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Abstract 

In this paper we discuss some mixed finite element methods related to the reduced integration penalty method for solving 
the Stokes problem. We prove optimal order error estimates for bilinear-constant and biquadratic-bilinear velocity-pressure 
finite element solutions. The result for the biquadratic-bilinear element is new, while that for the bilinear-constant element 
improves the convergence analysis of Johnson and Pitk/iranta (1982). In the degenerate case when the penalty parameter 
is set to be zero, our results reduce to some related known results proved in by Brezzi and Fortin (1991) for the bilinear- 
constant element, and Bercovier and Pironneau (1979) for the biquadratic-bilinear element. Our theoretical results are 
consistent with the numerical results reported by Carey and Krishnan (1982) and Oden et al. (1982). 
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1. Introduction 

In this paper, we consider the numerical solution of Stokes problem for viscous incompressible 
fluid flows by the finite element method. The model problem to be studied is to find the velocity 
u E [Hal(t2)] 2 and the pressure p E L2(f2) such that 

(Wu, ~7v) - (divr, p ) = ( f , v ) ,  Vr C [Hi(f2)] 2, 

(div u, q) = 0, V q E Lo2(f2). 
(1.1) 

Here, 12 C ~2 is a bounded domain, f is the given body force. The symbol (.,.) denotes the usual 
inner product in L2(O) or [L2(O)] 2. The space L2(f2) consists of all the LZ(12)-functions whose 
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mean values in ~ are zero. The Sobolev space Ho~(f2) is the set of all the L2(f2)-functions whose 
first order partial derivatives are also in L2(f2), and whose traces on the boundary Of 2 vanish. For 
f E [H-I(f2)] 2, the Stokes problem (1.1) has a unique solution, cf. [10]. The problem (1.1) is 
equivalent to a constrained minimization problem 

! (V'v, ~Tv) - ( f ,  V'v) ---* inf, v E [H01(Q)] 2, divv =- 0. (1.2) 
2 

Given finite element spaces Vh c[H~(f2)] 2 and Qh c LZ(f2), a mixed finite element method can be 
developed based on the formulation (1.1). We need to find unknowns Uh E Vh and Ph E Qh, such that 

(~7Uh, ~7Vh) -- (diVVh, p h ) = ( f ,  vh), VVh E Vh, (1.3) 

(div Uh, qh ) = O, V qh E Qh. 

Another approach to develop numerical schemes is to use the formulation (1.2). Here we need a 
finite element space of  divergence free functions in [H0~(f2)] z. Let Wh be such a space. Then a finite 
element method based on the formulation (1.2) reads as follows: 

tth E Wh, ( ~Ttth, ~7"Vh ) = ( f  , vh ), V Vh E Wh. (1.4) 

An advantage of the scheme (1.4) is it involves fewer unknowns than in the mixed method (1.3). The 
major disadvantage is that usually it is impractical to use divergence free finite element functions. 
To circumvent the difficulty caused by the divergence free constraint, it is natural to use the idea of 
penalty methods. Let s > 0  be a small parameter. Then the constrained minimization problem (1.2) 
is approximated by a penalized problem: find u ~ E [H01(f2)] 2, such that 

1 
(~Tu', V'v) + - (divu~,divv) = ( f , v ) ,  Vv E [H~(I2)] 2. (1.5) 

s 

The convergence of the penalty method is proved in several papers, e.g., [2, 15]. Now let Vh be a 
finite element space in [H~(t2)] 2. A finite element method based on the formulation (1.5) is to find 
u~ E Vh such that 

v l(diVU~h, diVVh) ( f ,  Vh), VVhE Vh, (1.6) (~TUh, ~7 h) -~ = 
E 

Theoretically, to obtain more accurate approximations, one needs to use smaller values for the 
penalty parameter e. However, as e ~ 0÷,  locking phenomenon arises due to overconstraining. A 
cure for this difficulty is the use of a reduced numerical quadrature for computing terms involving 
the parameter e [14, 2], and the numerical scheme is to find u~ E Vh such that 

(~7U~h, ~7Vh) + 1-I(diVU~h, divvh) =- ( f ,  Vh), VV h E Vh, (1.7) 
E 

where I is a numerical integration operator. Under certain assumptions, the reduced integration 
penalty method (1.7) is equivalent to the following mixed finite element method: find (u~, p~)E Vh × Qh 
such that 

( ~Tu~h, ~7vh ) - ( div vh, p ~h ) = ( f  , Vh ), V vh E Vh, (1.8) 

c(p~,qh) ÷ (div g~,qh) ---- O, Vqh ~ Qh, 
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for some finite element space Qh c L~(f2). For example, bilinear velocity quadrilateral elements with 
a one-point Gaussian quadrature rule for (1.7) results in an equivalent bilinear-constant velocity- 
pressure finite element method (1.8) [6]. As another example, biquadratic velocity quadrilateral 
elements with a four-point Gaussian quadrature rule for (1.7) is equivalent to a biquadratic-bilinear 
velocity-pressure finite element method (1.8). 

