
Artificial Intelligence 116 (2000) 265–286

Conformality in the self-organization network✩

Cheng-Yuan Liou∗, Wen-Pin Tai
Department of Computer Science and Information Engineering, National Taiwan University,

Taipei, 10636, Taiwan, ROC

Received 17 May 1999

Abstract

The conformality of the self-organizing network is studied in this work. We use multi-dimensional
deformation analyses to interpret the self-organizing mapping. It can be shown that this mapping is
quasi-conformal with a convergent deformation bound. Based on analyses, a deformation measure
and a non-conformality measure are derived to indicate the evolution status of the network. These
measures can serve as new criteria to evolve the network. We test these measures with simulations
on surface mapping problems. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The development of topological mapping of sensory input using the self-organization
network has been analyzed in different ways. Much effort [5,8,11,14,17,21] has been
expended in attempts to derive exquisite mapping dynamics based on certain energy
functions. Bishop et al. [3] introduce a generative topographic mapping with an alternative
foundation. Various mappings have been obtained with varying degrees of success. These
energy functions are pre-defined disorder costs or measures. Many of them are realized as
locally weighted mean mismappings. The issue of mapping deformation has been rarely
discussed.

It has been observed that a self-organizing network prefers approximately conformal
mapping [19] during its synapse adaptation (see Figs. 1(a)–(f)). This means that the

✩ This work has been supported by National Science Council under contract number NSC-82-0408-E-002-255
and NSC-84-2213-E-002-012.
∗ Corresponding author. Email: cyliou@csie.ntu.edu.tw.

0004-3702/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(99)00093-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82017029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


266 C.-Y. Liou, W.-P. Tai / Artificial Intelligence 116 (2000) 265–286

Fig. 1. Observations of the approximately conformal property during consecutive synapse mapping. We used the
formal self-organization algorithm to obtain the results in (a)–(f). The inputs are uniformly distributed within
a circle as shown in part (f). The neurons are on the grid nodes of a square as shown in part (a). The initial
assignments for the synapse vectors are the coordinates of the neurons’ positions shown in part (a). After training
over 1000 random input samples, we plotted the results.

transformation of all corresponding quadrilaterals in each consecutive mapping remains
as conformal as possible. We will show that a self-organizing mapping is quasi-conformal.
This conformality (see, for example, [1]), which has received less attention, will be studied
in this work. The issues which affect network performance, such as the learning rate,
mapping status, and convergence results, can be properly related to the conformality.

We apply multi-dimensional deformation analyses to the network. A deformation
measure and a non-conformality measure will be derived for the mapping. These measures
can be used to indicate the evolution status of the network. We will derive such measures
for the local deformation of the mapping. The crumples of the measure values show the
mapping distortion locations. More important, one basic property of the self-organization,
the locally isotropic development can be well characterized by these measures.

Based on the conformal mapping assumption, Tanaka [19] investigated the synaptic
vector density. In his work, this assumption was used in the mapping from the network field
to the same dimensional input space. So far there has been no theoretical evidence which
justifies this assumption. Instead, we will study the approximately conformal property in
consecutive synapse mapping using both theoretical analyses and simulations.

In our studies, the network configuration has been regarded as a collection of disjoint
simplices which are deformed by adaptation of the synapses. It will be shown in a
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later section that the deformation from current synapses to their adapted synapses is
convergently bounded for each input stimulus; i.e., specifically, the mapping is quasi-
conformal. When the bound converges toward its limit, which is equal to one, the synapse
vectors adapt to match the input distribution. This bound reach its limit whenever perfect
matching to inputs is obtained.

Both the deformation measure and non-conformality measure are bounded and are
minimized when the input distribution matches the network. With these measures,
appropriate network configurations can be designed according to how close the limit is
approached. New dynamics can be derived for these measures to evolve the network. The
cumulative measures for consecutive self-organizing mappings can be applied to pattern
matching problems, such as surface mapping problems. They are suitable for measuring
local mismatches between similar images. Simulations and comparisons will be presented
to show the performance of the measures.

In the next section, the formal self-organization model will be reviewed in order to
define the notations, including concise formulas, network configurations, and important
parameters. Investigation into the mapping using multi-dimensional deformation analyses
is included in Section 3. The derivation of the deformation measure and the non-
conformality measure are included in this section. Following the mathematical analyses,
several properties of the mapping will be studied in Section 4. In Section 5, the averaged
non-conformality measure for all neurons will be used to show the evolution of a whole
network. We include two other averaged measures, the mean square error (MSE) and the
degree of topographicity (TPG) [4], for comparison. Applications of the proposed method
will be presented in Section 6. Simulations show that the mismatches in surface mapping
problems can be suitably located using these measures. Finally, we will provide discussion
and suggest extension of this work in Section 7.

