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Summary

To anticipate the momentum of the day, most organisms
have developed an internal clock that drives circadian
rhythms in metabolism, physiology, and behavior [1]. Recent
studies indicate that cell-cycle progression and DNA-dam-
age-response pathways are under circadian control [2—-4].
Because circadian output processes can feed back into the
clock, we investigated whether DNA damage affects the
mammalian circadian clock. By using Rat-1 fibroblasts
expressing an mPer2 promoter-driven luciferase reporter,
we show that ionizing radiation exclusively phase advances
circadian rhythms in a dose- and time-dependent manner.
Notably, this in vitro finding translates to the living animal,
because ionizing radiation also phase advanced behavioral
rhythms in mice. The underlying mechanism involves ATM-
mediated damage signaling as radiation-induced phase
shifting was suppressed in fibroblasts from cancer-predis-
posed ataxia telangiectasia and Nijmegen breakage syn-
drome patients. lonizing radiation-induced phase shifting
depends on neither upregulation or downregulation of clock
gene expression nor on de novo protein synthesis and, thus,
differs mechanistically from dexamethasone- and forskolin-
provoked clock resetting [5]. Interestingly, ultraviolet light
and tert-butyl hydroperoxide also elicited a phase-advancing
effect. Taken together, our data provide evidence that the
mammalian circadian clock, like that of the lower eukaryote
Neurospora [6], responds to DNA damage and suggest that
clock resetting is a universal property of DNA damage.

Results and Discussion

lonizing Radiation Phase Advances the Circadian Clock

To study the effect of DNA damage on the circadian system,
we used Rat-1 fibroblasts stably expressing an mPer2 pro-
moter-driven luciferase reporter gene, (Rat-1 mPer2:luc cells
[7]). The mPer2 promoter is activated by the CLOCK/BMAL1
heterodimer and repressed by the activity of the PER/CRY
complex and allows real-time monitoring of circadian oscilla-
tions [1]. Confluent Rat-1 mPer2:luc cells (arrested in the
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G0/G1 phase of the cell cycle; see Figure S1 available online)
were first treated with forskolin (30 uM) to synchronize clock
gene expression between individual cells. When applied 30 hr
after synchronization, a single dose of gamma (y)-radiation eli-
cited a clear phase advance of bioluminescence rhythms in a
dose-dependent manner (Figure 1A), with a maximum shift of
about 4 hr being reached at doses of 10 Gy and higher (Fig-
ure 1B). At this dose, we did not observe significant cell death,
as further illustrated by the comparable levels of biolumines-
cence signals in irradiated and mock-treated cells (Figure 1A).
Because the phase of circadian oscillations hardly changed
when cells were y-irradiated 40 hr after synchronization
(Figure 1A, bottom), we next examined whether the magnitude
and direction (i.e., advance versus delay) of ionizing radiation-
induced phase shifts were dependent on the phase of the cir-
cadian clock. As evident from the phase response curve (PRC),
obtained by exposing Rat-1 mPer2:luc cells to 10 Gy of y-radi-
ation at various phases of the circadian cycle (Figure 1C),
a maximal phase advance was elicited between 26 and 32 hr
after forskolin synchronization. This shift was intermediate at
34 hr and negligible between 36 and 44 hr after synchroniza-
tion. At 48 hr, cells again displayed an intermediate phase ad-
vance, similar to that observed 24 hr earlier. Interestingly, the
PRC for ionizing radiation exclusively shows phase advances.
This finding markedly contrasts the reported Rat-1 cell PRCs
for forskolin and dexamethasone, which exhibit both phase
advances and delays [5]. The lack of phase delays in the
PRC for ionizing radiation is not due to an unforeseen artifact
in our batch of Rat-1 mPer2:luc cells because forskolin insti-
gated a phase delay 32 hr after synchronization of cells with
horse serum (Figure S2). Interestingly, forskolin and dexameth-
asone PRCs [5] provoke phase delays at the time when ionizing
radiation produced maximum phase advances (Figure 1C).
Having shown that y-radiation can phase advance peripheral
oscillators in vitro, we next investigated its impact on the mas-
ter circadian clock in the suprachiasmatic nuclei (SCN), as visu-
alized by voluntary wheel-running-behavior recordings. Free-
running C57BL/6J male mice were subjected to a nonlethal
dose of y-radiation (4 Gy) given at circadian time (CT) 6 or 22.
This choice is based on behavioral PRCs for nonphotic stimuli,
showing maximum phase advances and delays at CT6 (middle
of the subjective day) and CT22 (end of the subjective night),
respectively [8-10]. Exposure to y-radiation at CT6 significantly
phase advanced locomotor activity rhythms by 1.2 = 0.2 hr (as
compared to the —0.6 + 0.2 hr shift elicited by sham-treatment;
p < 0.001; Figure 2). In contrast, radiation of mice at CT22 did
not produce a significant response (0.3 = 0.3 hr and —0.4 =
0.3 hr in exposed and sham-treated mice, respectively; p =
0.08). Importantly, neither the period of circadian rhythms nor
the overall wheel-running activity per day was affected by ion-
izing radiation (Figure S3), excluding that the observed effect
was influenced by changes in core oscillator performance.
This animal study shows that the phase-advancing properties
of ionizing radiation are not limited to peripheral oscillators
but extend to the master clock in the SCN. In line with the notion
that the mechanism and molecular makeup of the circadian
clockin cultured cells and the SCN are alike [11, 12], ionizing ra-
diation exerted its effect at the same circadian phase (i.e., when
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Figure 1. lonizing Radiation Phase Advances Circadian Rhythms in Fibro-
blasts

