 714 0.82 0.61 8.3 x10�3 rs27178 G/A 0.46 0.07 0.24%
TSHR 21 221 0.87 0.61 8.6 x10�3 rs4903957 G/A 0.69 0.09 0.34%
GNAO1 22 157 0.87 0.70 0.01 rs2550298 T/C 0.52 0.05 0.11%
DIO1 5 16 0.88 0.69 0.03 rs2294512 G/A 0.83 0.12 0.43%
PDE7B 39 196 0.85 0.61 0.03 rs9376165 G/A 0.82 0.14 0.60%
GNAI1 8 70 0.83 0.40 0.04 rs2523189 C/T 0.76 0.10 0.32%
GNAS 6 36 0.61 0.39 0.05 rs6026565 A/T 0.14 0.06 0.09%
TTF1 0 19 0.32 0.16 0.08 rs7030233 G/A 0.18 0.08 0.23%

TPO 17 176 0.81 0.53 0.09 rs2071403 G/A 0.54 0.09 0.45%

DIO2 0 12 0.83 0.67 0.09 rs9919906 C/T 0.59 0.08 0.32%

TSH-A 2 11 1.00 0.91 0.13 rs6155 C/T 0.06 0.09 0.11%

PAX8 10 41 0.88 0.66 0.16 rs6716573 T/C 0.22 0.08 0.24%

PROP1 0 3 0.67 0.00 0.23 rs4413548 T/C 0.51 0.02 0.03%

TRHR 8 37 0.86 0.70 0.25 rs3134115 T/C 0.44 0.02 0.02%

CREBBP 8 23 0.61 0.57 0.29 rs8046065 C/T 0.81 0.01 0.00%

CREB1 2 19 0.74 0.74 0.32 rs2709393 A/G 0.06 0.02 0.00%

CTLA4 0 2 1.00 0.50 0.36 rs11571292 G/A 0.80 0.03 0.03%

TSH-B 0 4 1.00 1.00 0.66 rs2274118 G/C 0.28 0.02 0.02%

THRA 1 4 0.25 0.25 0.84 rs939348 C/T 0.85 0.00 0.00%

PRKAR1B 0 2 0.00 0.00 NA NA NA NA NA NA

The first column indicates the name of a previously identified candidate gene. The second column indicates the number of SNPs in our Affymetrix arrays

that are within 5 5 kb of the gene. The next column indicates the number of HapMap SNPs within 5 5 kb of the gene and the proportion of these

that are covered at r2 ¼ 0.50 or r2 ¼ 0.80 by SNPs in the Affymetrix arrays. The remaining columns indicate the SNP that showed strongest association

in our analysis, the p value, the tested allele and its frequency, and the estimated additive effect in standard-deviation units. Association was tested

either with intragenic SNPs or with the best available tag for intragenic SNPs (r2 > 0.5). Shown in bold are candidate genes with SNPs reaching

p values % 0.05.
a The effect size refers to the MAF allele; it is measured in standard-deviation units and is estimated as the b coefficient of the regression model when the

normalized trait is used (e.g., an effect size of 1.0 implies that each additional copy of the allele increases trait values by 1.0 standard deviation).
focused analysis on the basis of their cAMP specificity and

reported expression in thyroid tissues. We have calculated

the corresponding FDRs27 by taking into account all the

503 SNPs tested in the candidate-gene analysis. Notably,

by this criterion, the q value for SNPs falling in the THRB

and GNAQ genes reached the significant threshold of

0.05 (q ¼ 0.036 and q ¼ 0.050, respectively), suggesting

a possible involvement in the variability of TSH levels.

Discussion

The PDE8B gene, encoding a high-affinity cAMP phospho-

diesterase,37 is inferred to modulate circulating TSH levels

in three independent populations, with a combined p

value of 1.9 3 10�20. Of the five characterized PDE8B iso-

forms, the major isoform PDE8B1 and minor isoforms

PDE8B2 and PDE8B3 are abundantly expressed in the thy-

roid.16,38 Because PDE8B is undetectable in the pituitary,39

we infer it to act primarily in the thyroid to catalyze the hy-

drolysis and inactivation of cAMP after TSH signaling.