2. The network

Let the set of input data in the training process beZ, and letZ ⊆ Rp . The self-
organization model employs a set of neurons, generally arranged in a network with
dimensionq , to process the samples fromZ. Let the synapse vector set beW ⊆ Rp . By
iterative adaptation, the network can be evolved to transform the high-dimensional input
space into a low-dimensional network space. In each evolutionary step, an inputz ∈ Z is
selected randomly. The model determines the winning or best-matching neuron, evolution
criterion, such that

‖wc − z‖ =min
i
‖wi − z‖, wi ∈W. (1)

Let the vectorwc denote the synapse vector of the winning neuron for the corresponding
input z. Then, the synapse vectors of all the neurons in the network are updated with
different values, according to the following equation:

1wi = αH
(
D(c, i)

)
(z−wi ), (2)

where the parameterα ∈ [0,1) is the adaptation rate andH is the neighborhood function
which decreases monotonously with the distance metricD in the network coordinate.
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(a) (b)

Fig. 2. The simplicial representation of the self-organizing mapping, wherewi ,wj , wc , andz denote the synapse
vectors and the input in the simplex, respectively. (a) The simplex is formed by the vectorswi −wc , wj −wc ,
andz− wc for p = 3, q = 2, andn = 3. (b) The simplex is formed by the vectorswi − wc andwj − wc for
p= 2, q = 2, andn= 2.

For the inputz and the synapse vectorwi , we will adopt an approximated neighborhood
function h(d(z,wi )), which decreases monotonously with the distance metricd in the
input space, and in whichh(d(z,wc)) = 1. This is found in some similar work by Erwin
et al. [6]. This kind function can avoid the discontinuity from the derivation of the energy
functions.

Further, we need to consider the topological representation of the synapse vectors. The
topology formed by the self-organization can be regarded as a collection of disjointn-
dimensional simplices [10], wheren =min{(q + 1),p}. In most cases,p is much larger
thanq + 1. We assume thatn= q + 1 in order to focus on the network configuration and
to simplify the expressions. Each simplex is generated by the(q + 1) vectors, obtained by
subtracting the synapse vector of the winning neuron from the input vector and from the
synapse vectors of anyq neighboring neurons. In cases wherep is smaller thanq + 1,
any p vectors obtained in a similar way can compose a simplex. Examples of synapse
adaptation in simplicial representation are illustrated in Fig. 2.

When we change the coordinate to then-dimensional simplicial system with the synapse
vector of the winning neuron as the origin, the updating equations are reformulated as
follows. Let z, wc, andw be the input, the synapse vector of the winning neuron, and
one of theq synapse vectors of the neighboring neurons in the simplex, respectively. By
updating rule, we have

wnew
c =wc + α(z−wc) and wnew=w+ αh(d(z,w))(z−w). (3)

Let v =w−wc , x = z−wc, and leth denoteh(d(x,v))= h(d(z,w)). We will call v the
relative synapse vector andx the relative input. The update ofv,1v, in the simplex is

1v = vnew− v
= (wnew−wnew

c

)− (w−wc)
= α(h− 1)x − αhv. (4)
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Furthermore, for computational efficiency, we can formulate Eq. (4) in the low-
dimensional simplicial coordinate. If the simplex region does not degenerate, it is easy to
find a set of coordinate bases for the relative input vector and theq relative synapse vectors
using, for example, the Gram–Schmidt method. But if it does degenerate, additional unit
vectors which are orthogonal to the simplex space can be included. With these new bases,
any vector in the simplex will have a simpler form.

This simplicial representation is in accordance with the description of the energy system.
Erwin et al. [6] have shown that there does not exist a global energy function in general.
A set of energy functions for neurons, formulated using the average distribution errors,
has been used to obtain the dynamics of the network based on the method of stochastic
approximation. The energy function for the neuroni is

Ei ≡ ε
∫
Ĥ (H,W)1

2(z−wi )2P(z)dpz+Xi, (5)

whereĤ is the generalized neighborhood function [6],P(z) is the probability density of
input z, andXi is a potential term for the neuroni, which corresponds to the network
configurations during the adaptation process. When the training inputs are presented in a
stochastic way, the sample energy functionE = Ĥ (H,W)(z−wi )2 for Ei in (5) will be
considered for the purpose of approximation [18].

3. The deformation measure and the non-conformality measure

To formulate the new measures, we use the above simplicial expression in then =
min{(q + 1),p} dimensional space. For each relative input vectorx = (x1, x2, . . . , xi,

. . . , xn) and each relative synapse vectorv = (v1, v2, . . . , vi , . . . , vn) within the simplex,
the mapping functionf , wherevnew= f (v) as in Eq. (4), is defined as

f (v)= α(h− 1)x + (1− αh)v. (6)

Note that the mappingf is defined at any vectorv with finitef (v). Furthermore, the vector
f (x), which is equal to(1− α)x, can be regarded as the mapping ofx in the simplicial
coordinate.

Let us derive the mapping deformation forf . For a given simplex, when the relative
synapse vectors are updated by Eq. (6), the functionf can be regarded as a mapping
from the simplex region to the corresponding one which is formed by the updated synapse
vectors. By examining the conformality condition of this mapping function, we can derive
a deformation measure and a non-conformality measure from the Jacobian matrix of such
mapping. These measures have accurate bounds.

