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ABSTRACT 

It is well known that the group of all nonsingular lower block-triangular p x p 
matrices acts transitively on the cone ~ *  of all positive definite p × p matrices. This 
result has been applied to obtain several major results in multivariate statistical 
distribution theory and decision theory. Here a converse is established: if a matrix 
group acts transitively on 9 * ,  then its group algebra must be (similar to) the algebra 
of all lower block-triangular p × p matrices with respect to a fixed partitioning. This 
implies the nonexistence of multivariate normal linear statistical models with unre- 
stricted covariance structure that admit a transitive group action, other than those 
classical models invariant under a Full block-triangular group. 

1. I N T R O D U C T I O N  

It  is well  known that  the group Y of  all nonsingular  lower tr iangu- 
lar p × p matrices acts transitively on the cone 9 "  of  all positive defini te  
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p × p matrices, or equivalently, ~ 

~ *  = ~  := {AAt lA ~3-} .  

This fact often has been exploited to obtain major results in multivariate 
statistical distribution theory and decision theory. For example, a classical 
derivation of the distribution of a random Wishart matrix S ~ Wp(~,, n) is 
based on the representation S = AA t, where A ¢ 3- (ef. Anderson, 1984, 
Chapter 7). James and Stein (1961) and Olkin and Selliah (1977) used this 
transitive action to construct estimators of the covarianee matrix ~ which 
uniformly dominate the classical estimator n -  iS; together with the Hunt-Stein 
theorem, this demonstrates the inadmissibility and nonminimaxity of n- iS.  
Gift, Kiefer, and Stein (1963) used this transitive action to establish the 
minimaxity of Hotelling's T 2 test. 

Of course, any group consisting of all nonsingular block-triangular p × p 
matrices (with respect to a fixed partitioning) also acts transitively on ,~*; this 
extended fact has been used to study the decision-theoretic and distributional 
properties of many other multivariate normal models and testing problems 
that remain invariant under such groups. These include the MANOVA and 
generalized MANOVA problems (Anderson, 1984, Chapter 8; Marden, 1983), 
testing problems for means with covariates (Gift, 1968; Marden and Perlman, 
1980), missing- or additional-data models (Eaton and Kariya, 1983, and 
stepdown procedures (Marden and Perlman, 1990)--see Andersson, Mar- 
den, and Perlman (1994) for a unified treatment of such problems. More 
examples and references appear in Giri (1977) and Eaton (1983). 

Because of the statistical importance of these transitive actions, a natural 
question arises: are there any matrix groups other than the fidl block- 
triangular groups that act transitively on 9 * ?  The answer to this question as 
stated is trivially yes. For example, the proper subgroup g +  c Jconsis t ing of 
all lower triangular p × p matrices with positive dia~onal elements also acts 
transitively on ~ * .  However, the groups J -and 3- .span the same matrix 
algebra, i.e., Alg(J) = AlgC~ -+) = the algebra of all lower triangular p x p 
matrices. Furthermore, in any multivariate normal linear model 2 the invari- 
ante group ff  is presented in the form ~' = .~(~d)*, the set of all nonsingular 
matrices in an algebra ae(~)  [see (2.6)] determined by a set of linear 
constraints. Therefore we are led to the following reformulated question:/f ~" 
is a matrix group that acts transitively on ~ * ,  must Alg(~') be a (gener- 
alized) block-triangular matrix algebra? (See Definition 2.7.) 

I Here, t denotes "'transpose." 
2Such as those referenced in the preceding paragraph. 
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If the answer to this revised question were no, then such groups ~" would 
determine new multivariate normal models (i.e., those that remain invariant 
under such groups) with unrestricted covariance structure yet with tractable 
decision-theoretic and distributional properties. Perhaps unfortunately, how- 
ever, our main result (Theorem 3.1) answers this revised question affirma- 
tively: Any matrix algebra se" containing a matrix group that acts transitively 
on 9 "  must be a generalized block-triangular algebra of p × p matrices. 
Thus: For a multivariate normal linear statistical ,u)del with unrestricted 
covariance structure the assumption of transitivity does not allow the appear- 
ance of invariance groups essentially different than the classical block- 
triangular groups. 

This result is used by Andersson, Marden, and Perlman (1994) to charac- 
terize totally ordered muhivariate normal linear models, i.e., those models 
that impose no restriction on the covariance structure and that remain 
invariant under some full block-triangular matrix group. Such models appear 
to be the only multivariate normal linear models with unrestricted covariance 
structure that admit explicit (noniterative) maximum-likelihood estimators 
and likelihood-ratio tests. It follows from our main result that a multivariate 
normal linear model is totally ordered if and only if the group of all 
model-preserving linear transformations acts transitively on the model. 

After some preliminary results regarding transitive action and block- 
triangular matrices in Section 2, the main results are presented in Section 3, 
followed by the proofs of two key lemmas in Sections 4 and 5. All vector 
spaces and matrices considered in this paper are real, but the main results 
remain valid (with the obvious modifications) in the complex case 3 where 
the cone ~ *  of all real positive definite symmetric matrices is replaced 
by the cone of all complex positive definite Hermitian matrices. 