It is well known that for the method to work, the spaces Vh and Qh cannot be chosen arbitrarily. 
The method can be expected to behave well if the Babu~ka-Brezzi condition is satisfied, see [1, 5]. 
In practical computations, however, many popular elements (including the bilinear-constant elements 
and the biquadratic-bilinear elements) do not satisfy the Babu~ka-Brezzi condition, yet the numerical 
experiments in [15, 7] show that these elements work well for the velocity and for the pressure 
after filtering out spurious pressure mode. Indeed, for the bilinear-constant element for the Stokes 
problem, it is proved in [4] that the inf-sup constant is exactly of the order of the meshsize. For 
the biquadratic-bilinear element for the Stokes problem, the same conclusion is proved in [12]. A 
direct application of  the classical saddle point approximation theory (cf. [6]) would then predict 
a degenerate convergence order for the approximation of the velocity, and no convergence for the 
approximation of the pressure. Thus, to obtain optimal order error estimates, we cannot apply the 
classical saddle point approximation theory directly. In 1982, Johnson and Pitk/iranta [13] proved an 
optimal order error estimate for the bilinear-constant velocity-pressure rectangular element, under an 
extra smoothness assumption on the solution. Cheng [8] extended this result to a general quadrilateral 
mesh by using the techniques of  the reduced integration penalty directly. See also [16, 6] for a 
discussion of  the optimal order error estimate of the bilinear-constant element for the method (1.3). 
For the biquadratic-bilinear velocity-pressure finite element, an optimal order error analysis seems 
not available in the literature. 

The main purpose of  the paper is to prove optimal order error estimates for the bilinear-constant 
and biquadratic-bilinear elements for the Stokes problem, without extra smoothness assumptions 
on the solution. In particular, for the bilinear-constant element, we improve an error estimate re- 
sult of [13]. Our optimal order error estimates are confirmed by the numerical results reported in 
[15, 7]. 

The organization of  the paper is as follows. In the next section, we prove an error estimate for 
the approximation of  an abstract problem, which includes the Stokes problem as a special case. In 
Section 3, we comment on the macroelement technique used in later sections. The last two sections 
are devoted to deriving optimal order error estimates for the bilinear-constant velocity-pressure 
element and the biquadratic-bilinear velocity-pressure element, respectively. 

We remark that our result are more general than some related known results. Our proofs go 
through also when the penalty parameter is zero, and in this case our results reduce to the re- 
lated results proved in [6] for the bilinear-constant element, and [3] for the biquadratic-bilinear 
element. 

2. An abstract error estimate 

In this section, we provide an error estimate in an abstract framework which contains the Stokes 
problem and its numerical approximations as a special case. Following [6], let V and Q be two 
Hilbert spaces. Let a : V × V ~ R be a continuous, V-elliptic, bilinear form, b : V × Q a continuous 
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bilinear form. By V-ellipticity of a, we mean the inequality 

a(v,v) >~ a IlvllL vv c w (2.1) 

holds for some constant ~ > 0. Associated with the bilinear form b, we introduce a linear operator 
B : V ~ Q' and its transpose B T : Q -~ V' through the relation 

b(v,q) = (Bv, q)o,× Q = (v, BTq)v×v,, Vv E V, Vq C Q. 

The range of  B is denoted by ImB. We assume the kernel space 

KerB T : {q E Q:b(v,q) : 0 k/v E V} : {0}. (2.2) 

We may as well develop a theory for the more general case where KerB x ¢ {0}. However, such a 
generalization is not needed in applications in later sections. 

Given f E V' and 9 E I m  B C V, the abstract problem is to find u E V and p E Q, such that 

a(u ,v )+b(v ,p )=  (f,v)v,×v, ~/vE V, 
(2.3) 

b(u,q) = (g,q)Q,×Q, Vq ~ Q. 

