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ABSTRACT

It is well known that the group of all nonsingular lower block-triangular p x p
matrices acts transitively on the cone &2 of all positive definite p X p matrices. This
result has been applied to obtain several major results in multivariate statistical
distribution theory and decision theory. Here a converse is established: if a matrix
group acts transmve]y on %, then its group algebra must be (similar to) the algebra
of all lower block-triangular p X p matrices with respect to a fixed partitioning. This
implies the nonexistence of multivariate normal linear statistical models with unre-
stricted covariance structure that admit a transitive group action, other than those
classical models invariant under a Full block-triangular group.

1. INTRODUCTION

It is well known that the group .7 of all nonsingular lower triangu-
lar p X p matrices acts transitively on the cone * of all positive definite

“Research supported in part by the Danish Research Council, by 1.5. National Science
Foundation Grant §3-02211, and by U.S. National Security Agency Grant MDA 904-92-1-3083.
TINEAR ALGEBRA AND ITS APPLICATIONS 199:151-170 (1994) 151

© Llsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0024-3795 /94 /$7.00


https://core.ac.uk/display/82016871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

152 STEEN A. ANDERSSON AND MICHAEL D. PERLMAN
p X p matrices, or equivalently,'
F* = T7 = {AAT|A € 7).

This fact often has been exploited to obtain major results in multivariate
statistical distribution theory and decision theory. For example, a classical
derivation of the distribution of a random Wishart matrix § ~ VVP(E, n) is
based on the representation § = AA', where A € & (cf. Anderson, 1984,
Chapter 7). James and Stein (1961) and Olkin and Selliah (1977) used this
transitive action to construct estimators of the covariance matrix % which
uniformly dominate the classical estimator n”™ 1. together with the Hunt-Stein
thearem, this demonstrates the inadmissibility and nonminimaxity of n's.
Giri, Kiefer, and Stein (1963) used this transitive action to establish the
minimaxity of Hatelling’s T? test.

Of course. any group consisting of all nonsingular block-triangular p X p
matrices (with respect to a fixed partitioning) also acts transitively on £*; this
extended fact has been used to study the decision-theoretic and distributional
properties of many other multivariate normal models and testing problems
that remain invariant under such groups. These include the Manova and
generalized MaNOva problems (Anderson, 1984, Chapter 8; Marden, 1983),
testing problems for means with covariates (Giri, 1968; Marden and Perlman,
1980), missing- or additional-data models (Eaton and Kariya, 1983, and
stepdown procedures (Marden and Perlman, 1990)—sce Andersson, Mar-
den, and Perlman (1994) for a unified treatment of such problems. More
examples and references appear in Giri (1977) and Eaton (1983).

Because of the statistical importance of these transitive actions, a natural
question arises: are there any matrix groups other than the full block-
triangular groups that act transitively on $**? The answer to this question as
stated is trivially yes. For example, the proper subgroup &' C ¥ consisting of
all lower triangular p X p matrices with positive diagonal elements also acts
transitively on #P*. However, the groups & and 7~ span the same matrix
adlgebra, ie., AlgF) = Alg(5 ") = the algebra of all lower triangular p X p
matrices. Furthermore, in any multivariate normal linear model® the invari-
ance group ¥ is presented in the form £ =.9(%)*. the set of all nonsingular
matrices in an algebra #(%) [see (2.6)] determined by a set of lincar
constraints. Therefore we are led to the following reformulated question: if &
is a mairix group that acts transitively on P*, must Al &) be a (gener-
alized) block-triangular matrix algebra® (See Definition 2.7.)

IHere, t denntes “transpose.”
2%uch as those referenced in the preveding paragraph.
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If the answer to this revised question were no, then such groups & would
determine new multivariate normal models (L.e., those that remain invariant
under such groups) with unrestricted covariance structure yet with tractable
decision-theoretic and distributional properties. Perhaps unfortunately, how-
ever, our main result (Theorem 3.1) answers this revised question affirma-
tively: Any matrix algebra & containing a matrix group that acts transitively
on P* must be a generalized block-triangular algebra of p X p matrices.
Thus: For a multivariate normal linear statistical model with unrestricted
covariance structure the assumption of transitivity does not allow the appear-
ance of invariance groups essentially different than the classical block-
tr‘iangular groups,

This result is used by Andersson, Marden, and Perlman (1994) to charac-
terize totally ordered multivariate normal linear models, i.e., those models
that impose no restriction on the covariance structure and that remain
invariant under some full block-triangular matrix group. Such models appear
to be the only multivariate normal linear models with unrestricted covariance
structure that admit explicit (noniterative) maximum-likelihood estimators
and likelihood-ratio tests. It follows from our main result that a multivariate
normal linear model is totally ordered if and only if the group of all
model-preserving linear transformations acts transitively on the model.