2. PRELIMINARIES: TRANSITIVE ACTION AND 
BLOCK-TRIANGULAR MATRICES 

It will be notationally convenient to work with vectors and matrices having 
unordered index sets. For any two finite index sets I and J, let ~¢(I × J )  
denote the set of all I × J matrices with real entries, and let ~¢(I) := ag(I x 

31n fact, some of the proofs are easier in the complex case--for example, the proof of 
Lemma 3.2 given in Section 4. 
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I). For any subsets ag G ag(I) and U G N l and fixed E, F ~ ag(I), define 

ag* := {A ~ agl a is nonsingular}, 

a g u  := {/L~I a e a g ,  x ~ u} ,  

F ~ F  := { EAFI A ~ ag}. 

For any subset ag Gag(I)* define 

ag--l = {A llA ~ag}. 

A subset ag G ag(I) is a matrix algebra if ag is closed under addition, 
scalar multiplication, and matrix multiplication. We shall only consider alge- 
bras ag that also contain the I × I identity matrix 1~. Clearly ag(I) and 
{al l la  ~ N} are the maximal and minimal such algebras in ag(I). If ag is an 
algebra, then 4 (ag,)-i  = a  g , ,  so ag* is a group 
For any subset a g c  ag(I) let Alg(ad) denote the 
the smallest algebra in ag(I) that contains ag 
algebra, then 5 Alg(ag*) = ag. 

under matrix multiplication. 
algebra generated by ag, i.e., 
and 1i. If agGag(I)  is an 

Let ~ ( I )  [or ~ ( I )* ]  denote the cone of all positive semidefinite [or 
positive definite] I × I matrices. For any subset ag Gag(I) [or ag(I)*] and 
E ~ 9 ( I )  [or ~ ( I ) ' 1  define 

agag t := {AAtl A ~ag} c _ ~ ( I )  [or ~ ( I ) ' 1 ,  

adY~a/t := {A~AtlA ~¢'} G ~ ( I )  [or g ( l ) * ] ,  

and similarly define ag%¢ and agt E~.  

DEFINITION 2.1. A group g" _cad(l)* acts transitively on ~ ( I ) *  if 
~ E ~ t  = 9 ( I ) *  for every ~ ~ ( I ) * .  

4It suffices to show that A ~a¢* ~ A 1 ~ae*.  Let f ( a ) ~  d e t ( A -  a l  I) be the 
characteristic polynomial of A, having degree III. Then f(0)  = det A =# 0, while f ( A )  = 0 by 
the Cayley-Hamilton theorem. Thus A ~ = { A - t [ f ( 0 ) l  I - f (A)]}/f (0) ,  but this is a polynomial 
of degree ] 1 ] -  l i n  A ; hence  A -1 ~ J * .  

5The inclusion Alg(a¢*) Gag is trivial. If A ~ ag, let f ( a )  be the characteristic polynomial of 
A, and choose a such that f ( a )  =# 0. Then A - a.11 is nonsingular; hence A --- (A - a l  r) + 
kl  1 ~ Alg(J*).  
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REMARK 2.2. I f  ffl acts transitively on ~ ( I ) *  and ~'~ c ~'z, then ffz 
also acts transitively on ~ ( I ) * .  

When ~ ' - - -a  e* for some matrix algebra a e, the following proposition 
relates the transitivity of a¢* to similar conditions on a e. 

PROPOSITION 2.3. For any matrix algebra ae c_a¢( I ), the following ten 
conditions are equivalent: 

( i )  5acgC' = ~ ( I ) .  
(ii) ~*(5g*) t = ~ ( I ) * .  

(iii) ~¢£gCt = 9 ( I ) *  for some ~, ~ 9 ( I ) * .  
(iv) gg* £(5g*)t = ~ (  I)* for some "Z ~ 9 (  I)*. 
(v) ~ £ 5 g  t = ~ ( I ) f o r  every E ~ ( I ) * .  

(vi) gg, £( ,~,) t  = ,,@( I)* for every ~, ~ ,~(I)* (i. e., 5~* acts transitively 
on ~( I )* ) .  

(vii) F_~F(E~F) t = ~ ( I )  for some pair E, F ~5a¢(I)*. 
(viii) EeV*F(E.sg*F) t = ~ ( I ) *  for some pair E, F ~5g(I)*. 

(ix) EzgF(EsCF) t = ~ ( I )  for every pair E, F ~ ( I ) * ,  
(x) E~*F(Ezg*F) t = ~ ( I ) *  for every pair E, F ~gV'(I)*. 

Furthermore,  these ten conditions are equivalent to each of the ten 
additional conditions (i ' )-(x ')  obtained by interchanging g¢ and 5g t, ~¢'* and 
(~¢*)~, EzgF and (Eg~F) t, and EgC*F and (EgO'*F) t. 

Proof. The implications (i) ~ (ii), (iii) ~ (iv), (v) ~ (vi), (vii) ~ (viii), 
and ( i x ) ~  (x) are immediate. To show that ( i i ) ~  (i), note that for any 
1) ~ ( I )  there is a sequence {l),} ___9(I)* such that lq,, ~ ~ .  By (ii), 
3{A,} Ggg* such that AnAt,, = lq,,. Since {A,,} is bounded, there is a 
convergent subsequence { A,,,} such that A,,, --* A ~ gg (since 5~', being a 
finite-dimensional vector space, is closed). By continuity, AA t =  1). The 
proofs that (iv) ~ (iii), (vi) ~ (v), (viii) ~ (vii), and (x) ~ (ix) are similar. 