PDE8B could then influence TSH levels by feedback from

an effect on the generation of T4 and T3 in the thyroid,
The Am
in line with reports that both thyroglobulin endocytosis

and thyroid-hormone secretion are stimulated by TSH via

a cAMP-dependent pathway.3

Although no signals other than PDE8B reached genome-

wide significance (Table 5), several candidate genes showed

suggestive evidence of association. These included two

other cAMP-specific phosphodiesterases, PDE4D,34,35 and,

at a much lower level of significance, PDE7B.36 It is relevant

that the cAMP-specific PDE4 family has also been sug-

gested to be involved in modulating the cAMP signal after

TSH stimulation of thyrocytes.34 Furthermore, some evi-

dence for association was also detected in our GWAS in

PDE10A, a phosphodiesterase with dual specificity for cy-

clic nucleotides and stimulated by cAMP.19 Analyses using

differential inhibition or transfection of the range of phos-

phodiesterases and their variants in thyrocytes should help

to determine their contribution to cAMP levels.

As for other genes previously implicated in TSH homeo-

stasis, the thyroid-hormone receptor, b (THRB)20 and several

G protein genes—in particular, GNAQ,21 previously re-

ported to be required for TSH-induced thyroid-hormone

synthesis and release—implicated in the signal transduc-

tion of hormone receptors, also showed suggestive
erican Journal of Human Genetics 82, 1270–1280, June 2008 1277



association signals (Table 5). Finally, some evidence of as-

sociation was also noticed in two thyroid-specific genes,

thyroglobulin (TG) and thyroid-stimulating hormone receptor

(TSHR),33 and in POU class 1 homeobox 1 (POU1F1 [MIM

173110]),40 a gene expressed in the pituitary and impor-

tant for the regulation of a number of pituitary hormones.

We infer that much of the TSH-level variance that subtly

affects normal and possibly pathological states seems to be

exerted at the level of cAMP degradation. It is possible that

genomic PDE8B mutations could be responsible for certain

thyroid diseases—for example, for increased serum TSH

occasionally observed in individuals with no evidence of

thyroid autoimmunity or loss-of-function mutations in

the thyroid-hormone- or TSH-receptor genes.41 Because

PDE8B has the highest affinity for cAMP of any known

phosphodiesterase,37 the enzyme would be active even at

low concentrations of cAMP, and a change in its level or

activity could have an especially marked effect on TSH

signaling. Consistent with this notion, a mutation in

PDE8B that leads to elevated cAMP levels has now been

identified in a case of adrenal hyperplasia in Cushing syn-

drome (AIMAH [MIM 219080]).42 Increased cAMP-degrad-

ing PDE8B activity has also been detected in autonomous

thyroid adenomas, where it may represent a compensatory

mechanism opposing the constitutive activation of the

cAMP pathway.34 Other reports have noted PDE8B upregu-

lation in Alzheimer’s disease (AD [MIM 104300]) brain43

and pituitary adenomas,39 as well as involvement in

a model of modified insulin secretion.44

PDE family members have increasingly been implicated

in the pathogenesis of a number of other diseases, includ-

ing cardiovascular disorders, renal failure,45 adrenocortical

hyperplasia,42,46 and a wide variety of inflammatory pa-

thologies.47 Selective isoform-specific PDE inhibitors are

already employed to treat several diseases, and thus

PDE8B may provide a pharmaceutical target for certain

thyroid pathologies.