(A) Representative examples of luminescence rhythms in confluent Rat-1
mPer2:luc cell cultures, either exposed to a single pulse of y-radiation
(red lines) at a dose of 1 Gy (top) or 10 Gy (middle) or mock-treated (black
lines) 30 hr after forskolin synchronization. The bottom panel presents an
example of confluent Rat-1 mPer2:luc cell cultures exposed to 10 Gy of
y-radiation 40 hr after forskolin synchronization.

(B) The graph illustrates dose dependency of the y-radiation-induced phase
advance of luminescence rhythms in Rat-1 mPer2:luc cell cultures. Each bar
represents the mean of three independent experiments. Error bars repre-
sent the SEM.

(C) Phase response curve of ionizing radiation-induced phase shifts. For-
skolin-synchronized Rat-1 mPer2:luc cell cultures were exposed to 10 Gy
of y-radiation at different phases of the second circadian cycle. Individual

the CLOCK/BMAL1 complex is engaged in transcription acti-
vation of E-boxes containing genes like Per2) [13].

lonizing Radiation-Mediated Phase Resetting Involves the
ATM/ATR Pathway

DNA double-strand breaks (DSBs) form the primary type of
DNA lesion introduced by ionizing radiation and trigger DNA
damage signaling pathways mainly through members of the
phosphatidylinositol 3-kinase-related kinase (PIKK) family of
protein kinases, notably ATM (ataxia telangiectasia mutated)
and ATR (ATM and Rad3 related) [14]. These kinases initiate
the signaling cascade by phosphorylating a wide spectrum
of cell-cycle regulators and DNA-repair proteins [15, 16]. Treat-
ment of synchronized Rat-1 mPer2:luc cell cultures with the
ATM-specific inhibitor Ku-55933 [17] reduced the vy-radia-
tion-induced phase advance in a dose-dependent manner,
whereas mock treatment did not have any effect (Figure 3A,
right). Similarly, the nonselective ATM/ATR inhibitor caffeine
[17, 18] caused a dose-dependent reduction of the ionizing
radiation-induced phase advance (Figure 3A, left). These find-
ings strongly suggest that ATM is a mediator of the clock-
resetting properties of ionizing radiation and point to DNA
damage as the ultimate trigger. Nonetheless, as caffeine in-
hibits ATM and ATR at reported ICs, levels (half inhibitory
dose) of 0.2 mM and 1.1 mM, respectively [18, 19], the magni-
tude of the radiation-induced phase advance at 1.1 mM
caffeine (>5 x IC5, for ATM) suggests that other kinases (i.e.,
ATR) also may contribute to the response.