Under the assumptions made on the data, together with the inf-sup inequality 

sup b(v, q) 
v~v ~ >/koliq[[Q, Vq C Q (2.4) 

for some k0>O, the problem (2.3) has a unique solution (u, p). 
Let Vh and Qh be finite dimensional subspaces of V and Q. Consider the following approximation 

scheme: find u~ C Vh and p~ E Qh, such that 

a(u~,vh)+b(vh, P~h) = (f ,  Vh)v,×v, Vvh E Vh, 

b(u~,qh) -- e(p~,qh)Q = (g, qh)Q'×O, Vqh C Qh, (2.5) 

where e > 0  is a small parameter. By Proposition II.1.4 of  [6], the discrete problem (2.5) has a 
unique solution (u~,p~)c Vh X Qh. The goal of  the section is to derive an error estimate for the 
approximation method (2.5). To do this, we assume there exist subspaces Vh C Vh and Qh C Qh such 
that 

b(t3h, qh ) 
sup t>/ oll4hllQ, c 0h (2.6) 

II hllv 

where flo > 0 is a constant independent of  h. Let Oh be the orthogonal complement of  Oh in Qh. We 
shall assume 

b(Oh,#h)=O, V # h e O  h, V f h e ~ .  (2.7) 
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Theorem 2.1. W e  w r i t e  P~h = Ph + Ph, w i t h  Ph Qh a n d  Ph E Qh. Then ,  u n d e r  the  g i v e n  a s s u m p t i o n s ,  

w e  h a v e  the  f o l l o w i n g  e r r o r  e s t i m a t e s :  

[ [ u - u ~ l l v  ~< C ~ inf { l [ u - - v h l i v + l b ( u - - v h , ~ h ) ] l / 2 } +  inf {l ip--  ~h[[O +e[[~h[]O}~, (2.8) 
Clh • Qh [ vhEVh J 

l i p -  Philo ~ C { ] l u - u % l l v  + inf l i p -  Ohllo). 
qhCQh 

Proof. From (2.3) and (2.5), we get the error relations 

a ( u  - u ~ , v h ) + b ( v h ,  p --  p ~ )  = O, Vvh  ~_ Vh, 

and 

b ( u  - U~h, qh)  + e(p~,qh)Q : 0, Vqh E Qh. 

For any Vh E Vh, we have 

Ilu - u~l l~  ~< Ilu - v~l l~ + Ilu~, - v~l l~.  

Applying the V-ellipticity of a (of. (2.1)), we get 

Ilu~, - vhll~ ~< a(u~h --  Vh,U~ --  vh) = a(u~ -- U,U~h -- Vh) + a ( u  --  Vh,U~h -- Vh). 

Using (2.10) with vh replaced by u~ - vh, we then get 

Ilu~ - vhll~ <. b(u~ - Vh, p --  p ~ )  + a ( u  --  vh,u~ - vh). 
^ 

For any qh E Qh, we have 

b(u~ - Vh, p --  p ~ )  = b(u~ - vh, p - ( l h ) +  b(u]  - Vh, Oh -- P] ) .  

Using the relation (2.11), we have 

b(u~ - Vh, Oh --  P~h) 

= b(u~ - u, qh - p~)  + b(u - Vh, Oh -- P~) 

= ¢(P~h,Oh --  P~)  + b ( u  - vh, qh -- P~h) 

= ¢ (P~ ,qh  -- P~)  + b ( u  - Vh,~h --  P~)  --  b ( u  - vh, P~,), 

which, combined with (2.13) and (2.14), implies 

<. a ( u  - Vh, U~h --  Vh) + b(u~h --  Vh, p --  qh)  

+ b ( u  - Vh, Oh --  f ib)  --  b ( u  - Vh, [9~) + e ( P ~ , O h  --  P~h)" 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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Thus, 

Ilu~ - ~ l l ~  

~ c  (llu - ~hll~llu~ - ~hll~ + Ilu~ - ~ l l ~ l l p  - ~hllo + Ilu - vhll~ll~h - ~11~)  

+ l b ( u  - vh,/5~,)1 + c (p~,,4h - p~,). 

A simple manipulation then shows that 

Ilu~ - ~hll~ + ~ 114~ - phllo~ 

~<c (l lu - v~ll~ + lip - ~11~ + Ilu - v~ l l~ l l~  - ~;IIQ) 
- -  _ _  E )  

+ l b ( u  Vh, P ~ ) l + ~ ( ~ h , q h  Ph O" 

To estimate the term [[qh -/5~[[o, we use (2.6), (2.7) and (2.10) to obtain 

I 1 ~ -  bXIlo 

b(eh, 4h - b~ ) 
~<c sup 

~ II~hll~ 

b(t3h, ~ h -- p ) +  b(~h, p -  fib) 
---- c sup 

b ( v h ,  qh --  P )  - a(u  - u~,~h) 

Hence, 

= c sup 
~ h ~  IIt~hll~ 

(2.15) 

I1~ - ~ I I Q  ~ c ( l i p  - 4hllQ + Ilu - uZIIv) • (2 .16 )  

Also, we have 

_ ~) _ ^~) __ ^~ 
( ~ h , ~  ph Q = ( ~ , ~  Ph Q ~< cll~hlloIl~h PhlIQ" ( 2 . 1 7 )  

It is easy to see, from (2.12), (2.15), (2.16) and (2.17), that 

IluZ - vhll~ + c 114~ - phllo~ 2 
(2.18) 

~<c { Ilu - vhll~ + Ib(u - Vh, ~ ) 1  + l ip -- 4hll~ + C2114h11~}. 