Supplemental Data

Five tables are available at http://www.ajhg.org/.
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gelo Scuteri, Marco Orrù, Maria Cristina Spada, Danilo Fois, Liana

Ferreli, Marcello Argiolas, Francesco Loi, and Pietro Figus; nurses

Paola Loi, Monica Lai, and Anna Cau, who carried out participant

physical exams; and Monica Balloi for the recruitment of volun-

teers. We are grateful for the provision of InCHIANTI data and sam-

ples for analyses and for helpful discussion and critical comments

from their leadership for this manuscript. We also wish to thank

the Amish community for their cooperation and partnership in re-

search and the personnel at the Amish Research Clinic for their ex-
1278 The American Journal of Human Genetics 82, 1270–1280, June
traordinary efforts. This work was supported by the Intramural Re-

search Program of the National Institute on Aging (NIA), National

Institutes of Health (NIH). The SardiNIA (‘‘ProgeNIA’’) team was

supported by Contract NO1-AG-1–2109 from the NIA; the efforts

of G.R.A. and S.S. were supported in part by contract 263-MA-

410953 from the NIA to the University of Michigan and by re-

search grant HG002651 and HL084729 from the NIH (to G.R.A.).

S.N. was partially supported by a grant from the Fondazione Banco

di Sardegna. The InCHIANTI study was supported in part by the

Italian Ministry of Health (ICS 110.1/RS97.71) and U.S. NIA (con-

tracts N01-AG-916413, N01-AG-821336, 263 MD 9164 13, and

263 MD 821336). The work with the Amish was supported by re-

search grants U01 HL72515 and R01 AG18728 and by the Univer-

sity of Maryland General Clinical Research Center, grant M01 RR

16500; the Johns Hopkins University General Clinical Research

Center, grant M01 RR 000052; General Clinical Research Centers

Program, National Center for Research Resources (NCRR), NIH;

and the Baltimore Veterans Administration Geriatric Research

and Education Clinical Center (GRECC).

Received: March 3, 2008

Revised: April 21, 2008

Accepted: April 30, 2008

Published online: May 29, 2008

Web Resources

The URL for data presented herein is as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/

References

1. Kopp, P. (2005). Thyroid hormone synthesis. In The Thyroid.

A Fundamental and Clinical Text, L.E. Braverman and R.D.

Utiger, eds. (New York: Lippincott), pp. 52–76.

2. Yen, P.M. (2001). Physiological and molecular basis of thyroid

hormone action. Physiol. Rev. 81, 1097–1142.

3. Vassart, G., and Dumont, J.E. (1992). The thyrotropin receptor

and the regulation of thyrocyte function and growth. Endocr.

Rev. 13, 596–611.

4. Dahl, G.E., Evans, N.P., Thrun, L.A., and Karsch, F.J. (1994). A

central negative feedback action of thyroid hormones on thy-

rotropin-releasing hormone secretion. Endocrinology 135,

2392–2397.

5. Barnett, P. (2003). Somatostatin and somatostatin receptor

physiology. Endocrine 20, 255–264.

6. Larsen, P.R. (1982). Thyroid-pituitary interaction: Feedback

regulation of thyrotropin secretion by thyroid hormones. N.

Engl. J. Med. 306, 23–32.

7. Pilia, G., Chen, W.M., Scuteri, A., Orru, M., Albai, G., Dei, M.,

Lai, S., Usala, G., Lai, M., Loi, P., et al. (2006). Heritability of

cardiovascular and personality traits in 6,148 Sardinians.

PLoS Genet. 2, e132.

8. Andersen, S., Pedersen, K.M., Bruun, N.H., and Laurberg, P.

(2002). Narrow individual variations in serum T(4) and T(3)

in normal subjects: A clue to the understanding of subclinical

thyroid disease. J. Clin. Endocrinol. Metab. 87, 1068–1072.

9. Allen, E.M., Hsueh, W.C., Sabra, M.M., Pollin, T.I., Ladenson,

P.W., Silver, K.D., Mitchell, B.D., and Shuldiner, A.R. (2003).
2008

http://www.ajhg.org/
http://www.ncbi.nlm.nih.gov/Omim/
http://www.ncbi.nlm.nih.gov/Omim/


A genome-wide scan for autoimmune thyroiditis in the Old

Order Amish: Replication of genetic linkage on chromosome

5q11.2-q14.3. J. Clin. Endocrinol. Metab. 88, 1292–1296.