After some preliminary results regarding transitive action and block-
triangular matrices in Section 2, the main results are presented in Section 3,
tollowed by the proofs of two key lemmas in Sections 4 and 3. All vector
spaces and matrices considered in this paper are real, but the main results
remain valid (with the obvious modifications) in the complex case® where
the cone £* of all real positive definite symmetric matrices is replaced
by the cone of all complex positive definite Hermitian matrices.

2. PRELIMINARIES: TRANSITIVE ACTION AND
BLOCK-TRIANGULAR MATRICES

It will be notationally convenient to work with vectors and matrices having
unordered index sets. For any two finite index sets I and [, let 241 X J)
denote the set of all T X [ matrices with real entries, and let A1) =9 X

3In fact, some of the proofs are easier in the complex case—for example, the proof of
Lemma 3.2 given in Section 4.
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I). For any subsets & C.0(1) and U € R’ and fixed E, F € (1), define
& = {A €| A is nonsingular} ,
w0 = {AxlA EW, xE U},
EwT = { EAT| A € ).
For any subset & Co(1)* define
& = {ATA ew].

A subset & Co1) is a matrix algebra if & is closed under addition,
scalar multiplication, and matrix multiplication. We shall only consider alge-
bras . that also contain the I X[ identity matrix 1;. Clearly ©4I) and
{ALIA € R} are the maximal and minimal such algebras in 2A1). If & is an
algebra, then* (%)™ =o/* so @* is a group under matrix multiplication.
For any snbset & €.9(I) let Alg(#} denote the algebra generated by &, i.e.,
the Smfﬂleqt qlgrhrd in W’(T) that contains % and 1,. If & CH(I) is an
algebra, them? Alglw*) =

Let @(1) [or #(1)* ] dem)te the cone of all positive semidetinite [or
positive definite] I X I matrices. For any subset & Co(I} [or #(1)*] and
> e &(I) [or #(I)*] define

ww' = [AA'| A ew} (1) [or 2(1)*],
&3 = AT A A ew) co(1) [or 2(1)*].
and similarly define &%/ and & 2.

DerINITION 2.1, A group & Cw(1)* acts transitively on (1Y if
FEg" =P(1)* for every 2 € (1)

It suffices to show that A €w* = A~ €™ Let f(A) =detA — AL} be the
characteristic polynomial of A, having degree 7] Then f{0) = det A # 0, while f(A) =0 by
the Cayley-Hamilton theorem. Thus A U= (A '[flO)1, — fA)}/f(0), but this is a polynomial
of degree |I| — Lin A; hence A I et

>The inclusion Alglor*) S is trivial. If A €@, let f(A) be the characteristic polynomial of
A, and choose A such that f(A) # 0. Then A — Al; is nonsingular; hence A = (A — A1) +
Al, € Alglw®).
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REmARK 2.2. If &) acts transitively on P(1)* and &, C %,, then &,
also acts transitively on &(1)*.

When & =* for some matrix algebra %, the following proposition
relates the transitivity of #* to similar conditions on .

PROPOSITION 2.3, For any matrix algebra & C(1), the following ten
conditions are equivalent:

(i) @' =P(1).
(i) w* (™) =2(1)*.
(iii) wE¥ =2(1)* for some % € P(I).
(iv) o*Z(w*) =(1)* for some % € 2(1)*%.
(v) &2t =2(1) for every Z € P(I)*.
i) *Z(*) =P(I)* for every 2 € P(I)* (i.e., ¥* acts transitively
on P(1)*).
(vii) E¥F(E&F) =R(1) for some pair E, F € 9(1)*.
(viii) E&*F(E&*F) =2(1)* for some pair E, F € w(1)*.
(ix) EwTF(ENT) =(1) for every pair E, F € w(I)*.
(x) Ex*F(E&*F) =2(I)* for every pair E, F € 57(1)*.

Furthermore, these ten conditions are equivalent to each of the ten
additional conditions (i')-(x") obtained by interchanging & and &, 9™ and
(o), ExF and (E&FY, and E*F and (E@*FY.

