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Abstract

We are interested in higher-order derivatives of functions of the eigenvalues of real symmetric matrices
with respect to the matrix argument. We describe a formula for the kth derivative of such functions in two
general cases.

The first case concerns the derivatives of the composition of an arbitrary (not necessarily symmetric)
k-times differentiable function with the eigenvalues of symmetric matrices at a symmetric matrix with distinct
eigenvalues.

The second case describes the derivatives of the composition of a k-times differentiable separable sym-
metric function with the eigenvalues of symmetric matrices at an arbitrary symmetric matrix. We show
that the formula significantly simplifies when the separable symmetric function is k-times continuously
differentiable.

As an application of the developed techniques, we re-derive the formula for the Hessian of a general
spectral function at an arbitrary symmetric matrix. The new tools lead to a shorter, cleaner derivation than
the original one.

To make the exposition as self contained as possible, we have included the necessary background results
and definitions. Proofs of the intermediate technical results are collected in the appendices.
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1. Introduction

We say that a real-valued function F of a real symmetric matrix argument is spectral if
FWUXUY) = F(X)

for every real symmetric matrix X in its domain and every orthogonal matrix U. Thatis, F(X) =
F(Y)if X and Y are symmetric and similar. The restriction of F' to the subspace of diagonal matri-
ces defines a function f(x) = F(Diag x) on a vector argument x € R". The function f : R" — R
is symmetric, that is, has the property

f(x) = f(Px) for any permutation matrix P and any x in the domain of f,
and in addition, F(X) = (f o A)(X), in which the eigenvalue map
AX) = (X)), ..., A (X))

is the vector of eigenvalues of X arranged in non-increasing order.

What smoothness properties of the symmetric function f are inherited by F? The eigenvalue
map A(X) is continuous but not always differentiable with respect to X. Even in domains where
M(X) is differentiable, it is difficult to organize the differentiation process so that one arrives at
an elegant formula for the higher-order derivatives of (f o 1)(X).

An important subclass of spectral functions is obtained when f(x) = g(x1) + -+ + g(xp)
for some function g of one real variable. We call such symmetric functions separable; their
corresponding spectral functions are called separable spectral functions.

In [13] there is an explicit formulae for the gradient of the spectral function F in terms of the
derivatives of the symmetric function f:

V(f o M) (X) = V(Diag V f(.(X))VT, &)

where V is any orthogonal matrix such that X = V (Diag A(X)) VT is the ordered spectral decom-
position of X. In [17] a formula for the Hessian of F' was given, whose structure appeared quite
different from the one for the gradient. Calculating the third and higher-order derivatives of F
becomes unmanageable without an appropriate language for describing them.

In this work we generalize the work in [13,17] by proving, in two general cases, the following
formula for the kth derivative of a spectral function

VE(fon(X) =V | D Diag’” o/, (a(X)) | VT, )

oePk

where again X = V(Diag A(X))V'T. The sum is taken over all permutations on k elements, which
are a convenient tool for enumerating the maps .« (x). The precise meanings of the operators
Diag® and the conjugation by the orthogonal matrix V are explained in the next section; see (6)
and (9) respectively. The maps .27, (x) depend only on the partial derivatives of f(x) up to order
k, and do not depend on the eigenvalues; they reveal how the higher-order derivatives depend on
the eigenvalue map A (X). Formula (2) depends on the eigenvalues only through the compositions
s (A(X)) and conjugation by the orthogonal matrix V.

We show that (2) is valid (a) when f is a k-times (continuously) differentiable function,
not necessarily symmetric, and X is a matrix with distinct eigenvalues, and (b) when f is a
k-times (continuously) differentiable separable symmetric function and X is an arbitrary sym-
metric matrix. We give a recipe for computing the maps o7 (x) in these two cases.
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Our results for separable spectral functions imply those of [5,4] for one-parameter families of
symmetric matrices; see also the monographs [9,10]. More precisely, when restricted to the space
of real symmetric matrices, the Daleckii—Krein formulae describe the kth order derivative of the
function t — F(X(¢)), where X (¢) is a k-times continuously differentiable curve of symmetric
matrices and F' = f o A is a separable spectral function with f being k-times continuously dif-
ferentiable. We describe the higher-order derivatives of X — F(X) from which one can obtain
the derivatives of t — F (X (¢)) by applying the chain rule.