The implication ( i x ) ~  (vii) is trivial, while ( v i i ) ~  (iii) is immediate, 
since gg(I)*[zg(I)*] t = J ( I ) *  and 9 ( I )  = E,~( I )E  t. To show that (iii) 
(i), choose A ~5g  such that A Z A  t = 1 I. (Necessarily, A ~ ¢ ' *  and A -l  
g¢*). Thus g ( I )  = ~ A - l ( A - 1 ) t ~  t = ~ q A - l ( d A - 1 )  t =5~'5~ t, since gg 
is an algebra. To show that (i) ~ (v), for any E ~ g ( I ) *  choose A ~ ¢  
such that AA t = E. (Again, A ~ d *  and A -1 ~ A*). Then ~ ( I )  =5~'A-1E 
(A-1) t~  "t =.a~'A-1E(saCA-1) t =s¢"Z~ "t as before. Finally, to show that 
(v) ~ (ix), for every pair E, F ~.~/(I)*  we have that 9 ( I )  =5~¢'FFt5~ t and 
~ ( 1 )  = E g ( I ) E t ;  hence ~ ( I )  = E~FFtsWE t = EzgF( EgCF) t. 

The equivalence of ( i ' )-(x ')  is proved analogously. Lastly, to show 
that (ii) ~ (ii') (5a¢*)~¢'* =~,~(I)*, just note that [5g*(zg*)t] - 1 =  
[(5V*)-1 ]t(g¢,,)- l = (5~'*)~a¢* and ~ ( I ) *  = [ ~ ( I ) * ] -  ~. • 
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We now introduce the algebras of block-triangular matrices. For any 
subset K c I  and x = ( x i l i  ~ I ) ~ l t ~  t let x ~ : = ( x ~ l i  ~ K )  denote the 
coordinate projection 6 of x onto NK. Define the linear subspace U K _ N1 as 
follows: 

note that 7 K c K '  
K X K submatrix of A. 

U k D UK,. For any A ~ s g ( I )  let A K denote the 

Let 3 ( I )  denote the set of all subsets of I. For any set ~ G O ( I )  define 

Clearly ~ ' (~ ' )  is a matrix subalgebra of ~ ( I ) ,  and for any ~ ,  ~ G ~ ( I ) ,  

~i  c ~  ~ o~(~)  _c~,(~).  (2.3) 

A set ~ __C_ 2~(I) is called a ring if it is closed under A and u and if 
Q~, I ~ ~.s  For K (v~ Q) E ~ ,  define 

(K> := U(L ~,ZlL c K) _c K, 

[K] := K \ ( K ) ,  

J (~")  := {K ~ Jg'lK :~ ~5, [ K ]  ~ Q}; 

](~-') is the set of join-irreducible elements of ~ .  Then 9 for each K E J(~(), 

K = 0 ( [ L ] ] L  ~J(J~() ,  L G K), (2.4) 

where (J denotes a disjoint union. 
For any A ~ ¢ ( I )  and any two subsets K, L E ] (X) ,  let A[KLI denote 

the [K] X [L] submatrix of A. 

6Deflne x~ = O; thus U~ = ~1. 

Vln this paper, c and D are used to indicate str/ct inclusion. 
s For any ,7{ G-q~(l), ~¢(~/) = ~¢(Ring(~)), where Ring(~gZ) is the ring generated by ~ Thus 

when studying ~¢(JC(), we may always assume that ~ is a ring. 
9This is well known; e.g., see Andersson and Perhmm (1993, Proposition 2,1). 
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PROPOSITION 2.4. Let ~ /  be a ring of subsets of I. The following three 
conditions on A ~ da¢[ I ] are equivalent: 

(i) A ~.a¢(~,~). 
(ii) Vx ~ ~ i  V K ~ , ( A x )  K = A K x  K. 

(iii) VK, L ~ J (~ ) ,  L ~= K ~ A[KL] = O. 

Proof. Since 

the implication (ii) ~ (i) is trivial, while (iii) ~ (ii) follows from (2.4) and the 
usual formula for block matrix multiplication: 

~ ) ~  = ( ~  (A,~M,x~M,I M ~ j ( ~ ) ) l  L ~ j ( ~ ) ,  ,, _~ K) 

= ( s  (A,~M,x,,,,I ~ ~ J ~ ) ,  M __ ,<)1 L ~ J ~ ) ,  ,, ~ ,~) 

[by (iii) ] 

= A K 2C K . 

To show that (i) ~ (riO, consider K, L E J ( ~ )  with L ~ K. Then for any 
x e ~ i  such that x[M ] = 0 VM ~] (~ / ) ,  M ~ L, 

( ax)E~] = E(At~]x tM] I  M ~ J ( ~ ) )  = a t~ )X tL  J. 

But (Ax)  K = 0 by (i); hence ( A X ) [ K  ] = 0. Since X[L ] is arbitrary, A[KL]  = O. 

A ring ~ / i s  a chain if it is totally ordered 1° under  inclusion (hence finite); 
in this case J(oT¢') = ~ / \  {Q}. The  equivalence of  (i) and (iii) in Proposition 
2.4 leads to the following definition: 

DEFINITION 2.5. Let  3rf be a chain of  subsets of  I. The  algebra ~¢(~/) is 
called the algebra of block-triangular matrices with respect to o~. The group 
,w'(~Z¢')* is called the group of block-triangular matrices with respect to ~<. 

]°That is, for any distinct K, L 6~feither K c L or L c K. 
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EXAMPLE 2.6. If 2 = {0, I} then S&S?> =&(I). If X = {0, K, I} 
where 0 c K c I, then by Proposition 2.4(iii), 

where the matrices are partitioned according to the decomposition Z = 
[K] ti[Z] = K b(Z\K) [cf. (2.4)]. 