Proof. The implications (i} = (i), (iid) = Gv), (v) = (vi), (viD) = (viid),
and (ix) = {x) are immediate. To show that (i) = (i), note that for any
2 € #(1) there is a sequence {Q,} C.#(1)* such that 1, —» Q. By (i),
HA} co* such that A AL = Q,. Since {A,} is bounded, there is a
convergent subsequence {A .} such that A, = A € (since &, being a
finite-dimensional vector space, is closed). By continuity, AA' = €. The
proofs that (iv) = (ii), (vi} = (), (i) = (vii), and (x) = (ix) are similar.

The implication (ix) = (vii) is trivial, while (vii) = Gii) is immediate,
since (I AT =2(1)* and (1) = EL(I)E'. To show that (iii) =
(i), choose A €. such that A% A" = 1;. (Necessarily, A €% and A™' €
&%), Thus P(I) = FA A DY = FA HFA™D = &', since &
is an algebra. To show that (i) = (v), for any % € 2(I)* choose A €
such that AA* = 3. (Again, A €™ and A" € A*). Then #(I) =A™ '%
(A Nt = A IS(FATY =3 as bhefore. Finally, to show that
(v) = (ix), for every pair E, F €.#(I)* we have that %(I) = #FF¥" and
HP(1) =ERIE"; hence $(1) = E&¢FF'w'E' = ExF(ExTF)".

The equivalence of (i)—(x") is proved analogously. Lastly, to show
that (i) & Gi') (@)w* =2(1)*, just note that [&*(a*)]™' =
[ (w*) ! = ()™ and (1) = [P(1)*] L. »
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We now introduce the algebras of block-triangular matrices. For an

subset KS I and x =(x,lie ) € R’ let x, = (x,]i € K) denote the

coordinate projection® of x onte R¥. Define the linear subspace U, ¢ R' as
follows:

Up = {x € RM|xy = 0); (2.1)

note that” KC K’ = U, D Ug. For any A €1) let Ay denote the

K x K submatrix of A.
Let 2 (I) denote the set of all subsets of I. For any set F C (1) define

() = {A ew(1)|VK €%, AU € Uy} (2.2)
Clearly 2(%) is a matrix subalgebra of &(1), and for any %, %, c@(1),
Hew = W) cH(T). (2:3)

A set F C@(1) is called a ring il it is closed under N and U and if
@, 1 € %8 For K(# @) €.% define

{KY)=U(LeXxlLcK)cKk,
[K] = KN<K>,
J(#) = [KeZlK+@ [K] =2}
J(#) is the set of join-irreducible elements of #. Then? for each K € J(#),
K=U([LL g ](F). LK), (2.4)

where UJ denotes a disjoint union,
For any A e (1) and any two subsets K, I € JUF), let Ak denote
the [ K] x [L] submatrix of A.

Define xp = 0; thus 1}, = R1.

“In this paper, < and 2 are used to indicate strict inclusion.

SFor any & S2(1), &%) = #(Ring(F)), where Ring(#) is the ring generated by 7. Thus
when stndying #(.% ), we may always assume that % is a ring.

¥This is well known; e.g., see Andersson and Perlman (1993, Proposition 2.1).
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PROPOSITION 2.4. Let & be a ring of subsets of 1. The following three
conditions on A € #[1] are equivalent:

(D) A )
(i) Vx e R, YK €%, (Ax)y = Agxy.
Gii) VK, . e (), LZ K = Ay, = 0.

Proof.  Since
H(F) = [A €AT)|VKEF, g =0 = (Ax)x =0},

the implication (i) = (i} is trivial, while (iii) = i) follows from (2.4) and the
usual formula for block matrix multiplication:

(Ax) g = { Z(Apwyron| M € J(D))|1. € J(2), L < K

= (Z{ A x| M € (7). M S K)

I.e (7). LK)

[by (iii)]
= Agxg.

To show that {i) = (i), consider K, L € J(#) with L & K. Then for any
x € R’ such that O =0VM € J(F), M # L,

Ay = L (Akar X0 M € J(F)) = Apgrpiyy

But (Ax), = 0 by (i}; hence (Ax) g, = 0. Since x;,; is arbitrary, Ay, = 0.
.
A ring % is a chain if it is totally ordered™ under inclusion (hence finite);

in this case J(#) =2\ {}. The equivalence of (i) and (ii) in Proposition
2.4 leads to the following definition:

DEFINITION 2.5. Let % be a chain of subsets of I. The algebra (%) is
called the algebra of block-triangular matrices with respect to %. The group
SV is called the group of block-triangular matrices with respect to %.