3.1. The Jacobian matrix

Let the functionf (v) be (f1, f2, . . . , fi , . . . , fn), and let each componentfi be a
function of v = (v1, . . . , vj , . . . , vn). For anyv at whichf is defined and the Jacobian
J (v,f ), the determinant of the Jacobian matrix df v , is greater than zero, the deformation
of the mappingf can be defined. To further analyze the deformation, we need to derive
the explicit form of the Jacobian matrix df v for the mapping.
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Given a simplex region in the self-organizing network, the mapping of relative synapse
vectors is defined as in (6). To evaluate the matrix df v , we focus on each componentfi of
f , i.e.,

fi(v)= α(h− 1)xi + (1− αh)vi , i = 1, . . . , n, (7)

whereh = h(d(x,v)). We will use the Euclidean distance metric ford in the simplicial
coordinate, i.e.,d =∑n

k=1 (xk − vk)2. Hence, we have the partial derivatives off , for
16 i, j 6 n, j 6= i:

∂fi

∂vi
=−2αh′(xi − vi)2+ (1− αh),

(8)
∂fi

∂vj
=−2αh′(xi − vi)(xj − vj ),

whereh′ denotes dh/dd . The value of dh/dd is always non-positive for a monotonous
decreasing functionh, i.e.,h′ 6 0. Note the matrix df v can be written in a compact vector
form. The eigenspace structure of this matrix will be obvious from this form. We will use
the expanded form in all the following derivations as we did in earlier efforts.

Because∂fi/∂vj = ∂fj /∂vi for 1 6 i, j 6 n, the matrix df v is symmetric. Every
eigenvalue of df v is real. The results given in Appendix A show that the matrix df v
has two eigenvalues:

λ1= 1− αh and λ2=−2αh′
n∑
i=1

(xi − vi)2+ (1− αh), (9)

with multiplicitiesn− 1 and 1, respectively.

3.2. The deformation measure

The deformation of the mappingf (v) is defined by thedeformation measure

Q≡√(emax/emin), (10)

whereemax> 0 andemin > 0 are the maximal and minimal eigenvalues of the Jacobian
matrix df v , respectively [15]. The quantityQ provides a good evaluation for measuring
the deformation of the mapping functionf .

To evaluate the deformation measureQ, we examine the Jacobian matrix df v of the
network. There are two distinct eigenvalues,λ1 and λ2 in (9), of the matrix df v . For
α ∈ [0,1) andh′ 6 0,

λ2− λ1=−2αh′
n∑
i=1

(xi − vi)2> 0. (11)

Thus, the deformation measure for the network will be

Q=
(
λ2

λ1

)1/2

=
( −2αh′

(1− αh)
n∑
i=1

(xi − vi)2+ 1

)1/2

. (12)

The value ofQ is no less than 1, i.e.,Q> 1. If Q= 1 in (12), the measureQ will indicate
that there is no deformation in the mappingf .
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3.3. The non-conformality measure

We now study the elegant conformal and quasi-conformal mappings. This kind
mapping is defined as a topological mapping which satisfies certain geometric restrictions.
Reshetnyak [15] proposed conditions for both conformal mapping and quasi-conformal
mapping. First, let us consider the conformal mapping. For anyv at which df v is defined
andJ (v,f ) > 0, the inequality

nn/2J (v,f )6
(

n∑
i=1

∥∥∇fi(v)∥∥2

)n/2
(13)

holds. The functionf is conformal if and only if the sign of equality holds.
The geometric interpretation of the inequality (13) will give us the sense of this

criterion. On the left-hand side, the termJ (v,f ) is the volume of the hyper-parallelepiped
determined by the vectors∇fi(v), i = 1, . . . , n. On the other side, the term(

n∑
i=1

∥∥∇fi(v)∥∥2

)1/2

is the length of the diagonal in the hypercube formed by then orthogonal vectors
with length‖∇fi(v)‖, i = 1, . . . , n, and(1/nn/2)(

∑n
i=1‖∇fi (v)‖2)n/2 is the maximum

volume of the hypercube inside a hypersphere which has a diameter with length
(
∑n
i=1 ‖∇fi(v)‖2)1/2. When the mappingf is conformal, the vector set{∇fi(v) | i =

1, . . . , n} will be an orthonormal set. The sign of equality in (13) will hold.
Further, let us focus on the less rigid condition, quasi-conformality. Quasi-conformal

mapping is a natural generalization of conformal mapping. If the inequality(
n∑
i=1

∥∥∇fi(v)∥∥2

)n/2
6 nn/2kJ (v,f ) (14)

holds for a finitek, then the functionf is quasi-conformal with the deformation bound
k [15].

We then study the measure of boundK (k > K) for mapping deformation from the
inequality (14) and then have

K ≡
(∑n

i=1 ‖∇fi(v)‖2
)n/2

nn/2J (v,f )
. (15)

Note thatK = 1 implies that the sign of equality holds in the inequalities (13) and (14);
i.e., the mappingf is conformal.