To further evaluate the involvement of ATM in ionizing radi-
ation-mediated resetting of the circadian clock, we extended
our analysis to ATM- and NBS1-deficient human primary der-
mal fibroblasts (HDFs) obtained from patients with the ionizing
radiation-sensitive, cancer-predisposing disorder ataxia tel-
angiectasia (AT) and Nijmegen breakage syndrome (NBS), re-
spectively [reviewed in 20]. NBS1 (also termed nibrin) is a com-
ponent of the MRN complex (MRE11-RAD50-NBS1), which
recruits ATM to the proximity of DSBs and activates the latter
protein [21]. To visualize circadian clock performance, we first
stably infected control (n = 4), ATM-deficient (n = 3), and NBS1-
deficient (n = 3) HDFs with a lentiviral mPer2:luc reporter con-
struct. Interestingly, forskolin-synchronized patient cell lines
were oscillating with a circadian period shorter than that of
control cell lines (24.4 = 0.3 hr and 25.8 = 0.4 hr, respectively,
p =0.01; Figure 3B). Importantly, however, all ATM- and NBS1-de-
ficient cells were moderately to severely impaired in their phase-
advancing response upon ionizing radiation exposure, whereas
rhythms shifted as expected in control cells (p < 0.001; Figures
3B and 3C). These results provide definite evidence that ATM (di-
rectly or indirectly) communicates DNA damage information to
the core clock machinery. Given the notion that ATM-mediated
damage-signaling pathways are active in neuronal tissues [22],
which likely includes the SCN, and given the shorter circadian pe-
riodicity of the patient lines (final proof requiring analysis of larger
numbers of cell lines), it would be of interest to investigate the
chronotypes of AT and NBS patients.

Induction of Clock Gene Expression Is Not Required for
lonizing Radiation-Mediated Resetting

The mechanism of clock resetting in the SCN involves early
induction (after photic stimuli) or repression (after nonphotic

and averaged data are represented by open and closed symbols, respec-
tively. Error bars represent the SEM.
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Figure 2. lonizing Radiation Can Phase Advance Behavioral Rhythms in Free-Running Mice

(A) Shown are representative examples of double-plotted activity records of C57BL/6J male mice, y-radiated (left) or sham-treated (right) at CT6 (top) and
CT22 (bottom). Red dots indicate the moment of treatment. Lines through the onsets of activity indicate the phase of rhythmicity before (red line) and after

treatment (green line).

(B) Shown is a quantitative representation of ionizing radiation-induced phase shifts in ionizing radiation exposed or sham-treated C57BL/6J mice. Individ-
ual data points and mean values are represented by open circless and gray bars, respectively. Error bars represent the SEM. ***p < 0.001. Abbreviations:

NS, not significant.

stimuli) of Per gene expression [23-25]. Because the molecular
mechanism of clock resetting in cultured cells by either chem-
ical synchronizers or ionizing radiation is not documented, we
next analyzed clock mRNA levels in oscillating Rat-1 mPer2:
luc cells exposed to either dexamethasone or y-radiation
30 hr after synchronization. Remarkably, whereas dexametha-
sone strongly stimulated transcription of Per1 and Per2 genes
up to 7-fold (peaking 2-4 hr after the pulse), ionizing radiation
neither up- nor downregulated transcript levels of these genes
(Figure 3). The levels of other clock gene transcripts like Clock,
Bmal1 (Figure 4), Cry1, and Cry2 (data not shown) were unaf-
fected by both treatments. The opposite direction of forskolin
and dexamethasone versus ionizing radiation-induced phase
shifts at the same circadian phase (i.e phase delay and phase
advance, respectively [5; this study], as well as the nonrespon-
siveness of Per genes upon y-radiation, further points to differ-
ences in the underlying resetting mechanism.

Additionally, to investigate whether de novo protein synthesis
may be required for clock resetting by ionizing radiation, we
treated Rat-1 mPer2:luc cells with cycloheximide (CHX) prior
to and after y-radiation. Inhibition of translation by CHX did
not significantly prevent phase resetting (3.6 = 0.6 and 3.0 =
0.6 hr for solvent and CHX treatment, respectively; p > 0.05,
ttest), which implies the involvement of a posttranslational regu-
lation mechanism. Noteworthy, PER1 has been identified as one
of the many substrates phosphorylated by ATM/ATR after DNA
damage [15]. Moreover, PER1 and TIM proteins are engaged in
complex formation with the ATM and ATR kinases, respectively
[26, 27]. Therefore, these clock proteins may be the primary tar-
gets for posttranslational modifications to subsequently change
their abundance and activity in a fast and controllable manner.