If z, and X2 are chains, then X1 c XT 3 J(X, ) c J(cX~ ), so by 
Proposition 2.4(iii), (2.3) can be sharpened as follows: 

If z is a chain such that I[ K]l = 1 for each K E J(Z), then &‘(X) is 
an algebra of triangular matrices in the usual sense. Thus by (2.31, every 
block-triangular matrix algebm (group) contains an algebra (group) of 

triangular matrices. 

Definition 2.5 may be extended as follows. Let a( Z > denote the set of all 
linear subspaces of R’. For any subset % c ?J( I) define 

&( %) := {A ES?‘(Z) ]VU E Z!, AU c U}; (2-O) 

.G& %) is again a matrix subalgebra of S&Z ), and 

Note that for any set %! of linear subspaces of R ’ and any F g&Z)*: 

d(zw) = zw(qF-‘. (2.V 

A set Y G %( Z> is a lattice of subspaces if it is closed under n and + 
and if (0}, [w’ E U.” A lattice 9 is called a chain if it is totally ordered under 
inclusion (hence finite). 

” For any yt/ G Y( I ), AZ’(Z) = .@‘((Lat(Z’)), where Lat(%!) is the lattice generated by Y. 
Thus when studying J&V), we may always assume that YZ is a lattice. 
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DEFINITION 2.7. Let g / _  g/(I)  be a chain. The algebra ~a~'(~') is called 
the algebra of  generalized block-triangular matrices with respect to ~'. The 
group ~¢(~/)* is called the group of  generalized block-triangular matrices 
with respect to ~.  

This definition is justified as follows. Each chain ~ ~ ( I )  determines a 
chain g/~r := {UK[K ~ ' }  - g/(I)  such that ~'(o~¢') =~¢(~/a~). Conversely, for 
any chain ~'___ ~ ' ( I )  we may choose a basis of ~ i  and a chain ~z"c .~( I )  
such that ~ has the form ~'a- relative to the new basis. More precisely, there 
exists F ~ ¢ ( I ) *  such that ~Z = Fg/~r; hence by (2.8) 

d ( ~ / )  = F~¢(~) F - l ,  (2.9) 

3:~¢( ~/)* = 1;~¢(3,ff) *F -1 (2.10) 

Thus: Every generalized block-triangular matrix algebra (group) is similar to 
some block-triangular matrix algebra (group). 

Suppose that ~'1 and ~/2 are chains in ~ ' ( I )  such that g/1 c g/z. I ra  chain 
___.~(I) and a matrix F ~ ( I ) *  are chosen such that ~/2 = F ~ ,  then 

there exists a subchain ~ c ~  such that g/j = F~/~, 1. Thus by (2.5~, (2.7) 
can be sharpened for chains as follows: 

Since every block-triangular matrix group ~¢(o,T)* contains a group of 
triangular matrices, and since the latter is known (by the Cholesky decompo- 
sition) to act transitively on ~ ( I ) * ,  the following result is an immediate 
consequence of Remark 2.2, (2.10), and Proposition 2.3: 

THEOREM 2.8. Every generalized block-triangular group ~(~')* acts 
transitively on ~ (  I )*. 

3. MAIN RESULTS 

Our first main result is the following converse to Theorem 2.8. 

THEOREM 3.1 (Existence). Let sg c d ( I )  be a matrix algebra. I f  ~'* 
acts transitively on ~ ( I ) * ,  then there exists a chain ~" c ~'(I)  such that 
~¢ = sg( ~'), i.e., ~" is a generalized block-triangular matrix algebra. 

This theorem is proved by means of Lemmas 3.2 and 3.3, whose proofs 
are given in Sections 4 and 5, respectively. First recall that for any subset 
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___~(I), a linear subspace U ~ ~ / ( I )  is ~-invariant if ~ ' U  ___ U. Clearly N1 
and {0} are ~'-invariant,  and U is d- invar ian t  iff U is Alg(sC)-invariant. I f  ~¢ 
is an algebra, then U is o~-invariant iff U is sC*-invariant [since Alg(s¢*) = sO]. 

We denote the set of  all sC-invariant subspaces of  NI by ~ ' ( d ) .  v2 Note 
that i f ( J ) c  ~ ' ( I )  is a lattice. For  any algebra . ~ o a e ( I ) ,  any lattice 
X/c_ ~'(I), and any F ~ s~¢(I)* 

(3 .1 )  

(3.,2) 

J (  g/( ~'(~/))) = J (~ / ) ,  (3.3) 

~'(  ~ ' ( ~ / ( ~ ' ) )  ) = g/(~¢) ,  (3.4)  

F ~ / ( ~  ¢) = ~ / ( F 3 ~ F - l ) .  (3.5)  

Fur thermore ,  for any two subalgebras s¢~ and a (  2 of  ae( I ) ,  

se, c = _c (3 .6)  

LEMMA 3.2. Let ~ / G d ( I )  be a matrix algebra such that sg* acts 
transitively on ~°( I )*. I f  no proper ~¢-invariant subspaee of N r exists, then 

se  = se (D .  