For any functionf whereJ (v,f ) > 0, the measureK is always greater than 1. This
can be derived by the Cauchy’s and the Hadamard’s inequalities successively [16]. Thus,
the value ofK can be considered to be a measure of deformation, i.e., a measure of non-
conformality. The larger the value is, the heavier the deformation is in the mapping, and
vice versa.
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By (8), the terms in (15) can be calculated as follows:
n∑
i=1

∥∥∇fi(v)∥∥2=
n∑
i=1

n∑
j=1

(
∂fi

∂vj

)2

=
(
(−2αh′)

n∑
i=1

(xi − vi)2+ (1− αh)
)2

+ (n− 1)(1− αh)2, (16)

and

J (v,f )= (−2αh′)(1− αh)n−1
n∑
i=1

(xi − vi)2+ (1− αh)n. (17)

The derivation of (16) and (17) is given in Appendix B.
Finally, we have thenon-conformality measureK from (15):

K ≡ [(−2αh′‖x − v‖2+ 1− αh)2+ (n− 1)(1− αh)2]n/2

nn/2(−2αh′‖x − v‖2+ 1− αh)(1− αh)n−1
. (18)

We also introduce here adeformation potentialE as(
∑n
i=1‖∇fi (v)‖2)n/2−nn/2J (v,f ),

i.e.,

E ≡ [(−2αh′‖x − v‖2+ 1− αh)2+ (n− 1)(1− αh)2]n/2
−nn/2(−2αh′‖x − v‖2+ 1− αh)(1− αh)n−1. (19)

The non-conformality measureK in (18) will overflow when its denominator (18) is
equal or close to zero. This overflow cannot be expected at all in general, unless there
are infinitely many reference vectors. The potentialE can be well applied to measure the
non-conformality of the mapping. In many cases,E is simple to manipulate in further
dynamic analyses, and the results obtained usingE are similar to those obtained usingK.

Using (13), it is easy to check that the value of the numerator will not be smaller than
that of the denominator, which must be positive, in (18); i.e.,K > 1 (orE > 0) under the
condition where 06 α,h < 1 andh′ 6 0.

4. Properties of conformality

In this section, we will discuss the measures obtained during convergenceof the mapping
and show some important properties on the conformality of the network. All measures
Q, K, andE show similar behaviors from our experiences. We will focus on the non-
conformality measureK in our discussion.

Since the relative expressions in the simplicial coordinate are adopted for both inputs and
synapse vectors, we may wish to find similar expressions forK in the input coordinate. It
is easy to show that

‖x − v‖n =
∥∥(z−wc)− (w−wc)∥∥p = ‖z−w‖p. (20)

This relationship provides an effective way to measureK in the input coordinate. The value
ofK(z,w) can be obtained by substitutingz,w andH for x, z andh respectively, in (18).
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4.1. Convergence of the measures

With (20), we can study the measureK(z,w). When the self-organization is in its final
state of equilibrium, it will provide a good approximation of the input, and the average
distribution errors will be minimized. If‖z − w‖ approaches 0 in the final state, we
have

K ≈ [n(1− αh)
2]n/2

nn/2(1− αh)n = 1, or E ≈ 0 (21)

by (18), (19), and (20). In most applications, the minimum is not reached (guaranteed)
because of the deformation in the mapping. Our experiences show that this measure
tends to reduce its value to a certain equilibrium during self-organization evolutions.
Whenever such an equilibrium is reached, we say it is the convergence of the evolu-
tion.

From the properties of the measureK(z,w), the mapping can be said to be quasi-
conformal with a bound which has a minimum value of one. When a perfect approximation
of the input distribution is obtained by means of synapse adaptation, the mapping
will be conformal, i.e.,K = 1, and there will be no topological deformation in the
mapping.

The training parameters in the self-organization process may affect the non-conformality
measure. When the learning rateα is close to zero, the measure will approach one.
This condition means that the adaptation of the synapse vectors is small so that the
mapping is nearly conformal. Furthermore, whenh′ ≈ 0, the non-conformality measure

K ≈ [n(1− αh)2]n/2/[(nn/2(1− αh)n] = 1 for any fixed learning rateα. This is because
the extent of adaptation remains constant for the whole simplex; i.e., scaling of the simplex
takes place. The conformality will be maintained by means of this scaling, and this is shown
in Fig. 3.