By the arbitrariness of vh E Vh and qh C Oh, we have thus proved the estimate (2.8). The estimate (2.9) 
follows from (2.16). [] 

3. Macroelement technique 

We first specialize the result of Theorem 2.1 to the numerical method (1.8) for the Stokes prob- 
lem (1.1). As in [6], we choose two subspaces I ? C Vh and Qh c Qh so that 

/~oll~hllo ~< sup (div13h'qh), V4h E Qh, (3.1) 
0 ~ h ~ h  II ~11~ 
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for a positive constant fl0 independent of h and 

(divvh,qh) = 0, Vqh C Qh, ~/Vh E Vh' (3.2) 

where Qh is the orthogonal complement of Qh in Qh. From Theorem 2.1 and the fact that div u = 0, 
we obtain the following result. 

Theorem 3.1. Let  Vh and O_.h satisfy hypotheses (3.1) and (3.2). Let  (u ,p )  and (u~,p~) be the 
solutions o f  the problems (1.1) and (1.8), respectively. We write P~h = fS " ~ h + Ph, with Ph E Oh and 

h E Qh" Then 

Ilu-uZll, ~<c  inf{]]U--Vh]ll+l(divvh, t.h , j +  inf{llP--qhll0+¢llqhll0 } , (3.3) 

l i p -  b~llo ~ C { l l u -  Uhlll ~- inf l i p -  qhllo}. 
GEQh 

(3.4) 

The key assumptions of the above result are hypotheses (3.1) and (3.2). To choose the subspaces 
and Qh properly, we use the macroelement technique. 
Let -~H be a nested coarse mesh of ~h. We call the element of -~H the macroelement which is 

the union of a fixed number of adjacent elements of ~h. Consider a general macroelement 
rn 

M---- U/(,, 
j=- i  

where Kj E -~h. We define the spaces 

VO, M = {Oh: Oh E Vh, Oh = 0 in (2\M}, 

QM -- QhIM, 

N M = { q h E Q M : / M q h d i v o h d x d y = O ,  Voh E VO, M}. 

For the discontinuous pressure elements, we quote the following results obtained in [17, 6]. 

(3.5) 
(3.6) 

(3.7) 

Theorem 3.2. Let  us suppose on (2 a partition into macroelements such that 

NM is one-dimensional. 

Suppose, moreover, that there exists an operator IIh : [H0~((2)] 2 ~ Vh such that one has 

M div(Ilhu - u ) d x d y  = 0, VM 

IlnhuLL, ~< c 1lull,. 

Then for  some constant flo > 0 independent o f  h, we have 

(div vh, qh) 
sup >>- HollqhltO, V qh E Qh. 
vh~v~ IIohl11 

(3.8) 

(3.9) 

(3.10) 
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Now we present our ideas for choosing the subspaces l~h and Qh. Let us write 

ArM = {constants on M} ® N~t. (3.11) 

Then we define 

Oh=UNi t ,  Qh=Oh ®Oh, (3.12) 
M 

where 0h is the orthogonal complement of 0h in Qh. And for some Vh* C Vh, we define 

Vh = Vh* + U V0,M. (3.13) 
M 

Theorem 3.3. I f  the spaces V~ and Oh satisfy the conditions (3.2), (3.9), and (3.10), then the 
spaces 12h, Oh and Oh satisfy (3.1) and (3.2). 

Proof. Similar to (3.5)-(3.7), we define 

frO,M ~- {1)h:~h ~ Vh, l)h = 0 in g2\M}, 

0M -- 0hiM, 

NM:{qh~OM:/MOhdiV~h~dy=O, Veh ~ P0,M}. 

We have I?0,M = V0,M, and -NM = {constants on M}. By Theorem 3.2, we know that (3.1) is valid if 
we can choose Vh* to satisfy the relations (3.9) and (3.10). By definition (3.12), we know that (3.2) 
holds for (Vh, Qh) if (3.2) holds for (Vh*,0h). [] 

4. Bilinear-constant velocity-pressure element 

For simplicity we assume f2 is a rectangle {(x,y):O<x<xo, 0 < y < y 0 } ,  x0 and Y0 being given 
positive numbers. We consider partitions of rectangle f2 into rectangular elements with uniform 
partitions in the x- and y-direction. Denote 

~h = {Kij: 1 ~< i ~< ml, 1 ~< j ~< m2}, 
Kij = {(x,y) E ~ 2 : ( i -  1)h, <<,x <<. ihl, ( j -  1)h2 ~< y ~< jh2}, 

where ml = xo/hl and m2 = yo/h2 are even integers. We shall assume that hi and h2 depend on the 
mesh parameter h in such a way that hi~h2 is bounded by positive constants from below and above 
independent of h. 