10. Balaci, L., Spada, M.C., Olla, N., Sole, G., Loddo, L., Anedda, F.,

Naitza, S., Zuncheddu, M.A., Maschio, A., Altea, D., et al.

(2007). IRAK-M is involved in the pathogenesis of early-onset

persistent asthma. Am. J. Hum. Genet. 80, 1103–1114.

11. Scuteri, A., Sanna, S., Chen, W.M., Uda, M., Albai, G., Strait, J.,

Najjar, S., Nagaraja, R., Orru, M., Usala, G., et al. (2007). Ge-

nome-wide association scan shows genetic variants in the

FTO gene are associated with obesity-related traits. PLoS

Genet. 3, e115.

12. Li, S., Sanna, S., Maschio, A., Busonero, F., Usala, G., Mulas, A.,

Lai, S., Dei, M., Orru, M., Albai, G., et al. (2007). The GLUT9

gene is associated with serum uric acid levels in Sardinia and

Chianti cohorts. PLoS Genet. 3, e194.

13. Willer, C.J., Sanna, S., Jackson, A.U., Scuteri, A., Bonnycastle,

L.L., Clarke, R., Heath, S.C., Timpson, N.J., Najjar, S.S., String-

ham, H.M., et al. (2008). Newly identified loci that influence

lipid concentrations and risk of coronary artery disease. Nat.

Genet. 40, 161–169.

14. Sanna, S., Jackson, A.U., Nagaraja, R., Willer, C.J., Chen, W.M.,

Bonnycastle, L.L., Shen, H., Timpson, N., Lettre, G., Usala, G.,

et al. (2008). Common variants in the GDF5-UQCC region are

associated with variation in human height. Nat. Genet. 40,

198–203.

15. Uda, M., Galanello, R., Sanna, S., Lettre, G., Sankaran, V.G.,

Chen, W., Usala, G., Busonero, F., Maschio, A., Albai, G.,

et al. (2008). Genome-wide association study shows BCL11A

associated with persistent fetal hemoglobin and amelioration

of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci.

USA 105, 1620–1625.

16. Hayashi, M., Matsushima, K., Ohashi, H., Tsunoda, H., Mur-

ase, S., Kawarada, Y., and Tanaka, T. (1998). Molecular cloning

and characterization of human PDE8B, a novel thyroid-spe-

cific isozyme of 30,50-cyclic nucleotide phosphodiesterase. Bio-

chem. Biophys. Res. Commun. 250, 751–756.

17. Shumway-Cook, A., Guralnik, J.M., Phillips, C.L., Coppin,

A.K., Ciol, M.A., Bandinelli, S., and Ferrucci, L. (2007). Age-as-

sociated declines in complex walking task performance: The

Walking InCHIANTI toolkit. J. Am. Geriatr. Soc. 55, 58–65.

18. Sorkin, J., Post, W., Pollin, T.I., O’Connell, J.R., Mitchell, B.D.,

and Shuldiner, A.R. (2005). Exploring the genetics of longev-

ity in the Old Order Amish. Mech. Ageing Dev. 126, 347–350.

19. Gross-Langenhoff, M., Hofbauer, K., Weber, J., Schultz, A., and

Schultz, J.E. (2006). cAMP is a ligand for the tandem GAF do-

main of human phosphodiesterase 10 and cGMP for the tan-

dem GAF domain of phosphodiesterase 11. J. Biol. Chem. 281,

2841–2846.

20. Refetoff, S., Weiss, R.E., and Usala, S.J. (1993). The syndromes

of resistance to thyroid hormone. Endocr. Rev. 14, 348–399.