Crhat is, for any distinet K, L €. #F either K< L or L CK.
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ExamprLe 26. If 7 ={Q, I} then o(Z) =/(1). f F={D, K, I}
where J € K C I, then by Proposition 2.4(iii),

Alkk)

e(1
Ak A (1)

Ajxx) e ¥(K),

A(F) = {

Ak €#((INK) X K), A EM(I\K)},

where the matrices are partitioned according to the decomposition I =
[KJU[I]=KU\K)I[cf (24)].

If % and %, are chains, then %, C.%, = J(%Z) C J(#), so by
Proposition 2.4(iii), (2.3) can be sharpened as follows:

KA = W) ). (2.5)
If % is a chain such that [K] =1 for each K € J(%Z), then &%) is
an algebra of triangular matrices in the usual sense. Thus by (2.3), every
block-triangular matrix algebra (group) contains an algebra (group) of
triangular matrices.
Definition 2.5 may be extended as follows. Let (1) denote the set of all
linear subspaces of R For any subset % C #(I) define
A (%) ={Aexd(I)|VU e %, AUC U}; (2.6)
(%) is again a matrix subalgebra of #(I), and
v, c, = HU)<AHY). (2.7)
Note that for any set % of linear subspaces of R’ and any F € &/(I)*,
S(F%) = F/(%)F . (2.8)
A set ZZ € %(1) is a lattice of subspaces if it is closed under N and +

and if {0}, R’ € UM A lattice % is called a chain if it is totally ordered under
inclusion (hence finite).

Y For any # € 2(1), /(%) =/ (La(%)), where Lat(%) is the lattice generated by #.
Thus when studying #(%), we may always assume that # is a lattice.
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DEFINITION 2.7. Let 2 € #(1) be a chain. The algebra s(#) is called
the algebra of generalized block-triangular matrices with respect to #. The
group A% )* is called the group of generalized block-triangular matrices
with respect to #.

This definition is justified as follows. Each chain & c@(I) determines a
chain %, = {Uy| K €%} € #(I) such that (%) = #(%,). Conversely, for
any chain % € #(I) we may choose a basis of R' and a chain Z C2(1)
such that % has the form %, relative to the new basis. More precisely, there
exists F €.4(1)* such that % = F%,; hence by (2.8)

H(¥) = Fw(F)YF 1, (2.9)
S ) = F(F)TF . (2.10)

Thus: Every generalized block-triangular matvix algebra (group) is similar to
some block-triangular matrix algebra (group).

Suppose that %, and %, arc chains in %(I) such that &, C #,. If a chain
&, (1) and a matrix F € %(1)* are chosen such that %, = F#,,, then
there cxists a subchain %, C.%, such that &) = F#,.. Thus by (@.5), (2.7
can be sharpened for chains as follows:

¥ Cc#, = oN(%) (). (2.11)

Since every block-triangular matrix group #(#)* contains a group of
triangular matrices, and since the latter is known (by the Cholesky decompo-
sition) to act transitively on 2(1)*, the following result is an immediate
consequence of Remark 2.2, (2.10), and Proposition 2.3:

TueoreM 2.8. Every generalized block-triangular group sA%)* acts
transitively on P(I)*.

3. MAIN RESULTS

Our first main result is the following converse to Theorem 2.8.

THEOREM 3.1 (Existence). Let & Co/(I) be a matrix algebra. If &*
acts transitively on P(1)*, then there exists a chain ¥ C #(I) such that
& =A%), i.e., & is a generalized block-triangular matrix algebra.

This thesrem is proved by means of Lemmas 3.2 and 3.3, whose proofs
are given in Sections 4 and 5, respectively. First recall that for any subset
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& C.o(1), a linear subspace U € #(1) is &-invariant if ¥U € U. Clearly R
and {0} are o-invariant, and [7 is &/-invariant iff U is Alg(#)-invariant. If &
is an algebra, then U is whinvariant iff U is #*-invariant [since Alg(#*) = o],

We denote the set of all #-invariant subspaces of R' by #{#).'* Note
that #(&} C %(1) is a lattice. For any algebra & C.(1), any lattice
# < #(1), and any F € 2(1)*,

(%)) D%, (3.1)
F(Z(¥)) 27, (3.2)

S #( (%)) =(%), (3.3)
(A% () = %(), (3.4)
Fo/(a) = #(FoF ). (3.5)

Furthermore, for any two subalgebras &, and &, of #(1),
o, Ca, = w(a,) C#(). (3.6)

Lemma 32 La & o) be a matrix algebra such that &% acts
transitively on FCI*. If no proper Sf-invariant subspace of R’ exists, then

o =g I).