Our results also capture and extend those in [21] when specialized to symmetric matrices. (The
gradients of separable spectral functions are the functions considered in [21] when restricted to
the space of symmetric matrices.) For example, Theorem 4.1 in [21] shows that if the separable
function f is k-times continuously differentiable and r € R +— X (¢) is a k-times differentiable
curve of symmetric matrices, then F (X (¢)) is k-times differentiable, where F = f o A. Thus,
Theorem 4.1 in [21] strengthens the Daleckii-Krein result by dispensing with the requirement
that aaTkAX (t) be continuous. In Theorem 6.1 we assume only that f is k-times differentiable to
obtain that F (X) is k-times differentiable with respect to the symmetric matrix variable X. In that
case, one can again use the chain rule to obtain the derivatives of F (X (¢)). In addition, Theorem
6.9 shows that if f is k-times continuously differentiable then F (X) is also k-times continuously
differentiable with respect to the variable X.

If f is a k-times continuously differentiable separable symmetric function, (2) can be signif-
icantly simplified. In that case, if o1 and o> are two permutations on k elements with one cycle
in their cycle decomposition then .27, (x) = ./, (x) and these maps allow a simple determinant
description. If o has more than one cycle, then o7, (x) = 0.

In Section 7, we re-derive the formula for the Hessian of a general spectral function at an
arbitrary symmetric matrix. The techniques developed here lead to a shorter, more streamlined
derivation than the original derivation in [17].

The language that we use, based on the generalized Hadamard product, allows us to differentiate
(2)justas one would expect: writing the differential quotient and taking the limit as the perturbation
goes to zero. This gives a clear view of where the different pieces in the differential come from
and gives the process a routine calculus-like flavour.

In the next section, we give the necessary notation, definitions, and background results. Proofs
of the technical tools are in the appendices.

2. Notation and background results

By R” we denote the standard n-dimensional Euclidean space of n-tuples of real numbers
with standard inner product and norm. By S§”, O", and P" we denote the sets of all n x n
real symmetric, orthogonal, and permutation matrices, respectively. By M" we denote the real
Euclidean space of all n x n matrices with inner product (X, Y) = tr(XYT) and corresponding
norm || X| = +/(X, X). For A € §", A(A) = (A1 (A), ..., A, (A)) is the vector of its eigenvalues
arranged in non-increasing order:

A(A) 2 X2(A) = -+ = Aa(A).

By N; we denote the set {1,2,...,k}. For any vector x in R”, Diagx denotes the diagonal
matrix with the entries of vector x on the main diagonal, and diag: M" — R" denotes its adjoint
operator, defined by diag(X) = (x11, ..., Xun). By [F\?’i we denote the cone of all vectors x in R"

suchthatx; > xp > --- > x,. Denote the standard orthonormal basis in R" by el e?, ... e" For

a permutation matrix P € P" we say that o : N, — N, is its corresponding permutation map
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if for any 7 € R" we have Ph = (ho(1), - - -, hom)) T, thatis, PTe! =@ foralli =1,...,n.
The symbol §;; denotes the Kroneker delta. It is equal to one if i = j and zero otherwise.

Any vector 1 € R" defines a partition of N,, into disjoint blocks, where integers i and j are in
the same block if and only if u; = ;. In general, the blocks that 1 determines need not contain
consecutive integers. We agree that the block containing the integer 1 is the first block, /1, the
block containing the smallest integer that is not in /7 is the second block, I, and so on. By r we
denote the number of blocks in the partition. For any two integers, i, j € N, we say that they
are equivalent (with respect to j1) and write i ~ j (ori ~, j)if u; = pj, that is, if they are in
the same block. Two k-indices (i, ..., i) and (ji, ..., ji) are called equivalent if iy ~ j; for all
[=1,2,...,k,and we write (i1, ..., 1) ~ (j1, ..., ji) (Or (i1, ..., 0) ~u iy oo Ji))-

A k-tensor on a linear space is a real-valued function of k arguments from the linear space that
is linear in each argument separately. Denote the set of all k-tensors on R” by T5". The value of
the k-tensor at (hy, ..., hy) isdenoted by T'[h, ..., hi]. For any (i1, . . ., ix), a k-tuple of integers
from N,,, we denote by 771/ the value T[e'!, . . ., e'*]. Matrices from M" are viewed as 2-tensors
on R", with respect to the fixed basis, and foran M € M" we have M/ = M[e', e/]:= (¢!, Me/).