LEMMA 3.3. Let s~ c d ( I )  be a matrix algebra such that s/* acts' 
transitively on ~ ( I ) * .  Suppose that U is a minimal proper J-invariant 
subspaee of ~ i. Then there exists" a matrix F ~ sO(I)*, a proper subset K c I, 
and an algebra ~.~ c J ( K ) ,  such that U = FU K, ~ *  acts" transitively on 
~ (  K )*, and 

F IdF  = A[KKI 0 ) I)  A[KK] 
AItKI A[IIl E d (  

A[tKI ~ c ( (  I X  K)  X K) ,  A[H ] ~ ( I X K )  , (3.7) 

12 For any a ¢ _ a¢( I ), ~(a¢) = ~(Alg(ag)), so when studying g/(a¢) we may always assume 
that ~ is an algebra. 
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where the matrices are partitioned according to the decomposition I = K 
( I \ K ) .  

Proof of Theorem 3.1. The proof proceeds by induction on [ I I = dim ~ I. 
If III = 1 the result is trivial. Now assume that Theorem 3.1 holds whenever 
1 ~ ]If ~< p, and consider the case I If = p + 1 (>/2). Since ~ t  is a nonzero 

5~'-invariant subspace and dim R r < ~, there exists a minimal nonzero ~¢- 
invariant subspace U G ~ 1. If U = ~ i, then there exists no proper 5~'-invariant 
subspace, so the result follows from Lemma 3.2. 

If U c ~t,  then by Lemma 3.3 there exists a matrix F ~5g(I)*, a proper 
subset Q c K c I, and a subalgebra 5~' Gz~'(K) such that ~ *  acts transi- 
tively on 9 ( K ) *  and F-I~F has the form (3.7). Since ]KI ~< p, it follows 
from the induction hypothesis and (2.9) that there e~sts a chain .Z~ of subsets 
of K and a matrix G ~ ¢ ' ( K ) *  such that ~ '  = G~(_ZP)G -1. l f w e  set 

G 0 ) ~ ,a¢(I)* 
E = F 0 l t \  K 

then from (3.7), 

/ [  A[KK] 0 ) ~ ' ( I ) ] A [ K K ] ~ . a ~ ( . ~ )  ' 
E-15~CE = ~ I AuKI G Atttl 

A[1K] ~5g( ( I \ K ) × K),  AU1 ] ~ a c ( I \ K ) )  

= l (  A[KK] 0 ) ~ 5 ~ ' ( / ) A t t ; K l ~ d ( S e ' ) ,  
~ AUK] A[tt] 

AUK ] ~ d ( ( I \ K )  X K),  A[,,I ~ d ( I \ K ) )  

= a¢( Se" O { I } ) [by Proposition 2.4(iii)l. 

Since _~t_) {I} is a chain of subsets of l, ~¢ is therefore a generalized 
block-triangular matrix algebra, so the proof of Theorem 3.1 is complete. • 

The uniqueness of the chain ~ in Theorem 3.1 will now be established. 
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LEMMA 3.4. Let 5g ~,se'(I) be a nuztrix algebra such that 5g* acts 
transitively on ~ ( I ) * .  Then ~Z(~¢) is a chain. 

Proof. It suffices to show that if U and V are two proper ~'-invariant 
subspaces of NI such that U ¢ V ,  then either U r ~ V =  U or U n V =  
V, Suppose that UC~ V4= U and U n  Vv~V.  Then f/(~¢') ~ ' : =  
{{O}, T, U, V, W,  Nt}, where T := U (3 V D_ {0} and W := U + V c IRl; note 
that %/ is a lattice but not a chain. As above (2.9), there exists F ~ sO(I)* 
such that ~' = F ~ ,  where ~ T c ~ ( I )  is a ring of the form {~ , J ,  K, L, M, 
I} with K N  L g= K, K e e L - e L ,  J := K N L  D_~, and M := K U L ~ I; 
again, ~ is not a chain. Since J (3f f )=  {j, K, L, I}, Proposition 2.4(iii) 
implies that se'(J;0 consists of all matrices of the form 

A = 

AIJJ 1 0 0 0 ] 
A[KjI A[KK] 0 0 

A[Lj] 0 A[LL] 0 ' 

A[IjI A[tKI A [ u 4  A[H] 

where A is partitioned according to the decomposition La I = [J] (J 
[K] U[L] 0 [ I ]  [cf. (2.4)]. It may be shown ~4 from (3.8) that s¢(C,~)* does 
not act transitively on 9 ( I ) * .  By (3.2), (2.7), and (2.8), however, s¢ g 
5~'(f/(5¢')) _csg(~) = F~C'(~)F-J; hence ~(~r{)* nmst act transitively on 
~ (  I)* (by Remark 2.2 and Proposition 2.3). This contradiction establishes the 
result. • 

LEMMA 3.5. Let ~/ c_ ~ ' ( I )  be a lattice. Then ~ is a chain iff sg(~/)* 
acts transitively on ~@( I )*. In this case, ff(~ae(ff)) = X/. 

Proof. If %/ is a chain, then ae(~/) * acts transitively on ~ ( I ) *  by 
Theorem 2.8. Conversely, if ae(~/)* acts transitively on .~(I)*,  then ~/Cac(a/)) 
is a chain by Lemma 3.4. But g/(a¢(~/)) D_ g/ by (3.1); hence ~/is  a chain. If 
~(5ae(~')) D ~/, then s¢(~'(5~¢(~)))c~¢(~) by (2.11), contradicting (3.3); 
thus ~((sC(gg)) = ~.  • 

laNote that [J] and /or  [I]  may he empty. If [ j ]  = Q then J = Q3, so J does not occur in 
JC-T); if [ I ] = Q~ then I = L, so I does not occur (separately) in J ( y ) .  