Levma 33, Let o CoT) be a matrix algebra such that %™ acts
transitively on P1)*. Suppose that U is a minimal proper &-invarient
subspace of R'. Then there exists a matrix F € %(1)*, a proper subset K < I,
and an algebra & C.9(K), such that U = FU,, B* acts transitively on
PK)*, and

EH (1} Age €F,

FWF={

Anxy Ann

A EF((INK) X K), Ay EM(I\K)}, (3.7)

" For any & C(1), (&) = Z{Alglw')), so when studying (&) we may always assuine
that & is an algebra.
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where the matrices are partitioned according to the decomposition T = K U

(I\K).

Proof of Theorem 3.1.  The proof proceeds by induction on |I] = dim R,
If [I| = 1 the result is triviul. Now assume that Theorem 3.1 holds whenever
1 < |1l € p, and consider the case [Il = p + 1 {3 2). Since R is a nonzero
&-invariant subspace and dim R’ < o, there exists a minimal nonzero .-
invariant subspace U € R If 7 = R’, then there exists no proper S-invariant
subspace, so the result follows from Lemma 3.2.

If U ¢ R, then by Lemma 3.3 there exists a matrix F e (I)* a proper
subset & € K € I, and a subalgebra & C#(K) such that .#* acts transi-
tively on #2(K)* and F 'F has the form (3.7). Since |K| < p, it follows
from the induction hypothesis and (2.9) that there exists a chain .% of subsets
of K and a matrix G € &(K)* such that & = C#(Z)C . If we set

G 0
E=I'(0 II\K] G.W’(.l)*,

then from (3.7),

Argg 0

ew(1
AuG Ay ()

E WE = { A EH(F),

Al EF((INK) X K), Ay € (INK)

A 0
[KK] _
Ak E(Z),

)e.m’([)

|

Auxy Ap

Ay ES((INK) X K), Ay E&(I\K)

=& (ZFuU{I}) [by Proposition 2.4(iii}].

Since .ZU (I} is a chain of subsets of I, & is therefore a generalized
block-triangular matrix algebra, so the proof of Theorem 3.1 is complete. ®

The uniqueness of the chain % in Theorem 3.1 will now be established.
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LEMMa 3.4. Let & C(I) be a matrix algebra such that &* acts
transitively on P(1)*. Then #(&) is a chain.

Praof. Tt suffices to show that if U and V are two proper o/-invariant
subspaces of R’ such that U # V, then either UNV =0 or UNV =
V. Suppose that UNV#U and U NV +#V. Then #(¥) 2> % =
o), 7, U Vv. W, R}, where T=U NV 2{0} and W:= U + V C R’: note
that % is a lattice but not a chain. As above (2.9), there exists F €. 9401)*
such that % = F#,,, where % C2(1) is a ring of the form {(J, J, K, L, M,
I} with KNL=K, KNL#L, [=KNL2O, and M:=KULCI
again, J# is not a chain. Since J(F) = {], K, L, I), Proposition 2.4(ii)
implies that &%) consists of all matrices of the form

Ay, 0 0 0

4o | A A O 0
Awyy 0 Ay 0
A

vy Ay Auny A

where A is partitioned according to the decomposition' I =[j]uU
[K]1U[LIVII] [cf. @A4)] Tt may be shown™ from (3.8) that #(ZY* does
not act transitively on (1)}, By (3.2), (2.7), and (2.8), however, & C
AU () Co( %) = FAFF ", hence &A%Y must act transitively on
(I (by Remark 2.2 and Proposition 2.3). This contradiction establishes the
result. [ |

LEMMA 35, Let % C #(1) be a lattice. Then % is a chain iff 9 (%)*
acts transitively on P(1Y*. In this case, (%)) = #.

Proof. Tt # is a chain, then #(Z)* acts transitively on #(1)* by
Theorem 2.8. Conversely, if #/(%)* acts transitively on 2(1)*, then % (/%))
is a chain by Lemma 3.4. But YY) 2 ¥ by (3.1); hence % is a chain. If
2 (A #Y)) o %, then AX(AX))) CHAX) by (2.11), contradicting (3.3);
thus Z(AX)) = #. [ ]

" Note that [f1and/ar [T] may be empty. If {J] = & then | = &, so | docs not oceur iu
JEY, 1] = @ then I = L, so i does not ocenr (separately) in (2.