The following lemma motivates the following definitions. It is an application of the chain rule
to the equality f(un) = f(Pu).

Lemma 2.1. Let f : R" — R be a symmetric function that is k-times differentiable at the point
u € R, and let P be a permutation matrix such that Py = . Then

() V) =PV [,
(i) V2 f(u) = PTV2 f(w) P, and
(i) VE f()lhy, ..., hsl = VS f(W[Phy, ..., Phgl, forany hy, ..., hy € R", and s € Ny.

Definition 2.2. A tensor T € T*" is called symmetric if
Tlhoys s hoiy]l =Tlhy, ..., hil

for any permutation o on Ny and any A1, ..., hy € R".

Definition 2.3. (i) Givenavector u € R",atensor T € T*" is called point symmetric with respect
to p if for any permutation P € P" such that Py = p we have

T[Phy,..., Ph] =Tlhy,..., h]
for any hy, ..., hy € R".

(ii) A k-tensor-valued map p € R" — () € T%" is point symmetric if for every u € R"

and every permutation matrix P € P" we have

F(PW[Phy, ..., Ph]=F(wlhy, ..., kil
for any hy, ..., hy € R".

If the map u € R* — F(u) € Tkn is point symmetric then the tensor . (1) is point sym-
metric with respect to i, for every u € R".

Definition 2.4. (i) A tensor T € T*" is called block constant with respect to p if T/~ = TJ1-Jk
whenever (i1, ..., i) ~u (Ji, -5 Ji)-

(ii) A k-tensor-valued map u € R* — Z (u) € Tk is block constant if Z (w) is block con-
stant with respect to u for every u € R".



244 H.S. Sendov / Linear Algebra and its Applications 424 (2007) 240-281

Every tensor that is block constant with respect to p is point symmetric with respect to .
By Lemma 2.1, for any differentiable symmetric function f : R” — R the mapping u € R* —
V f () € R" is a point-symmetric, block-constant, 1-tensor-valued mapping. In general, for every
s € Ny the mapping (when it exists) u € R" — V* f(u) is a point-symmetric, s-tensor-valued
map. In addition, if the mapping u € R" — V* f(u) is continuous, then the tensor V* f(u) is
symmetric.

By T'[h] we denote the (k — 1)-tensor on R" given by T[-, ..., -, k].

Lemma 2.5. If a k-tensor-valued map i € R" — T () € T5" is point symmetric and differen-
tiable, then its derivative p € R" — VT () € T¥1" is a point-symmetric map.

Proof. We use the formula for the first-order Taylor expansion. Let vectors i1, .. ., hi, h be given
and let {v,,} be any sequence of vectors in R" approaching zero such that vy, /||v,, | approaches
hasm — oo

T(l‘l’ + Um)[hl, R} hk] = T(I‘L)[hls cer hk] + VT(M)[hl, L) hks Um] + O(HUm”)
On the other hand, for any permutation P we have

T(u+va)lh, ..., kil
=T(Pu+ Pvy)[Phy, ..., Ph]
=T(Pw)lPhy,..., Pl +VT(Pw|[Phy,..., Phi, Pvy]+o(||Punl)
=TWwlhi, ..., il +VT(Pw)IPhy,..., Phi, Pvy]l+o(luml).

Subtracting the two equalities, dividing by ||v,, || and letting m go to infinity, we get
VT (Pw)[Phy, ..., Phi, PRl =T Wlhy, ..., hi, h].
The result follows. [J

For any given fixed vector i € R” we define a linear operation on matrices: M € M" — Mj, €
M", as follows

i MY, Af i~y
y _ 5 wJs
My, = {O, otherwise, 3
and
Moy = M — Miy,. “4)

Even though in Mj, and M,,; we omit the dependence on w, no confusion will arise since the
o will be clear from the context.

2.1. Generalized Hadamard product

The Hadamard product of two matrices H; = [Hlij land H = [Hzij ] of the same size is the
matrix of their element-wise product H; o H, = [H fj Héj ]. The standard basis on the space M"
is given by the set {H),, € M”|H1i,jq =0;pdjq foralli, j € N,}.