21. Kero, J., Ahmed, K., Wettschureck, N., Tunaru, S., Winterman-

tel, T., Greiner, E., Schutz, G., and Offermanns, S. (2007). Thy-

rocyte-specific Gq/G11 deficiency impairs thyroid function

and prevents goiter development. J. Clin. Invest. 117, 2399–

2407.

22. Chen, W.M., and Abecasis, G.R. (2007). Family-based associa-

tion tests for genomewide association scans. Am. J. Hum.

Genet. 81, 913–926.

23. Ferrucci, L., Bandinelli, S., Benvenuti, E., Di Iorio, A., Macchi,

C., Harris, T.B., and Guralnik, J.M. (2000). Subsystems contrib-

uting to the decline in ability to walk: Bridging the gap be-
The Am
tween epidemiology and geriatric practice in the InCHIANTI

study. J. Am. Geriatr. Soc. 48, 1618–1625.

24. Mitchell, B.D., McArdle, P.F., Shen, H., Rampersaud, E., Pollin,

T.I., Bielak, L.F., Jaquish, C., Douglas, J.A., Roy-Gagnon, M.H.,

Sack, P., et al. (2008). The genetic response to short-term inter-

ventions affecting cardiovascular function: Rationale and de-

sign of the Heredity and Phenotype Intervention (HAPI) Heart

Study. Am. Heart J. 155, 823–828.

25. Lander, E.S., and Green, P. (1987). Construction of multilocus

genetic linkage maps in humans. Proc. Natl. Acad. Sci. USA 84,

2363–2367.

26. Abecasis, G.R., Cherny, S.S., Cookson, W.O., and Cardon, L.R.

(2002). Merlin–rapid analysis of dense genetic maps using

sparse gene flow trees. Nat. Genet. 30, 97–101.

27. Benjamini, Y., and Hochberg, Y. (1995). Controlling the false

discovery rate: A practical and powerful approach to multiple

testing. J.R. Stat. Soc. Ser. D Stat. Methodol. 57, 289–300.

28. Almasy, L., and Blangero, J. (1998). Multipoint quantitative-

trait linkage analysis in general pedigrees. Am. J. Hum. Genet.

62, 1198–1211.

29. Damcott, C.M., Ott, S.H., Pollin, T.I., Reinhart, L.J., Wang, J.,

O’Connell, J.R., Mitchell, B.D., and Shuldiner, A.R. (2005). Ge-

netic variation in adiponectin receptor 1 and adiponectin re-

ceptor 2 is associated with type 2 diabetes in the Old Order

Amish. Diabetes 54, 2245–2250.

30. Abecasis, G.R., and Cookson, W.O. (2000). GOLD–graphical

overviewof linkagedisequilibrium. Bioinformatics16, 182–183.

31. International HapMap Consortium (2005). A haplotype map

of the human genome. Nature 437, 1299–1320.

32. Higgins, J.P.T., and Thompson, S.G. (2002). Quantifying het-

erogeneity in a meta-analysis. Stat. Med. 21, 1539–1558.

33. Jacobson, E.M., and Tomer, Y. (2007). The genetic basis of thy-

roid autoimmunity. Thyroid 17, 949–961.

34. Persani, L., Lania, A., Alberti, L., Romoli, R., Mantovani, G.,

Filetti, S., Spada, A., and Conti, M. (2000). Induction of spe-

cific phosphodiesterase isoforms by constitutive activation

of the cAMP pathway in autonomous thyroid adenomas. J.

Clin. Endocrinol. Metab. 85, 2872–2878.

35. Oki, N., Takahashi, S.I., Hidaka, H., and Conti, M. (2000).

Short term feedback regulation of cAMP in FRTL-5 thyroid

cells. Role of PDE4D3 phosphodiesterase activation. J. Biol.

Chem. 275, 10831–10837.

36. Hetman, J.M., Soderling, S.H., Glavas, N.A., and Beavo, J.A.

(2000). Cloning and characterization of PDE7B, a cAMP-

specific phosphodiesterase. Proc. Natl. Acad. Sci. USA 97,

472–476.