Figs. 4(a) and (b) show values of the measureK as a function of‖z − w‖ with
different network parametersα and β . The potentialE has a behavior similar to that
of K. In all cases, the neighborhood functionh is defined ash(d) = exp(−d2/β2) in
normalized distance scales, i.e.,d ∈ [0,1]. We can see that the measureK approaches
1 when‖z − w‖ ≈ 0. When‖z − w‖ ≈ 1, the measureK is also close to 1 for small

Fig. 3. Conformal mapping of the simplex whenα ≈ 0 orh′ ≈ 0 in the cases ofp= 3, q = 2, andn= 3.
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(a) (b)

(c) (d)

Fig. 4. Plot of measuresK (E) andE for different‖z−w‖ in the examples with the following training parameters:
(a) α = 0.01, α = 0.05, andα = 0.1 correspond to the solid, dashed, and dotted lines, respectively, (β = 0.02)
for K (E). (b) β = 0.01, β = 0.05, andβ = 0.1 correspond to the solid, dashed, and dotted lines, respectively,
(α = 0.02) forK (E). (c) α = 0.01, α = 0.05, andα = 0.1 correspond to the solid, dashed, and dotted lines,
respectively, (β = 0.02) for E . (d) β = 0.01, β = 0.05, andβ = 0.1 correspond to the solid, dashed, and dotted
lines, respectively, (α = 0.02) forE .

h′ or α. This means that a conformal mapping can be constructed either by updating the
synapse vectorw close to the inputz or by updating the synapse vectorw to the opposite
of the inputz. From the figures that the non-conformality measure depends on the distance
‖z−w‖, when‖z−w‖ ≈ 0 or ‖z−w‖ ≈ 1, the mapping is nearly conformal. When the
value‖z−w‖ is smaller thand∗, where the value ofK is maximum, further reduction of
the distance (‖z−w‖) will cause the non-conformality measure to decrease. On the other
hand, when the value‖z − w‖ is greater thand∗, further reduction of the distance will
cause the non-conformality measure to increase. The formal self-organization dynamics
tend to reduce the distance only. For comparison, Figs. 4(c) and (d) show the values of the
sample energy functionE in (5) with different network parametersα andβ . Obviously,
theE is not a suitable energy function for the formal dynamics when‖z − w‖ is greater
thand∗. We will discuss more on these figures in the last section.
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4.2. Conformality of two dimensions

Let us consider a simple case for the measureK, where the value ofn is equal to 2. Using
the simplicial coordinate, the mapping functionf comprises(f1, f2), and each component
fi , i = 1,2, is a function of(v1, v2), where(v1, v2) is a point in the two-dimensional
simplex. By the definition ofKn=2 derived above, we have

Kn=2=

((
∂f1

∂v1

)2

+
(
∂f1

∂v2

)2

+
(
∂f2

∂v1

)2

+
(
∂f2

∂v2

)2)
2

(
∂f1

∂v1

∂f2

∂v2
− ∂f1

∂v2

∂f2

∂v1

)

= (−2αh′‖x − v‖2+ 1− αh)2+ (1− αh)2
2(−2αh′‖x − v‖2+ 1− αh)(1− αh) . (22)

We also obtain a simplified formula for the deformation potential:

En=2=
(−2αh′‖x − v‖2)2> 0. (23)

Eq. (23) shows that the mapping deformation can be measured by means of the matching
error between the relative input vectorx and the relativev (or w andz). This potential
is in a form that is similar to the approximated relaxation version of the sample energy
function E in (5). This may partially explain the conjecture regarding the conformal
mapping assumption for the self-organizing network. This formula provides insight into
the distribution error, topology mapping, and conformality.

5. Comparison with other measures

As unsupervised learning, mapping quality may be evaluated in different ways. Usually
the map is utilized to transform the topological structure from a high-dimensional input
space to a low-dimensional visible reference space, specifically a 2D surface. When the
dimensions of the two corresponding spaces are different, the relationships among the
inputs may not be perfectly preserved in the map. Thus, mapping deformation always exists
in the self-organized representation. Several measures have been devised [2,4] which are
related to the distribution error and the topology preservation. As we have discussed in
the previous two sections, the non-conformality measure can be used to express both the
distribution error and the topology preservation for the self-organizing process.

For comparison, three measures, the mean square error (MSE), the degree of topo-
graphicity (TPG) [4], and the averaged non-conformality measureK (or the deformation
potentialE), for adapted neurons will be used to illustrate the mapping quality of the self-
organization. The MSE, which is a simplified and discrete function of (5), is expressed as
the mean square quantization error between the input vector and the corresponding clus-
tering center, i.e.,

MSE≡
∑
w

∫
z∈Vw

d(z,w)P (z)dpz, (24)
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whered(z,w) denotes the Euclidean distance metric between the inputz and synapse
vectorw, andVw is the Voronoi partition corresponding tow [9]. The TPG, related to
the topology relationships, is the mean of the average distances between two neighboring
neurons, i.e.,

TPG≡
∑
w

∑
w̃∈Nw

d(w, w̃), (25)

whereNw denotes the neighboring synapse vector set ofw. The MSE and the TPG have
been used in many studies. They do not have any direct relationship with the conformality.
The TPG is a function of the network states only. The MSE is a function of the inputs and
network states.