For each permutation o on Ny, we define the o-Hadamard product of k matrices to be a

" . . .
k-tensor on R" as follows. Given any k basic matrices Hp,4,, Hp,qy» - - - » Hpgy

1’ ifi =p ZQ(),VSZI,...,]C,
(Hpig, 00 Hpygy 00+ 05 Hpg )" = {0, othserwisé. ”
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Extend this product to a multi-linear map on k matrix arguments:

L i1i__q i _—q
(Hy 0 Hy oy -+~ 0 Hy)it2it = g}"o' 0 pptle™!® 5)

For example, when k = 1 there is just one permutation on N, namely the identity o = (1),
and o(;)H = diag H. When k = 2 there are two permutations on Nj: the identity (1)(2) and the
transposition (12). The two corresponding o -Hadamard products of two matrices are

Hy o(1y2) Hy = (diag H)(diag H)",
Hyoxz Hy =Hjo Hg

Let T be an arbitrary k-tensor on R” and let o be a permutation on Nj. Let Diag® T’ be the
2k-tensor on R" defined by

i1 {Til...ik’ if iy = ja(s),VS =1,...,k,

1000 T ik —
(Diag" 7)1k 0, otherwise. ©)

When k = 1 we have Diag(x = Diag x for any x € R". Any 2k-tensor 7 on R" can be viewed
as a k-tensor on the linear space of 2-tensors in the following way
n n
P1-P,
T[Hy,....Hl:i= Y --- Y Taia gPo .. gro, )
ri.qi=l pr.g=l1

It can be shown that the right-hand side of (7) is invariant under orthonormal changes of the basis
in R*. If T is a 2k-tensor on R" and H € M" then by T[H] we denote the 2(k — 1)-tensor on R"
defined by

i]ig_q n,n i].ig_1p

(TLH] et o= Y Tovieeis 5P, ®)
p.q=1

Define the dot product of two tensors in 7% in the usual way

n
(T], T2> = Z Tlpl~~ka2P1...pk;

the corresponding norm is ||T|| = +/(T, T'). We define an action (called conjugation) of the
orthogonal group O" on the space of all k-tensors on R". For any k-tensor 7 and any U € O"
this action is denoted by UTUT e T*":

(UTUT)il"'ik — i . i (TP1-~-Pk yipt ... Uikpk)' 9)
pi=l p=1
This action is norm preserving and associative, that is,
IVXVT| =X and VWTUDHVT =wvU)T(VU)T

forall U, V € O"; see [22, Lemma 4.1].
The Diag® operator, the o-Hadamard product, and conjugation by an orthogonal matrix are
connected by the following multi-linear duality relation; see [22, Theorem 4.3].

Theorem 2.6. For any k-tensor T € Tkn, any matrices Hy, ..., Hy, any orthogonal matrix V ,
and any permutation o in P¥ we have
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(T, Hy og -+ 05 Hy) = (V(Diag’ T)VD)[Hy, ..., Hyl, (10)
where H; = VITH,V,i=1,... k.

We also need the following two lemmas from [22].

Lemma 2.7. Let T be a k-tensor on R", and H be a matrix in M". Let Hy, j,, ..., Hy_,j_, be
basic matrices in M", and let o be a permutation on Ny.

() If o~ (k) = k, then

k—1 n

L. . . — L. if.dp_1t pytt

(T, Hi\j, 06 -+ 00 Hiy_ji_, 00 H) = (]_[ awam) T H".
t=1 t=1

(i) If o' (k) = I, where | # k, then

k—1
i1.ig—1J Jo(kyl,—1
(T, Hiljl O¢ " O¢ Hikfljkfl og H) = Haitja(f) Tttt gle@lo=le

=1

141

Lemma 2.8. Let T be any 2k-tensor on R", V € O", and let H be any matrix. Then
vTIVTEHV)YVT = (vTVD[H).

2.2. Operations with tensors

For a fixed vector € R" and any / € Ny define the linear map
T eTF" - 1) e THH
as follows:
0 if ij ~, i
. .. 3 " +1,
(To(llli)’l"-’klk-f-l = il Vi i1 ik i1l 1] ik
Rigyy —Hif

(1)

, o if i e iy,

If T is a block-constant tensor with respect to u, then so is TO(Q foreachl € Ny. If x € R" —

T(x) € T*" is a k-tensor-valued map, then x € R" — T(x)(()lgt e Tk is a (k 4 1)-tensor-

valued map, defined for each x by (11) with u:=x. The maps defined by (11) are linear, that is,
for any two tensors T1, Tr € T5" and «, B € R we have