14Suppose that 2~ = AA t for some A ¢5~'(~)*, so A has the form (3.8). Then it may be 
shown that (~}1)[KL] = 0, so ,~¢(~/)* does not satisfy condition (ii) of Proposition 2.3. Alterna- 
tively, apply Remark 2.4 of Andersson and Perlman (1993). 
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LEMMA 3.6. Let ~ G ~ ( I )  be a chain and ag Gag(I)  an algebra. 

(i) a;'(~/) Gag ~ ~/(ag) G ~Z. 
(ii) ag(~) c a g  ~ ~(ag) c ~z. 

Proof. (i): By (3.6) and Lemma 3.5, ag ( f f )Gag  ~ ~(ag) ___ 
~,(ag(~/)) = ~,. 

(ii): By (i), ~(ag) G ~. If ~(ag) -= ~/, then by (3.2), ag _ag(~/(ag)) = 
ag(ff), a contradiction; hence ff(ag) c ft. 

LEMMA 3.7. When agl and ag2 are subalgebras of ag(I) such that 
acts transitively on ~ (  I )*, (3.6) may be sharpened as follows: 

agl tag2 ~ ~(ag2) c ~'(agl). (3.9) 

Proof. By Theorem 3.1, there exists a chain ~ such that agl = ag(~/). By 
Lemma 3.6(ii) and (3.1), ~'(ag2) c ~/G ~'(ag(~)) = ~'(agl)" 

THEOREM 3.8 (Uniqueness). Let ag Gag(I)  be a matrix algebra such 
that ag* acts transitively on ,~( I )*. Then ~'(ag) is a chain, ag(~/(ag)) =ag, 
and ~(ag) is the unique lattice 7f  c ~ (  I ) such that ag( TY) =ag. 

Proof. By Lemina 3.4, ~(ag) is a chain. By (3.2), ag(~'(ag))2ag. If 
ag(~'(ag)) bag  then ~/(ag(~/(ag))) c ~'(ag) by Lemma 3.7, which contradicts 
(3.3); hence ag(~'(ag))=ag. If ~ 'G ~ ( I )  is a lattice such that a g ( P ' ) =  
d then ff(ag) = ~/(ag(~)) 2 ~ by (3.1); hence ~" is a chain. Therefore 
~ (ag (~ ) )  = 7/" by Lemma 3.5, so ~(ag) = ~ .  • 

The following two corollaries have statistical applications (cf. Andersson, 
Marden, and Perlman, 1994). 

COROLLARY 3.9. Let ~ c ~ ( I )  be a chain and ag G a g ( I ) a n  algebra. 
Then ag D_ag(¢¢) i f  and only if ag = a g ( ~ )  for  some subchain 7f  G ~.  

Proof. "IF': apply (2.7). 
"'Only if': by Theorem 2.8 and Remark 2.2, ag* acts transitively on 

~ ( I ) * .  Now set ~ ' =  ~ ( d ) ,  so the result follows from Theorem 3.8 and 
Lemma 3.6(i). • 

COROLLARY 3.10. 

(i) Let ~ G ~ ( I )  be a chain and ag Gag(I)  an algebra such that 
ag Gag(g).  Then ag* acts transitively on 9 ( I ) *  if  and only if ag = ag(7/') for  
some chain 7f  D ~.  



164 STEEN A. ANDERSSON AND MICHAEL D. PERLMAN 

(ii) Let og / be a chain of  subsets of  I, and x~" c_se'(I) an algebra, such 
that ~" c_5¢(32/). Then sO* acts transitively on ~ ( I ) *  if  and only if  s¢ = 
Fs~'(S~)F- 1 fi)r some chain ~,~ D_~ and sonw F ~ s¢(~)* .  

Proof. (i), "if': Apply Theorem 2.8. "Only if': Set W= t (ae ) ,  a chain 
by Lemma 3.4. Then ag =aC(W') by Lemma 3.5, and T D  i by (3.6). 

(ii): Apply (i) with i = i y ,  and note that ~D_ ~ r  if and only if 
~ ' =  F i y  for some chain ~cY__~and some F ~a¢(~/)*. Now apply (2.8). • 

We conclude this section with several related results of possible interest. 

LEMMA 3.11. Let i c c  i (  I ) be a lattice and a¢" c ae( I ) an algebra such 

that ag* acts transitively on 9 (  I )*. 

(i) ~' c_ i ( s ¢ )  ~ ~ ( ~ ' )  __ae. 
(ii) i c i ( , ~ )  ¢* a g ( i )  D ~ .  

Pro@ (i), ~ :  Apply (2.7) and (3.2). ~ :  By (3.6), i ( a g ( t ) )  g ~/(.~¢). 
But by Remark 2.2, ag(~d)* acts transitively on ~@(I)*; hence i = i ( a ¢ ( i ) )  

by Lemma 3.5. 
(ii), ~ :  by (i), ~ae(i) D_S¢. If ~¢ ( i )  =~q/ then ?*,' = i ( a e )  by Theorem 

3.8, which contradicts the hypothesis; hence ~ ( i )  D~¢. ~ :  By (i), ~' c i ( a 0 .  
If i = i ( a e )  then sO( i )  = ae(YZ(ag)) = ag by Theorem 3.8, a contradiction. 

COROLLARY 3.12. Let I C_ i f ( l )  be a lattice and ~¢ c_~'(I)  an algebra 
such that 5~* acts transitively on ~ (  I)*. Then t c_ i ( d )  if  and only if  
i = t ( ~ )  fi~r some algebra ~ D_S¢. 