For each neuron, there may exist several neighboring simplices, as shown in Fig. 5.
Although there are other possible simplices composed of adapted synapse vectors,
depending on the effective range of the neighborhood functionh, the main neighboring
simplices shown in Fig. 5 indicate the major information contribution to the mapping
deformation and will be used in the discussion of our simulations. For each neighboring
simplex, we can calculate aK value. All theK values that belong to a winning neuron are
averaged to obtain a mean value ofK for this winning neuron. The averaged measure is
equal to this mean value ofK for the winning neuron in an evolutionary step. Note in many
applications the inputz is a random variable andK is a function of this random variable.
K is also a random variable. We take average of them for smoothness.

Fig. 6 shows the results obtained using the three different measures to reveal the self-
organizing process. The neurons in the network were arrayed in the regular square grid
in a 2D plane. The results for the 1024 input samples from the uniform distribution of a
unit square are plotted in Fig. 6(a). Fig. 6(b) shows another example where 1024 input
samples from Gaussian distribution were used. Each line was obtained by averaging over
100 training simulations. From the results shown in Fig. 6, the averaged non-conformality
measureK suitably displays the evolution of the self-organizing network, with results
comparable to those for the MSE and the TPG. The results for the deformation potentialE

are almost coincident with theK curve, so we omit the curve forE.

(a) (b) (c)

Fig. 5. The neighboring simplices of a winning neuron which is in the center in each case. The simplices are
indicated by different numbers. (a) Four simplices in the case ofq = 2. (b) Six simplices in the case ofq = 2.
(c) Eight simplices in the case ofq = 3.
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(a) (b)

Fig. 6. Different measures to indicate the self-organization learning process using the MSE, the TPG, and the
averaged non-conformality measureK , plotted in the dashed, dotted, and solid lines, respectively. (a) For the
1024 uniformly distributed input samples. (b) For the 1024 Gaussian distributed input samples.

It should be noted that the training parametersα andh affect the bound of the mapping
deformation. When the adaptation rateα decays too quickly or the neighborhood size is
reduced too quickly, the distribution errors will remain significant [13]. Monitoring these
measures provides a good way to determine the reduction of the parameters, such that
preservation of both the input distribution and topology can be obtained smoothly in the
evolution.

6. Simulations of surface mapping

In practical applications, it is necessary to derive a metric to monitor the accumulative
activities of the consecutive quasi-conformal mappings. Because the composite of a
K1-quasiconformal andK2-quasiconformal mapping is(K1K2)-quasiconformal (see, for
example, [1]), we define a metric oftotal non-conformalityas the product of consecutive
measures, i.e.,

Mi =
T∏
t=1

K(zt ,wi ), (26)

for the synapse vectorwi of the neuroni. It is a direct measure of how much each
neuron has experienced nonconformality deformation in the entire course of the adaption
process. By means of this metric (26), the self-organizing network can be applied to pattern
matching problems.

We apply these measures to surface mapping problems. The cases considered for presen-
tation are the mappings from regularly organized network configurations to the configura-
tions of given patterns. The sampled inputs of a pattern are processed by the self-organizing
network, which is initialized with a regular configuration, for example, a square grid pat-
tern. Along with the training, we use both the averaged measure of non-conformality
in (18) for the evolution of the process and the composite metric (26) for the accumu-
lated activity of each neuron. The proper number of training evolutionary steps can be
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(a) (b)

(c) (d)

Fig. 7. Simulation results of mapping from a 10× 10 square grid to a circular pattern. (a) The final trained
configuration. (b) The measures of the MSE, the TPG, andK , plotted as dashed, dotted, and solid lines,
respectively. (c) Composite non-conformality metric for the adaptation of each neuron in a 3D mesh surface
plot and (d) in a contour plot.

determined by examining the convergence of the averaged non-conformality measure. Us-
ing formula (26), we can estimate the matching activity between the two patterns. Heavy
activity may indicate a mismatch of the locations of the two patterns. In our simulations,
the adaptation rate was set to be a small constant, and the neighborhood was within a fixed
range.

Let us consider general cases, mappings from a two-dimensional square grid pattern to
a different two-dimensional pattern. The initial configuration of the network was a 10×10
square grid pattern, regularly arranged in the input space. The training parameters were
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(a) (b)

(c) (d)

Fig. 8. Simulation results of mapping from a 10× 10 square grid to a triangular pattern [9]. (a) The final
trained configuration. (b) The measures of the MSE, the TPG, andK , plotted as dashed, dotted, and solid lines,
respectively. (c) Composite non-conformality metric for the adaptation of each neuron in a 3D mesh surface plot
and (d) in a contour plot.

the same in all the simulations. We setα = 0.02 andh(d) = exp(−d2/S2), whered is
the distance metric in the network andS is a quarter of the side length of the grid. The
simulation results are shown in Figs. 7–9. In the figures, part (a) shows the plot of the
trained network configuration, which approximates the input in the dotted area. Part (b)
shows the averaged non-conformality measure, plotted as a solid line, as a function of the
evolution steps. For comparison, part (b) includes the measures of the MSE and the TPG,
plotted as dashed and dotted lines, respectively. Part (c) and part (d) show the composite
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(a) (b)

(c) (d)

Fig. 9. Simulation results of mapping from a 10× 10 square grid to a hollow square pattern. (a) The final
trained configuration. (b) The measures of the MSE, the TPG, andK , plotted as dashed, dotted, and solid lines,
respectively. (c) Composite non-conformality metric for the adaptation of each neuron in a 3D mesh surface plot
and (d) in a contour plot.

metric (26) for each neuron. The metric is displayed with a 3D mesh surface and contour,
respectively.