We discuss the bilinear-constant (Q1 - Q o )  velocity-pressure element. This is probably the most 
popular of all elements for incompressible flow problems. The finite spaces Vh and Qh are defined 
as follows: 

vh = {vh vhlK ~ [Q,(K)] 2, VK E "-~h}, (4.1) 

Qh = {qh E Lo2(f2):qh[K E Qo(K), VK C -~h}. (4.2) 
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Fig. 2. q~,ff. 

Here and below, for a nonnegative integer l, Qt(K) denotes the space of polynomials of  degree less 
than or equal to / in each variable on K. 

Let -~H (H = 2h) be a nested coarse mesh of  %.  Each element of  .%~ consists of four elements 
of %.  

"~H = {Mij: l ~ i <. m j 2 ,  1 <~ j ~ m2/2}, 

M u = {(x,y) E N 2 : 2 ( i -  1)hi <.x  <. 2ihl, 2 ( j -  1)h2 <. y <~ 2jh2}. 

And we introduce %/, and ~H2, tWO auxiliary nested coarse meshes of .%, as follows (cf. [1 1]). 

"~H, = {rij: 1 <~ i <~ m,/2,  1 ~ j <~ m2}, 

T u = {(x,y) E N2:2(i - 1)h, ~ x <~ 2ih,, ( j  - 1)h2 <~ y <~ jh2}, 

and 

"%42 = { Sij " l <~ i <" m~' 1 <~ J <" 2 } '  

S u = { ( x , y ) ~  N2 : ( i _  1)h~ <. x <. ih~, 2 ( j -  1)h2 <~ y <~ 2jh2}. 

See Fig. 1 for the case ml = m2 = 4. 
By (3.12), we have 

Oh= U span{+ }, 
M,j C ~,q 

where eft  are defined on the element M u as in Fig. 2. 

Let 0h be the orthogonal complement of 0h in Qh. Then 

Qh = Qh ® Qh. 

(4.3) 

(4.4) 
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Define 

VO, M = {Vh: VhIM e Vh, Vh = 0 in f2\M}, VM e ~ / ,  (4.5) 

= Vh* + U VO, M, (4.6) 
MESH 

where Vh* = (Xlh,X2h), and Xlh and X2h are the bilinear finite element spaces on the meshes ~H~ and 

~/h: 

Xth = {vh E [Hob(f2)]2: VhlK E [QI(K)] 2, VK E ~Ht}, l = 1,2. (4.7) 

Lemma 4.1. The spaces ~,  Oh and Oh defined above satisfy the conditions (3.1) and (3.2). 

Proof. We apply Theorem 3.3. By Lemma 2.1 in [11], there exists an interpolation operator IIh : 
[Hd(O)] 2 ' Vh* such that (3.9) and (3.10) hold. 

For every element Tij = K2i-l,j + K2i,j E "-~H1, with K2,-1,j, K2ij E ~h, we have 

fT, j ~vl M fK2 ~vl JK2 ~vl ~x qb,j dx dy = ,_,,j t3---~ dx dy - ,,j ~x dx dy = O, V vl e Xlh , 

since c~vl/Ox is independent of x. Similarly, for every element Sij = K~,2j_I + Ki,2j E-~m,  with 
Ki,2j-~,K~,2j E -~h, we have 

fs ~v2 fK c~v2 d x d y - ~  ~v2 , ~ - y q ~ d x d y =  ,,~j-1 c~- , , ~ j~ydxdy=O,  Vv2eX2h. 

Thus, 

(~h, divVh) = 0, V4h ~ Oh' Vl~h E V;. (4.8) 

The result now follows from an application of Theorem 3.3. [] 
The main result of the section is the following theorem on an optimal order error estimate. 

Theorem 4.2. Let (u, p ) e  [H2( f2 )NH~( f2 )] 2 ×Hi(f2) be the solution of  the problem (1.1), (u~, p~)E 
Vh × Qh be the solution o f  the discrete problem (1.8) using the finite element spaces Vh and Qh 
defined by (4.1) and (4.2). Denote ~ the projection of  p~ on Oh. I f  O<e <<, ~h, then 

Ilu - u ll, + l ip - t3 110 < C h ( l u l 2  + Ilpll , ) ,  (4.9) 

where C is a constant independent o f  h. 