Proof. "If ' :  Use (2.7). 
"Only iF': by Lemma 3.4, ~/(~¢¢) is a chain; hence i is a chain. Now set 

~ '  = J ( i ) ,  and apply Lemma 3.5 and Lemma 3.11. 

COROLLARY 3.13. Let i co_ i (  I ) be a lattice and s¢ cc_ag( I ) an algebra 
such that s¢* acts transitively on 9 ( I ) *  and i D i ( ae ) .  Then t is a chain 
if  and only i f  i = t ( ~ )  fi)r some algebra ~ cc_J .such that ~ *  acts 

transitively on ~ (  I)*. 

Proof. "If": Apply Theorem 3.8 to ~ .  
"Only ii~': Set ~q~ = a g ( i ) .  Then ~ '*  acts transitively on ~ ( I ) *  by 

Theorem 2.8, i = i(~q¢) by Lemma 3.5, and ~ t a g  by Theorem 3.8. • 
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4. PROOF OF LEMMA 3.2 
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Lemma 3.2 is an immediate consequence of the following result: 

LEMMA 4.1 (Bunlside's theorem for real matrices). Let ale c a t ( I )  be a 
matrix algebra such that no proper ag-invariant subspace of fit t exists'. Then 
either a e = a f t / ) ,  or else there exists' F ~o~(I)* such that ag = F-laKc(I)F 
or ag = F ~aCa(I)F, where 

( A  - B  - C  - D  
B A D -C 

~ . ( I )  = C - D  A B 
D C - B  A 

~ ~¢(I) A, B, C, D ~¢ (Q)} ,  

I = Q U Q O Q O Q .  (4.2) 

Proof. The eommutant algebra ~ '  -~¢~(~') and bicommutant algebra 
- ~(~ ' )  are defined, respectively, as 

= {C ~ ( I ) I C A  = AC VA ~ Y } ,  

By Sehur's lemma, ~ is a division algebra over itS; hence by Frobenius' 
theorem, ~ is isomorphic to JR, C, or H. If ~ -= E then ~ = {a l l ]a  ~, ~}, 
so ,~' = ~ ( I ) .  

If ~' ~ C then ~ = {a l  I + [3J]a, [3 ~/~}, where j ~ ¢ ( I ) *  satisfies 
] 2 =  _ l l  ' and 1]~ I may be considered as a vector space over ~.  Let 
(e,[n ~ N)  be a basis for ~ l  over ~.  Then ((e,,]n ~ N),.(Jen]n ~ N))  is a 
basis for I~ 1 over ~ ' . ' = { a l l ] a e  ~} ~ ~, so I = N U N .  Now choose 
F e~¢(I)* such that ((Fe,ln ~ N), (FJe,,]n ~ N))  is the canonical basis for 
[R i over E. Then it is easily seen that 

J = F  1( 0 --IN) 
1N 0 F; (4.3) 

hence ,~  = F-I~C'c(I)F. 
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If  ~---  H then ~ =  { a l  t + f l J +  y K +  6Llo~,/3, y, 6 ~  ~}, where 
J , K , L ~ ¢ ( I ) *  satisf~ ]2 = K  2 = L  + = - 1 , ,  ] K =  - K J = L ,  K L =  
- LK = j,  LJ = - LJ = K, and ~ t may be considered as a vector space over 
~'. Let (eqlq ~ Q) be a basis for ~z over ~ .  Then ((eqlq ~ Q),(Jeql 
q ~. Q),!Keqlfl ~ Q),(Leqlq ~ Q)) is a basis for N '  over 5~, so I = 

p u p u p u Q. Now choose F ~ J ( I ) *  such that ((Feqlq ~ Q),(FJeql 
q E Q),(FKeq[q ~ Q),(FLe,[q ~ Q)) is the canonical basis for ~ t  over ~. 
Then 

j = F - ~  

0 -1(9 0 0 

10 0 0 0 

0 0 0 - 1 Q 

0 0 10 0 

F, (4.4) 

K = F  - t  

0 0 - I Q  0 / 

0 0 0 10 

1 o 0 0 0 F, 

0 - 10 0 0 

(4.5) 

L = F '  

0 0 0 -- 1O ] 

0 0 - 1 o 0 

0 lQ 0 0 F; 

19 0 0 0 

(4.6) 

hence ~ = F ldH(I)F. 
By the bicommutant theorem (of. Bourbaki, 1958, §4, No. 2, Corollary 1), 

however, ~.~ = ~¢. This completes the proof" • 

Proof of Lemraa .3.2. It is easily verified that [~c(I)][5gc(I)ltG 
J c ( I )  n ~ ( I )  c ~ ( I ) ,  so by Proposition 2.3, 5¢c(I)* does not act transi- 
tively on ~ ' ( I ) * .  Similarly, [AH(I)][~/H(I)] t G ~ ( I ) r q ~ ( I ) c ~ ( I ) ,  so 
Ja/H(I)* does not act transitively on 9 ( I ) * .  Thus, under the hypothesis of 
Lemma 3.2, Lemma 4.1 implies that 5~ e = zae(I). The proof is complete. • 

REMARK 4.2. If  1II is odd, then Lemma 3.2 is true without the assump- 
tion that ~¢* acts transitively on ~ ( I ) * ,  since in that ease it is not possible 
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that se" = F - ~ ¢ ' ¢ ( I ) F  or s¢ = F-lscH(I)F. For an algebra s¢ of  matrices with 
complex entries, Burnside's theorem is states that if no proper  ~¢-invariant 
subspace of  C 1 exists, then ~¢ = ~g(I). Thus in the complex case, Lemma 3.2 
is true for every I, without the assumption that za¢* acts transitively on 

~ ( I ) * .  