" Suppose that T = AA" for some A €#(7)*, so A has the form (3.8). Then it may be
shown that (L") xz) = 0, so #(F)* does not satisfy condition (i) of Proposition 2.3. Allerna-
tively, apply Remark 2.4 of Andersson and Perlman (1993).
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LEMMA 3.6, Let % C #(I) be a chain and & C (1) an algebra.

G) Ay Cw = (&) ¥,
(i) AX)cw = ).

Proof. (i) By (3.6) and Lemma 3.5 A#%)cwy = #(¥)cC
WA %) = ¥.

(ii): By (), (&) c . If () =%, then by (3.2), w c (% (%)) =
&%), a contradiction: hence #(w) C #.

LeMMA 3.7. When & and &, are subalgebras of %(1) such that w7}
acts transitively on P(I)*, (3.6) may be sharpened as follows:

o Cy, o #(H) CU(). (3.9)

Proof. By Theorem 3.1, there exists a chain % such that &, =.{#). By
Lemma 3.6Gi) and (3.1), Z(s;) C % € #(A%)) = # ().

THEOREM 3.8 (Uniqueness). Let & Cw{I) be a matrix algebra such
that &* acts transitively on P(I)*. Then () is a chain, (%)) = #,
and % () is the unique lattice 7°C (1) such that (¥ = .

Proof. By Lemma 3.4, #(s) is a chain. By (3.2), sA%(¥)) 2. If
() D7 then X (A (¥))) € # () by Lemma 3.7, which contradicts
(3.3); hence A () = If € #(I) is a lattice such that %) =
& then (&) = Z(#(#7)) 2 7 by (3.1); hence ¥ is a chain. Therefore
#Z (7)) = 7" by Lemma 3.5, so #(&) = %, [ |

The following two corollaries have statistical applications (cf. Andersson,
Marden, and Perlmun, 1994).

CoROLLARY 3.9, Let % € #(1) be a chain and & C o1} an algebra.
Then & 25/(% ) if and only if & = 9(7") for some subchain 7'C #.

Proof. “1f": apply (2.7).

“Only if”: by Theorem 2.8 and Remark 2.2, &* acts transitively on
G1)*. Now sct "= #(&), so the result follows from Theorem 3.8 and
Lemma 3.6(i). ]

COROLLARY 3.10.

(i) Let % < #(1) be a chain and & (1) an algebra such that
& CA¥). Then &* acts transitively on 5(1)* if and only if & =7 2") for
some chain %" 2 #%.
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(ii) Let ¥ be a chain of subsets of 1, and & c1) an algebra, such
that & Co(F). Then &* acts transitively on P if and only if & =
FA ™! for some chain & 2.5 and some F e A F)*.

Proof. (i), “if": Apply Theorem 2.8. “Only if”: Set #'= 2(%), a chain
by Lemma 3.4. Then & =4 7") by Lemma 3.5, and 72 % by (3.6).

(ii): App]y G) with & = %, and note that 2 %5 if and only if
%= F#, for some chain % 2.% and some F € 2AF)*. Now apply (2.8). &

We conclude this section with several related results of possible interest.

LiMMa 311 Let % < (1) be a lattice and o C.#(I) an algebra such
that &* acts transitively on P(I.

() ¥ Cc ¥ (W) = (%) o
Gi) & c #(w) < %) DO

Proof. (i), =: Apply (2.7 and (3.2). «<: By (3.6), Y (A X)) C % ().
But by Remark 2.2, (%) acts transitively on F#(I)*; hence % = A (Z))
by Lemma 3.3.

(i), =: by (), %) 2. If #(#%) =« then # = #(«) by Theorem
3.8, which contradicts the hypothesis; hence A% oW, = By(i), # C ().
If % = #(a) then A %) = A# () = by Theorem 3.8, a contradiction.

| ]

COROLLARY 3.09. Let % C #(1) be a lattice and & C (I} an algebra
such that & acts transiticely on (1), Then % € #(&) if and only if
% = #{R) for some algebra H# 2.

Proof. “1f": Use 2.7.
“Only if’: by Lemma 3.4, #(o) is a chain; hence # is a chain. Now sct
& =(%), and apply Lemma 3.5 and Lemuia 3.11.

COROLLARY 3.13.  Let % C #(1) be a lattice and & C (1) an algebra
such that & acts transitively on (1Y and % 2 (). Then # is a chain
if and only if # = #(HB) for some algebra B & such that EB* acts
transitively on P(I)*.