Proof. By the standard finite element interpolation theory (cf. [9]), we have 

inf ]]u- vhi]l ~< inf I lu-  vh]ll <~ Ch[u[2, 
vh E Vh Vh E Vh 

in f  l ip - 4 llo +  114 11o < Chllpll . 4hEQh 
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It is easy to see that ~b~ = p~, - ~b~ is the projection of  p~, on Oh, and satisfies 

(/5~, div vh) = 0, V Vh E l?h. 

From Lemma 4.1 and Theorem 3.1, we get the optimal order error estimate (4.9). [] 

We remark that in [13], a similar error estimate is proved, but under the assumption u E W3'~(~), 
1 < s  < c~, and 0 < e  ~< ~lh 2. The next result shows that the difference between p~, and its projection 

~bh is small. 

Proposition 4.3. We keep the assumptions of  Theorem 4.2. Let ~ be the projection of  ffh on Oh, 
=- ~h. Then 

I1~11o -< c ~ ( I , , 1 ~  + I lp l l , ) .  

Proof. For any qh E Qh, we have 

I I~ l lo  --  IIp,i - #~11o -< IIp~, - ,~11o + II,b~ - pllo + l ip  - 4~11o. 

By (2.18) and the relation ( /~ ,divvh)  = 0, Vv h E ~,  we see that (3.3) can be replaced by the 
following inequality: 

Ilu - u;,ll, + v ~  II,h - p~,llo -< C{ l lu  - IJhl]l + lip -- 'LIIo + ~114~11o}, V ,~  e V~, V,~h e Q~" 

Thus with the assumed regularity of  the solution, 

inf {x/ellp~ - qhll0 + l i p -  qhl[0} ~< Ch(lul2 + t[pll,). 
qhEQh 

Noticing the assumption e = 0~h, we then have the stated estimate. [] 

Like in the case with the conventional finite element method, it is possible to prove an optimal 
order error estimate for the velocity approximation in LZ(sQ)-norm via a duality argument. 

Theorem 4.4. Under the conditions of  Theorem 4.2, / f 0 < e  ~< ~h 2, then 

I I .  - ,~,11o -< Ch2([ul2 + I lp l l , ) ,  

where C is independent o f  h. 

Proof. We introduce a dual problem: for any g E [L2((2)] 2, find ( 0 , 2 ) E  [HI(sQ)] 2 × L0Z(~2) such that 

(~7~,, V'~b) - ( 2 ,d iv$ )  -- (g,~b), V $  E [H1((2)] 2, (4.10) 

(div ip,/t) = 0, Vp c L~(O). 

By [18], we have the regularity of  solution (~0,2), 

II,/,11~ + I1~11, < c Ilgilo. (4.11) 
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Then for any (qth, 2h)E ~ X ~)h, 

( g ,  u - 

= ( V  o,  ~7(u - u~)) - (2, div (u - u~)) 

= ( V ( 0  - Oh), V(u - u~)) + (p  - p~, div 0h) 

+(2  - 2h, div u~) - e(,~.h, p~) 

<.Ch(lul2 + I l p l l , ) ( l l O  - + - L I I 0 )  +  llLll011b%ll0. 

From (4.11 ) and 0 < c ~< ~h 2, 

Ilu-u%lt0= sup ( g , u - u ~ )  <~ ChZ(lul=+llPll,) 

The proof is completed. [] 

5. Biquadratic-bilinear velocity-pressure element 

Let -~h be defined as in the last section. We define the biquadratic-bilinear (Q2-Q1) velocity- 
pressure element as follows. 

Vh = {vh E [Hd(f2)]2: vhlx 6 [Qz(K)] 2, V K  E ~h}, (5.1) 

Qh = {qh EL2o(f2):qhlx E QI(K), VK C ~h}- (5.2) 

Define 

~pK(X,y) = (X -- £K)(Y -- Yx)/hlh2, V K  C "~h, (5.3) 

where (2K,)3x) is the centre of element K. Let -~H (H = 2h) be defined as before. First let us 
determine the set Oh from the definition (3.12). 

4 K Lemma 5.1. Associated with a macroelement M = Ui=l i with Ki E -~h, we define a function 
~pM(X, y )  by d~M(X, Y)IKi = d~xi(x, y) ,  1 <~ i <~ 4. Then 

0h = {qh C L2(Q): qhlM E span{¢M}, VM C ,~,}. (5.4) 

Proof. It suffices to prove the result for a reference macroelement M = [ -1 ,  1] x [ -1 ,  1] which is 
the union of four elements K1 = [0, 1] x [0, 1], /£2 = [ -1 ,0]  x [0, 1], K3 = [ -1 ,0 ]  x [ -1 ,0] ,  and 
/(4 = [0, 1] x [ -1 ,0] .  Correspondingly, we use V0, ~ to denote the space of  piecewise biquadratic 
functions which vanish on the boundary of 2l)/, Q~ the space of piecewise bilinear functions on 21)/, 
and 

N~q = {q E Qlo:(q, divv)z 0 = 0 ,  VvE V0,M}. 