37. Bender, A.T., and Beavo, J.A. (2006). Cyclic nucleotide phos-

phodiesterases: Molecular regulation to clinical use. Pharma-

col. Rev. 58, 488–520.

38. Hayashi, M., Shimada, Y., Nishimura, Y., Hama, T., and Tanaka,

T. (2002). Genomic organization, chromosomal localization,

and alternative splicing of the human phosphodiesterase 8B

gene. Biochem. Biophys. Res. Commun. 297, 1253–1258.

39. Persani, L., Borgato, S., Lania, A., Filopanti, M., Mantovani, G.,

Conti, M., and Spada, A. (2001). Relevant cAMP-specific phos-

phodiesterase isoforms in human pituitary: Effect of Gs(alpha)

mutations. J. Clin. Endocrinol. Metab. 86, 3795–3800.

40. Radovick, S., Nations, M., Du, Y., Berg, L.A., Weintraub, B.D.,

and Wondisford, F.E. (1992). A mutation in the POU-homeo-

domain of Pit-1 responsible for combined pituitary hormone

deficiency. Science 257, 1115–1118.
erican Journal of Human Genetics 82, 1270–1280, June 2008 1279



41. Tonacchera, M., Perri, A., De Marco, G., Agretti, P., Banco,

M.E., Di Cosmo, C., Grasso, L., Vitti, P., Chiovato, L., and Pin-

chera, A. (2004). Low prevalence of thyrotropin receptor mu-

tations in a large series of subjects with sporadic and familial

nonautoimmune subclinical hypothyroidism. J. Clin. Endo-

crinol. Metab. 89, 5787–5793.

42. Horvath, A., Mericq, V., and Stratakis, C.A. (2008). Mutation

in PDE8B, a cyclic AMP-specific phosphodiesterase in adrenal

hyperplasia. N. Engl. J. Med. 358, 750–752.

43. Perez-Torres, S., Cortes, R., Tolnay, M., Probst, A., Palacios,

J.M., and Mengod, G. (2003). Alterations on phosphodiester-

ase type 7 and 8 isozyme mRNA expression in Alzheimer’s dis-

ease brains examined by in situ hybridization. Exp. Neurol.

182, 322–334.
1280 The American Journal of Human Genetics 82, 1270–1280, June
44. Dov, A., Abramovitch, E., Warwar, N., and Nesher, R. (2008).

Diminished phosphodiesterase-8B potentiates biphasic insu-

lin response to glucose. Endocrinology 149, 741–748.

45. Dousa, T.P. (1999). Cyclic-30,50-nucleotide phosphodiesterase

isozymes in cell biology and pathophysiology of the kidney.

Kidney Int. 55, 29–62.

46. Horvath, A., Boikos, S., Giatzakis, C., Robinson-White,A.,Grous-

sin,L.,Griffin,K.J., Stein,E., Levine,E.,Delimpasi,G.,Hsiao,H.P.,

et al. (2006). A genome-wide scan identifies mutations in the

gene encoding phosphodiesterase 11A4 (PDE11A) in individuals

with adrenocortical hyperplasia. Nat. Genet. 38, 794–800.

47. Dastidar, S.G., Rajagopal, D., and Ray, A. (2007). Therapeutic

benefit of PDE4 inhibitors in inflammatory diseases. Curr.

Opin. Investig. Drugs 8, 364–372.
2008


	Phosphodiesterase 8B Gene Variants Are Associated with Serum TSH Levels and Thyroid Function
	Introduction
	Material and Methods
	Sample Description
	GWAS Genotyping
	Replication and Fine Mapping
	InCHIANTI
	Old Order Amish
	Statistical Analysis

	Results
	Genome-wide Association Scan for TSH Levels in Sardinians
	Replication of the Association of rs4704397/PDE8B in Other Populations
	Fine Mapping in the PDE8B Locus
	Association Analysis of Candidate Genes with TSH Levels

	Discussion
	Acknowledgments
	Web Resources
	References