Proof. “1f": Apply Theorem 3.8 to B
“Only if": Set & =o(#). Then @#* uacts transitively on #(1)* hy
Theorem 2.8, % = #(.%#) by Lemma 3.5, and & C & by Theorem 3.8, |
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4. PROOF OF LEMMA 32

Lemma 3.2 is an immediate consequence of the following result:

LemMa 4.1 (Burnside's theorem for real matrices). Let & C.9(1) be a
matrix algebra such that no proper s-invariant subspace of R’ exists. Then
cither & = .o(1), or else there exists F € 9/(1)* such that & = F~'.(D)F
or & = F '\ (DF, where

A (1) = {(4 _B) EM(I)‘A,B EM(N)}, I=NUN, (4.1)

B A
A -B -C -D
vy ={{E A P ~Clounla o newp)l.

¢ =D A B
D C -—B A

[=QUQUQUQ. (42)

Proof. The commutant algebra & =%#(%) and bicommutant algebra
% = Z() are defined, respectively, as

% = {C ew(1)|CA = AC VA €],

@& ={B ex(1)|BC =CBVC e &)}

By Schur’s lemma, # is a division algebra over R; hence by Frobenius’
theorem, % is isomorphic to B, C, or H. If & = R then ¥ = {«],|a € R},
so0 & =s41).

If #=0C then # = {a], + ,B]|a B € R}, where ] e (1)* satisfies
= —1;, and R’ may be considered as a vector space over #. Let
(¢,In € N} be a basis for R” over #. Then (¢ |n € N), (Je,ln e N) is a
hasis for RY over &= {al)lae R} =R, so T=N U N. Now choose
F e9(I)" such that (Fe,[n € N), (FJe,In € N)) is the canonical hasis for
R’ over R. Then it is easily seen that

a2

o -1,
J=F 1( o )F; (4.3)

ly

hence # = F o/-(I)F.
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If ®=H then &={al,+ BJ] + YK+ 8L|a, B, vy, 8 € R}, where
JK Les(1)y satisfy J?=K*=1'= —1, JK= -K =L, KL=
~LK=], L] = —L] =K, and R may be considered as a vector space over
%. Let (eq|q € (2) be a basis for RT over #. Then ((eqlq € Q). (]eq\
q € QL(Kelg € Q)(Lelg € Q) is a basis for R' over #, so [ =
QU QUQUQ. Now choose FealI)* such that ((Fe lg € @), (Fe, |
g € Q). (FKe lg € Q),(FLe lq € QY is the canonical basis for R' over R.
Then

0 -1, 0 0

1 0 0 0

- ¢
=F! .
! 0 0 0 1y F, (4.4)
0 0 1, 0
0 -1l 0
Jo o 01,
K=F"~ ¥ 4.5
Ly 0 0 0 ’ (4.5)
0 -1, 0 0
0 0 0 _]O
| 0 0 -1y 0
L=TI" F; 4.6
0 1, 0 0 (46)
ly, 0 0

hence & = F~ iy (I)F.
By the bicommutant theorem (ef. Bourbaki, 1958, §4, No. 2, Carollary 1),
however, & = .. This completes the proof. m

Proof of Lemma 32 It is easily verified that [ (DI&c(D] <
& (1) N5(1) <(1), so by Proposition 2.3, #(1)* does not act transi-
tively on #{1)*. Similarly, [A(D]legy(D) oy (1) NnP(1) c2(1), so
L 1)* does not act transitively on Z(1)*. Thus, under the hypothesis of
Lemma 3.2, Lemma 4.1 implies that % =.(I). The proof is complete.  ®

ReEManrk 4.2, I || is odd, then Lemma 3.2 is true without the assump-
tion that &* acts transitively on £(I)*, since in that case it is not possible
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that & = F '/ .(I)F or & = F~ ', (I)F. For an algebra & of matrices with
complex entries, Burnside’s theorem' states that if no proper &-invariant
subspace of C' exists, then & = 2/(I). Thus in the complex case, Lemma 3.2
is true for every I, without the assumption that & acts transitively on
Y.

5. PROOF OF LEMMA 3.3

Without loss of generality we may assume that U = Uy for some proper
subset K < 1. Then & C (%), where # = {, K, I} and #(F) are as in
Example 2.6. We shall show that (3.7} holds with F = 1,. For any subset
N < I let O(N) denote the group of all real orthogonal N X N matrices, and
let 0, denote the N X N zero matrix.