Then we only need to show that any function in N~ can be written as the summation of  a constant 
and a constant multiple of  ~bo. 
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The general form for a function in Q~ is 

all + a12(4 - 1/2) + a13(q - 1/2) + a14(¢ - 1/2)(q - 1/2) in/£1, 
q(4,r/) = a z 1 + a z 2 ( 4 +  1 / 2 ) + a 2 3 ( q -  1 / 2 ) + a 2 4 ( 4 +  1/2) ( r / -  1/2) in/£2, 

a31 + a32(¢ + 1/2) + a33(q + 1/2) + a34(4 + 1/2)(r /+ 1/2) in/£3, 
a41 + a 4 2 ( 4  - -  1/2) + a43(q + 1/2) + a44(4 - 1/2)(r /+ 1/2) in/~4. 

Assume q E N~,. We will take functions of the forms v = (w, 0) and (0,w) from the set V0~. First 
let us choose w to be 

{ 1 6 4 ( 1  - 4)r/(1 - q) in/('1, 
w = 0 otherwise, 

which can be viewed as an internal shape function associated with the point (1/2, 1/2). Then from 
the definition of the set N~, we have 

,q~-d4dr/= ,q~qdCdr/=O' 
which imply 

a12 ~ a13 = O. 

Similarly, by choosing w to be internal shape functions associated with the points ( -1 /2 ,1 /2 ) ,  
( - 1 / 2 , - 1 / 2 )  and (1 /2 , -1 /2 ) ,  it can be shown that 

a22 = a23 = a32 = a33 = a42 = a43 = 0 .  

Now let us choose w to be a side shape function associated with the point (0, l/2): 

8(1 - 4 ) ( 1 / 2 -  4)r/(1 - r / )  in K1, 
w =  8 ( 1 + 4 ) ( 1 / 2 + ¢ ) r / ( 1  r / ) i nK2 ,  

0 otherwise. 

Then from 

f Ow ,ue q ~ d4 dr/ = O, 

we find that all and a21 are equal; let us use a for the common value. Similarly, 

f Ow q d4 d r / =  O, 

implies a 1 4  = a 2 4  ~ b. By choosing w to be side shape functions associated with the points (1/2,0), 
( - 1 / 2 , 0 )  and ( 0 , - 1 / 2 )  in turn, we can show that 

ail = a, ai4 = b, 1 <~ i <<, 4. 

Thus, for q E N~, q -- a + b qS~ for some constants a and b. [] 
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Now let Qh be the orthogonal complement of Oh in Qh, 

Qh = Qh ® Qh 

and 

V0,g = {~h: *him ~ vh, vh = 0 in 12\M}, VM E 9H, 

F',~=r;+ U Vo,,,,,, 
ME~,v 

where Vh* - -  (Slh,S2h) is defined as in (4.7). 

(5.5) 

(5.6) 

(5.7) 

So 

t~V! 
fKq~K(X,Y)~xdXdy= f(X--XK)dX/(Y--YK)-~xdY =0, 

since OI)l/~X is a function independent of x. Similarly, 

f c&(x,y)~dxdy = O. 

fKq~x(X, y) div dx dy = 0, vh 

and thus, 

Md?M(X, y) div dx dy = 0. Vh 

That is 

(~h, d ivvh)=0 ,  V~h E Qh, Vvh E V;. 

The proof is completed by an application of Theorem 3.3. [] 

We choose k = ( -  1, 1 ) × ( -  1, 1 ) to be the reference element in o-~-~/coordinate system. Define 
a mapping z~" H3(/~) ' 0 C Q2(/£), Vff E H3(/~), 

4 4 

i= I  i=1 

Proof. Like in the proof of Lemma 4.1, there exists an interpolation operator Hh " [H01(f2)] 2 
such that (3.9) and (3.10) hold. 