Mapping from a two-dimensional square grid pattern to a three-dimensional surface
pattern was also considered, and the simulation results are shown in Fig. 10. The training
inputs were sampled from a 3D surface with facial features. The configuration of the
network was a 20× 20 square grid in a 2D plane. Each neuron was initialized with its
plane grid coordinate. In the figure, part (a) shows the projection of the final network
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(a) (b)

(c) (d)

Fig. 10. Simulation results of mapping from a 20× 20 square grid to a 3D surface. (a) Projection of the final
trained configuration. (b) The measures of the MSE, the TPG, andK , plotted as dashed, dotted, and solid lines,
respectively. (c) Composite non-conformality metric for the adaptation of each neuron in a 3D mesh surface plot
and (d) in a contour plot.

configuration. Part (b) show the measures obtained during the training process. Parts (c)
and (d) show the values of the composite metric.

From these results, it is clear that the convergence of non-conformality is consistent
with that of the distribution error and the topology. This fact meets the conformal mapping
assumption. In part (b) for each simulation, all the proposed three measuresQ, K and
E will give similar results as the solid line. The heavy activity in the mismatched parts of
the two patterns is properly indicated by the largeMi values as shown in parts (c) and (d).
The results shown in (c) and (d) are in accordance with the deformation of the final network
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configuration shown in (a) for each case. This composite metric provides a good means of
locating the mismatches between two image patterns. This technique has been used for
medical images and airbone images in the projects.

7. Discussion

In this work, we have provided measures by using simplices to investigate both
the deformation and the conformality of the self-organizing mapping. The deformation
measureQ, the non-conformality measureK, and the deformation potentialE can
be estimated accurately in each evolutionary step. These measures give us additional
information indicating the development of the network during its evolution. The total non-
conformality can indicate the defective (or mismatched) parts between two images, which
is extremely useful in pattern matching applications.

It has been shown that the mapping of synapse vectors is quasi-conformal with a bound,
and that the bound has a limit which is equal to one. The formulas for the non-conformality
measure and deformation measure can serve as an objective cost function to obtain new
dynamics to evolve a network. We now discuss these new dynamics in depth.

The energy functionsE andK will be minimized when‖z − w‖ is either close to 0
or close to 1, where‖z − w‖ is properly normalized within 0 and 1. This means that an
input pattern may have a similar representation or a totally opposite representation on the
map. Both representations may be mixed on one network. The exact dynamics derived
from such energy functions will give a different mapping. The opposite representation is
not considered in the formal self-organization model [9]. This is because the formal model
starts from largeα andβ and reduces them gradually to keep only a single minimum state
at‖z−w‖ = 0 in the network. As seen in Fig. 4, all‖z−w‖ will be included on one side of
theE curve with a very largeβ value. The dynamics of the energy functionE will drive the
network state down the curve toward the position with a small‖z−w‖ value. In this case,
all the synapse vectorsw will be forced to match the inputz as closely as possible.β must
be large enough to enable all the values of‖z−w‖ to be on the left side of the curve mode,
‖z−w‖< d∗. The formal dynamics, (1) and (2), will not work for‖z−w‖> d∗. This is
the reason for the increase of the MSE whenβ decreases too quickly [13]. This is also the
reason for increasing the similarity (decreasing the‖z−w‖) improving the conformality.
This explains the conformal mapping assumption.

The intuitively devised energyE does not match the formal dynamics, (1) and (2),
exactly, which will drive the synapse vectorw toward the only position,‖z − w‖ ≈ 0.
We may slightly modify the dynamics of the formal self-organization model to obtain
exact dynamics by selecting the winning neuron with the smallest valueE (or K) for a
given inputz and updating the synapse vector following the slope ofE (or K) which is
∂E/∂‖z−w‖.

The measures have been used as criterions to derive learning algorithms for the
multilayer perceptron to obtain natural coordinates for the input set. [7] discussed
one conformal mapping application. This conformality measure is also necessary in
constructing a form mapping among organisms [20]. Both the interactions of neighboring
cells in an organism [22] and the conformal form transformation are accomplished using
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such a network where neurons are located in the surface grid points representing a
3D organism form, such as a Cyprinus carpio fish. The input data is sampled from another
fish surface, such as an Acanthopagrus schlegeli fish. In this casep = q = 3. The synapse
vector contains the coordinates of the surface point. UsingK as an evolutionary criterion,
we can obtain the form transformation between these two species. The corresponding
parts and natural coordinates can be located according to this transformation [12]. The
deformation parts between the fishes can be quantified.