Fact 1. Diag{ly. 0, ) €4, Diagl0g, 1, ) €.

Proof. Since Diag(l, 0,\,() € (1), the transitivity of & and
Proposition 2.3(1) imply that JA € 3 AA" = Diag(1, OI\K). As & C
H(%), this implies that A = Diag(I", 0, &) for some I' € O(K). Similarly,
since Diaglelg, 1, x) €(1) Ve > 0, 3T, € AK), ¢, € KI\K) such
that Diag(VeT,, ¥,) €. Because O(K) and O(I \ K) are compact and &
is closed in &(I), 3 € O(I\ K) such that Diag(0, #) €. Since & is
an algebra, Diag(T", ¢) €. hence Diag(I'", ¢} = Diag(I', ¢)"* €& Thus

Diag(1,0, x) = Diag(I', 0 . ) Diag(I", ¢") €%,
Diag(0y , 1, ¢ ) = Diag(0y, ¢ ) Diag(T", ¢*) .. [

Fact 2. Define x) = {Agi]A € 0y = [AlA €90,
Ay = (A A €9). Then

Mgy =Fxxy = {Ax) €#(K)|Diag( Ay 0 k) €97),

0 0 =H4
Ay 0 ’
-4

i =Sy = (A €I\ K)|Diag(0, 4, €},

1

-~
1k k) = { Ak EF((INK) XK)

¥

15 Kor example, see Jacobson {1453), Rosenthad (1984}, or Gohberg, Lancaster, and Rodman
(1988).
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s

and

Alkk) 0

e (I)iA SN
A[m] A[,,]) (1) [KK) [KK]

Ay €1k Aun 6‘97[11]}' (5.1)

Also, & x| and ;) are matrix algebras.
Proof. Clearly oy ¢, QJJ[KK]‘ Conversely, if A €.«, then by Fact 1,
Diag( Ajxx). 07\ k) = Diag(1lg. 0, x) A Diag(1,,0,\ k) €%,

0 Arkg) EVQ;[KK]; hence gy, :vfi[m(]- Similarly, & ;x, =Jzi[,K] and
111 =¥ 11~ Then (5.1) follows from these identities and the fact that & is
closed under addition. Since %y, and &, are matrix algebras,' the final
assertion is immediate. |

Fact 3. {(AjkiAlkkp Ay Arckr Aun Al A € &%) = P(K)* X
(I \ K) X K) X P(I\ K)*. Therefore, (g 5* acts transitively on
P(K)*, and (M[”])* acts transitively on P(I\ K%* Also, no proper A1y
-invariant subspace of R™ exists, so &, =~ (I\ K).

Proof. The first assertion follows from the transitivity of &%, ie.,
&*(7*) = 2(I1)*, and from the well-known result'” that the mapping

P(1)* > P(K)* X A((I\NK) X K) xP(I\ K)*,
(5.2)
2> (E’[KK]’ E[”<]2[7K1K1’ 2[”] - 2[1K] (KIK]EIKI])

is a bijection. The second assertion follows from the first on considering the
subset P(K)* X {0} X P(I\ K)*. Thirdly, if V is a proper &, -invariant
subspace of R™ ¥, then {0} X V is a proper #-invariant subspace of {0} X
R\F = Uy, contradicting the minimality of U = Uy (here 0 denotes the
zero vector in R¥). Thus &1y =1\ K) by Lemma 3.2. a

"By Fact 1, 1y €4 xxy and 1;\ x €5y,
'"See Andersson and Perlman (1993, Theorem 2.2) for a more general result.
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FACT 4. &, = &I\ K} % K).

Progf_ For any B e «((1 AN K) X K) we have (1K’ B, II\K) (S
PLK)* X w‘((l\K) X K) X @I\ K)*, so by Fact 3, JA €& such that
(A[KK] [KK] DI KK] A A [n]) (1. B, 11\x) Thus AK&] € 0(K)
and A € ()(I\KS Since W[ is an algebra, Afgg; = Ak € Hk;
and Dnag(A fkkp Op k) €. Therefore

1 0
(};‘ 0] ADlag( M\],O,\K)Ebczé”;

hence by Fact 1,

0 0 . I, ©
(B 0)=Dlag(0x,1,\x)(8‘k 0) E.¥.

Thus B €97y, by Fact 2, which completes the proof. [ |

Proof of Lemma 3.3. Ifwe set F =1, and & =g, then the desired
result follows from Facts 2, 3, and 4. [ ]
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