For every K E -~h, from definition of (5.3) and Vh = (Vl,V2) E V~, 

Lemma 5.2. The spaces l?h, Oh and Oh defined in (5.4), (5.5) and (5.7) satisfy the conditions (3.1) 
and (3.2). 
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where 

1~ 1 = @(1, 1), 6t(~,t/) = ¼(1 + ~)(1 + t/), 

~2 = ~ ( - 1 ,  1), q~2(~,tl) = ¼(1 - ~)(1 + tl), 

t'~ 3 ~-- ~( -1 , - -1 ) ,  4 3 ( ~ , ~ )  = ¼(1 -- ~)(1 -- t/), 

1.~4 7__ ~ ( 1 , - 1 ) ,  4 4 ( ~ , ~ )  = ¼(1 + ~)(1  - r/), 

and 

f 
l 6~2ff(~, 1) 

gl(W) = 1 O~ 2 

f l 02,1~(__ 1, t/) 
g2(w) = 1 ~/~2 

f f  O2~b(~, - 1) g3 (t~2) = 1 ~'-~'2- 

_1 021~2( 1, !']) 
04(14') = 

l O~ 2 

d~, ~l(~,t/) = 1 2 g(~ - 1)(1 + t/), 

dr/, ~ 2 ( ~ , t / )  ---- 1(1 - -  ~ ) ( ? / 2  __ 1), 

d~, 1~3(~,~ ) = 1 2 ~(~ -- 1)(1 -- r/), 

dr/, ~4(~,t/) = ~(1 + ~)(t/2 - 1). 

(5.9) 

( 5 . 1 0 )  

Lemma 5.3. Assume ~ E H3(I(). Then 

I~-  ~l , ,e  ~ ~l~'13,e • (5.11) 

P r o o f i  It is easy to see that for any ff E PffK),  ~ff = ft. The inequality (5.11) can be proved 
following a standard technique in finite element analysis (cf. [9]). [] 

Lemma 5.4. Let ~ = (/11,/12) e [H3(/~)] 2. I f  alJl/a ~ + att2/ar I = O, then 

f [ 0 ~ t  ~?r~2 ] de d r /=  0. 
~n [ ~ + 0n J J~ 

(5.12) 

P r o o f i  

and 

From a simple computation, we have 

Or~fil , ~ ,  

= ~ t /  [ ~ ( l + t / ) O l ( U , ) + ~ ( 1 - t / ) g 3 ( u , ) ]  dCdt/ 

= ~ [ g ~ ( ~ )  - o3(~)] 

= 1 f Gq3Ul(~,g]) d~dq ,  
9 jg O2~&/ 

j f  Or~2 1 fg a3~2(~,t/) d~dt/. 
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Then 

and the proof is completed. [] 

For an element K E -~h, let ~/~ be the linear function mapping/(  to K. We define an interpolation 
operator on the element K by nx -- kUK o r~ o ~Uxl. We then define a global mapping nh through the 
relation: nhlK = 7ZK. 

Lemma 5.5. I f  u E [H3(Q)] 3 and div u -- 0, then 

]u - nhU]l <<. C hZlu]3, (5.13) 

(~h, diVrChU) ---- 0, Vqh E Oh, (5.14) 

where Oh is defined as in (5.4). 

Proof. First we can verify that Vu E [H3(Q)] 2, rChU E [C°(O)] 2, and thus, nhu E Vh. Then by the 
standard interpolation theory [9] and Lemma 5.3, we can prove (5.13). Obviously Lemma 5.4 implies 
(5.14). [] 

After the above preparations, we are ready to prove optimal order error estimates for the biqua- 
dratic-bilinear velocity-pressure element for solving the Stokes problem. 

Theorem 5.6. Let (u ,p )  be the solution o f  the problem (1.1), (u~,p~h) be the solution of  the 
problem (1.8) with Vh and Qh defined as in (5.1) and (5.2), /3 h be the projection o f  P~h on Oh. 
Assume 0 < e <<. cth 2. Then 

Ilu - u£lll + lip - b2ll0 ~ <  ChZ(lul3 + Ipl2 + Ilpll0). (5.15) 

Furthermore, i f  0 < ~ <<. ~th 3, then 

I [ u  - u~[[0 ~< Ch3(lu[3 + IPlz + Ilpll0). (5.16) 

Proof. From Lemma 5.2 and Theorem 3.1, we can choose vh = nhu E Vh. Then we apply Lemma 5.5 
and obtain (5.15) easily. Using a trick similar to that in proving Theorem 4.4, we can also obtain 
the L2-norm error estimate (5.16). [] 

In [ 15, 7], results of  many numerical experiments are reported. The numerical results are consistent 
with the error estimates proved in this paper. 

As another remark, we observe that for e=0 ,  the scheme (1.8) is the standard mixed finite element 
method for solving equation (1.1). By a careful examination, we find that Theorem 3.1 is valid also 
for e = 0. Hence, all the error estimates in Theorems 4.2 and 5.6 are valid for the case e = 0; then 
we get some related results proved in [6, 3] 
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