Appendix A. The eigenvalues ofdf v

Let A denote the Jacobian matrix df v with the componentsaij = ∂fi/∂vj , which are
defined in (8), for 16 i, j 6 n. Obviously, the matrixA is symmetric, i.e.,At =A. The
characteristic polynomial ofA, c(λ)= det(A− λI), splits. Every eigenvalue ofA is real.

First, we will show thatλ1 andλ2 in (9) are two eigenvalues of the matrixA. Forλ1,

c(λ1)= c(1− αh)= (−2αh′)n

× det


(x1− v1)

2 (x1− v1)(x2− v2) . . . (x1− v1)(xn − vn)
(x2− v2)(x1− v1) (x2− v2)

2 . . . (x2− v2)(xn − vn)
...

...
. . .

...

(xn − vn)(x1− v1) (xn − vn)(x2− v2) . . . (xn − vn)2



= (−2αh′)n
n∏
k=1

(xk − vk) · det


(x1− v1) (x2− v2) . . . (xn − vn)
(x1− v1) (x2− v2) . . . (xn − vn)

...
...

. . .
...

(x1− v1) (x2− v2) . . . (xn − vn)


= 0. (A.1)

Forλ2,

c(λ2)= c
(
−2αh′

n∑
k=1

(xk − vk)2+ (1− αh)
)

= det


a11− λ2 a12 . . . a1n

a21 a22− λ2 . . . a2n

...
...

. . .
...

an1 an2 . . . ann − λ2



= det


a11− λ2 a12 . . . a1n

a21 a22− λ2 . . . a2n

...
...

. . .
...

bn1 bn2 . . . bnn

 , (A.2)
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where

bnj =
(
anj − δ(n− j)λ2

)+ n−1∑
i=1

(xi − vi)
(xn − vn)

(
aij − δ(i − j)λ2

)
,

j = 1, . . . , n, (A.3)

andδ is the Kronecker delta function. For 16 j 6 n− 1,

bnj = (−2αh′)
(
(xn − vn)(xj − vj )

+ (xj − vj )
n−1∑
i=1

(xi − vi)2
(xn− vn) −

(xj − vj )
(xn − vn)

n∑
k=1

(xk − vk)2
)

= (−2αh′)
(xj − vj )
(xn − vn)

(
n∑
i=1

(xi − vi)2−
n∑
k=1

(xk − vk)2
)
= 0. (A.4)

For j = n,

bnn = (−2αh′)
((
(xn − vn)2−

n∑
k=1

(xk − vk)2
)

+
n−1∑
i=1

(xi − vi)2(xn − vn)
(xn − vn)

)

= (−2αh′)
(

n∑
i=1

(xi − vi)2−
n∑
k=1

(xk − vk)2
)
= 0. (A.5)

Then, we have

c(λ2)= det


a11− λ2 a12 . . . a1n

a21 a22− λ2 . . . a2n

...
...

. . .
...

0 0 . . . 0

= 0. (A.6)

Thus,λ1 andλ2 are two eigenvalues of the matrixA by (A.1) and (A.6).
Secondly, we will determine the multiplicities of the eigenvalues. Suppose that the

multiplicities of λ1 andλ2 arem1 andm2, respectively. Becauseλ1 andλ2 are two of
the eigenvalues ofA, it follows that

m1+m26 n. (A.7)

The matrixA is symmetric; thus,

m1= dim(Eλ1)> 1 and m2= dim(Eλ2)> 1, (A.8)

where dim(Eλ)= nullity(A− λI)= n− rank(A− λI). Form1,
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rank(A− λ1I)

6 rank


(x1− v1) (x2− v2) . . . (xn − vn)
(x1− v1) (x2− v2) . . . (xn − vn)

...
...

. . .
...

(x1− v1) (x2− v2) . . . (xn − vn)


6 1. (A.9)

Then,

m1= nullity(A− λ1I)> n− 1. (A.10)

From (A.7), (A.8), and (A.10), the multiplicities ofλ1 andλ2 arem1= n− 1 andm2= 1,
respectively.

Appendix B. Derivation of the non-conformality measureK

To evaluate the terms in (15), the results in Appendix A will be utilized. First, we will
evaluate the term

∑n
i=1

∑n
j=1 (aij )

2, whereaij = ∂fi/∂vj . Let λ be an eigenvalue of the
matrixA andu be the corresponding eigenvector. BecauseA is symmetric, it follows that

AtAu= λAtu= λAu= λ2u. (B.1)

Then,λ2 is an eigenvalue of the matrixAtA:

trace(AtA)=
n∑
i=1

n∑
j=1

(aij )
2=

n∑
i=1

λ2
i = (n− 1)λ2

1+ λ2
2

=
(
(−2αh′)

n∑
i=1

(xi − vi)2+ (1− αh)
)2

+ (n− 1)(1− αh)2. (B.2)

Secondly, we can evaluate the JacobianJ (v,f ):

J (v,f )= det(A)

=
n∏
i=1

λi = λ2λ1
n−1

= (−2αh′)(1− αh)n−1
n∑
i=1

(xi − vi)2+ (1− αh)n. (B.3)
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