Finally, we assessed whether clock-resetting potential is
restricted to ionizing radiation-induced genotoxic stress or

whether it extends to other types of DNA-damaging agents.
Interestingly, ultraviolet light (crosslinking the base moiety of
adjacent pyrimidines) and tert-butyl hydroperoxide (causing
oxidative DNA damage), when applied to Rat-2 mPer2:luc cells
30 hr after forskolin synchronization, also elicited a dose-
dependent, phase-advancing effect on the circadian clock
(Figure 5). This suggests that clock resetting could be a
universal property of DNA damage.

Conclusions

In summary, whereas the mammalian circadian clock has been
reported to control cell-cycle progression and DNA-damage-
response pathways [26-29], the current study provides the
first evidence that, conversely, DNA damage can act as areset-
ting cue for the mammalian circadian clock in vitro and in vivo.
The underlying mechanism differs from that of known resetting
agents. Thus far, the only other example of DNA damage
impinging on the circadian clock is represented by the lower
eukaryote Neurospora crassa, in which the radiomimetic
MMS caused phase advances through a mechanism involving
Check2-mediated phosphorylation of the clock protein FRQ
[6]. In view of the hypothesis that circadian clockworks might
have originated from protective mechanisms to escape from
DNA/RNA damage (as imposed by diurnal exposure to ultravi-
olet light and ultradian respiratory metabolic cycles) that ulti-
mately evolved in a self-sustained oscillator [30, 31], the ques-
tion remains open whether DNA-damage sensitivity of the
circadian clock is a remnant of clock evolution or whether it
is the immediate consequence (or by-product) of the close
coupling between the circadian clock and cell-cycle control.
Alternatively, as recently put forward by Chen and McKnight
[32], circadian and metabolic cycling might have coevolved
with cell-cycle gating. Considering DNA-damage avoidance
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Figure 3. ATM/ATR Kinases Are Involved in lonizing Radiation-Induced
Phase Advances

(A) Caffeine (left) and Ku-55933 dose dependently inhibit ionizing radiation-
induced phase advances in forskolin-synchronized confluent Rat-1 mPer2:
luc cell cultures. Up to 1 hr prior to y-radiation (10 Gy) or mock treatment
(administered 28 hr after synchronization), cells were exposed to caffeine
or Ku-55933 at the indicated dose. Bars represent the average of three inde-
pendent experiments. Error bars represent the SEM.

(B) Shown are representative examples of bioluminescence rhythms in hu-
man primary dermal fibroblasts from control subjects and AT, and NBS pa-
tients exposed to y-radiation (5 Gy, red lines) or mock-treated (black lines)
approximately 34 hr after initial synchronization with forskolin.

(C) Shown is a quantative analysis of the magnitude of ionizing radiation-
induced phase advances in human control, AT, and NBS primary dermal
fibroblasts. The overall mean values are shown on the right. Error bars
represent the SEM.
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Figure 4. Clock Gene Expression in lonizing Radiation- and Dexametha-
sone-exposed Rat-1 mPer2:luc Cells

Graphs illustrate the quantitative RT-PCR analysis of Per1, Per2, Clock,
and Bmal1 expression 0, 0.5, 1, 2, and 4 hr after y-radiation (10 Gy) or
dexamethasone (100 nM) and mock treatment of forskolin-synchronized
Rat-1 mPer2:luc cell cultures. The values represent the average and the
SEM.

as the underlying unifying evolutionary driver, it was hypothe-
sized that DNA damage might act as Zeitgeber. The present
data, showing that physical and chemical genotoxicants can
phase shift the clock, well support this idea. Yet, except for
radiotherapeutical purposes, organisms are unlikely to be
exposed to the ionizing radiation doses used in this study. It
would be interesting, therefore, to investigate to what extent
daily exposure to low but timed doses of genotoxicants might
affect the the circadian system.

Supplemental Data

Supplemental Experimental Procedures and Three Figures are available at
http://www.current-biology.com/cgi/content/full/18/4/286/DC1/.
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Figure 5. UV and Oxidative Stress Phase Advances Circadian Rhythm in
Fibroblasts

Treatment of confluent Rat-1 mPer2:luc cell cultures with UV-light (A) or
t-butyl-peroxide (B) 30 hr after forskolin synchronization, dose dependently
phase advances bioluminescence rhythms. Each bar represents the aver-
age of two independent experiments. Error bars represent the SEM.
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