5. PROOF OF LEMMA 3.3 

Without loss of  generality we may assume that U = U K for some proper  
subset K c I. Then  ag ___ag(,7,(), where ~g( := {Q~, K, I} and ae(aT() are as in 
Example 2.6. We shall show that (3.7) holds with F = 1 t. For  any subset 
N c I let O ( N )  denote  the group of  all real orthogonal N × N matrices, and 
let 0 N denote the N × N zero matrix. 

FACT 1. Diag(1K, 0 i \  K) ~ ' ,  Diag(0K, l t \  K) ~o~'. 

Proof. Since Diag(1 K, 01\ K) ~ ( I ) ,  the transitivity of  oae and 
Proposition 2.3(i) imply that 3A ~ a ¢  ~ AA t = Diag(1K,01\K).  As a e C 

ac(jT), this implies that A = Diag(F, 0 t \  ~) for some F ~ O(K) .  Similarly, 
since Diag(elK,1t\ K) ~@(I )  Ve > O, 3F~ ~ O(K), ~O~ ~ O ( I \  K) such 
that Diag(v/-~eF~, ~0,) ~a¢. Because O ( K )  and O ( I  \ K)  are compact and ag 
is closed in a t ( I ) ,  3~b ~ O ( I \ K )  such that Diag(0 K, 0 )  ~a¢. Since ag is 
an algebra, Diag(F, 0 )  ~a¢'; hence Diag(F t, q,t) - Diag(F, q , ) - i  ~s¢.  Thus 

Diag(1K, 0t \ K ) -= Diag(F,  0, \ K ) Diag(F t , O t ) E ~¢, 

Diag(0 K, 11\K) - Diag(0~,  0 )  Diag(F ~, 0 ~) ~s¢ .  

FACT 2. Define "~rr] = {AtKK] IA E S ¢ } ,  s ~ , K  1 = {At,KIIA ~sg}, 
~ U l  = {AtullA ~ ' } "  Then 

S~[KKI =~KKI := {AIKKI E,~g( K ) IDiag(AIKK1, 0,\ K) ~,sg}, 

:= A[ ~K ] 0 E 2g" , 

~[,I1 = ~[z,l := {Atul ~a¢(  I \ K) lDiag(0K,  A[III ) ~xg}, 

15For example, see Jacobson (1953), Rosentha] (1984), or Gohberg, Lancaster, and godman 
(1986). 
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and 

A,ml EJ$,K~, AIM, E*lr] . 
i 

(5.1) 

Also, B$~,] and &[,I] are matrix algebras. 

Proof Clearly 4 K K I 2 dr K K ,. Conversely, if A EM, then by Fact 1. 

SO A,,,, ~4~~~; hence +;,,] =qKKl. Similarly, 41rKI =qIhI and 

Jq;lr, ‘J-qlI,. Then (5.1) follows from these identities and the fact that & is 
closed under addition. Since dLKKl and @,III are matrix algebras,‘” the final 
assertion is immediate. n 

FACT 3. ((At,,IA~,,I, A,,,IAt;‘K,, A,,,IA;,, )[A Ed*) =9(K)* X 
&((I \ K) x K) X9(1 \ K)“. Therejb-e, (dLKK !I* 

i 

acts transitively on 

9(K)*, and (&,r,J>* acts transitively on 9(I \ K *. Also, no proper Mr,rl 

-invariant suhspace of [WI\ ’ exists, so &, Il1 = d( I\ K >. 

Proof. The first assertion follows from the transitivity of &*, i.e., 
JY*(JY*)’ =9(Z)*, and from the well-known result” that the mapping 

is a bijection. The second assertion follows from the first on considering the 
subset P(K)* X {Ot IKI) X ~?a( I \ K)*. Thirdly, if V is a proper dt,,,-invariant 
subspace of R ‘lK then {O} X V is a prop , er &-invariant subspace of {O) X 
[WI\K s L,7 contradicting the minimality of U = UK (here 0 denotes the 
zero vecto:m lRk>. Thus ti,,,] = &( I\ K) by Lemma 3.2. n 

“By Fact 1, 1, ~2,~~~ and l,,, E.G,,,,. 

“See Andersson and Perlman (1993, Theorem 2.2) for a more general result. 
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FACT4. 5~[iK ] = ~ ¢ ' ( ( I \ K )  × K). 

Proof. For any B e ; ~ ' ( ( I \ K )  × K) we have (1 K, B, 1t\ K) 
9 ( K ) *  X d ( ( I \ K )  × K) × ~ ( I \ K ) * ,  so by Fact 3, =IA ~ ¢  such that 

(AtKK]AIK~<], AI,KIA(-K~I, AIu]AIu 1) = (1~, B, II \K).  Thus At KK ] ~ O(K)  
and Atu ] ~ O(I  \ K). Since ~[KKI is an algebra, AIKK] =--"'[KK] ~'~[[KK] 
and Diag(AIKK], 01\ K) ~ ¢ .  Therefore 

( 1KB ~) = A D i a g ( A I K K I ' O ' \ K ) ~ d ;  

hence by Fact 1, 

Thus B ~ I K I  by Fact 2, which completes the proof. 

Proof of Lemma 3.3. If we set F = 11 and ~ =~[KKI, then the desired 
result follows from Facts 2, 3, and 4. • 
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