@T; + BT = a(m)® + ()Y foralli=1,... k. (12)

out out out
One can iterate this definition: on the space 751" define k + 1 linear maps into 72", and
SO on.
Given a permutation o on Ny, we can view it as a permutation on N1 that fixes the last ele-

ment. Let 7; be the transposition (I, k + 1), forall/ =1, ..., k, k + 1. Define k + 1 permutations
on N4 as follows:

opy=o1 forl=1,...,kk+1. (13)
Given the cycle decomposition of o, we obtain o) foreach! =1, ..., k by inserting the element

k + 1 immediately after the element /; when / = k 4 1, we obtain the permutation o(x+1) by
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appending the one-element cycle (k + 1) to o. Notice that 0(7)1 (k 4+ 1) =1 for all [, and that the
map

(0,1) € P* x Ny — o) € PF! (14)

is one-to-one and onto.
We are now ready to formulate the next theorem. It is the first calculus-like rule that we need
for differentiating spectral functions. It is proved in Appendix B.

Theorem 2.9. Let M be a given real symmetric matrix and let {M,,}._, be a sequence of real
symmetric matrices converging to 0, such that the normalized sequence My, /|| M, || converges to
M. Let |4 be in Rl’ and Uy, — U € O" be a sequence of orthogonal matrices such that

Diag u + M,, = U,,(Diag A(Diag i + M,,))UY  forallm =1,2, ...
Then for any block-constant k-tensor T on R" and any permutation o on N we have

. Un(Diag’ T)U} — Diag’ T
lim

m—>00 Mol

k
=Y (Diag"® T\HIM]. (15)
=1

Next, for a fixed vector 4 € R" and any / € Ny define the linear map
k, (O] k+1,
TeT"" - T,  eT" ",

as follows:

(T(l))il-~~ikik+1 — Tll'..llillk+1”+lm,k» 1f l:l ~u 'ik—i-l , (16)
m 0, if ij o0y igt1.
If T is a block-constant tensor with respect to w, then so is Tlg) foreachl=1,...,k. If x €

R" — T(x) € T¥" is a k-tensor-valued map, then x € R" — T(x)i(ll]) e TFIn s a (k + 1)-
tensor-valued map defined for each x by (16) with p:=x. The maps defined by (16) are linear,
that is, for any two tensors 77, T» € T%" and «, B € R we have

I I I
@Ti + )Y = a(m)? + ()Y foralll =1,... k.
Finally, for any 7 € T%" and any I € Ny define 7% € T*T1" as follows:
L Til~-~il—li1il+l-~~ik’ if i) = ixq1,
Tyttt — o .
™ {0, if ip # ik
In other words, T" is a (k + 1)-tensor with zero entries off the plane i; = ix+;. On the plane
i; = ix+1 we place the original tensor 7.
When p has distinct entries, then i; ~, ix41 if and only if i; = ix4 and therefore Tlg g
for every [ € N.

The next theorem is the second and final calculus-like rule that we need. It is proved in
Appendix B.

A7)

Theorem 2.10. Fixavector u € R". Let U € O" be a block-diagonal (with respect to |1) orthog-
onal matrix and let o be a permutation on Ny. Let M be in S", and let h € R" be a vector such
that UTM;,U = Diag h. Then

(i) for any block-constant (k + 1)-tensor T on R"
U(Diag” (T[h])U" = (Diag®+V T)[M];
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(ii) for any block-constant k-tensor T on R”"
U (Diag® (T [h)UT = Diag? T M1 foralll =1,... k,
where the permutations o(yy, for | € Ny, are defined by (13).

3. Several standing assumptions

Suppose f : R" — Risak-times differentiable symmetric function. For any integer s € [1, k),
in order to obtain the (s + 1)th derivative V5 t1( f o A)(X) of the composition f o A, we differenti-
ate V¥ (f o A)(X) and use the tensorial language presented in Section 2 to simplify the calculation.
More precisely, for each o € P® we define a s-tensor-valued map <7, : R" — T%", depending
only on the function f and its partial derivatives, such that

VE(fol)(X)=V (Z Diag%z/a()\(x») vT, (18)

oePs

where X = V(Diag A(X))VT.

By [22, Section 5] it is enough to prove (18) only when X is an ordered diagonal matrix. That
is, X = Diag u for some vector . € [R’j.

That (18) holds when s = 1 was shown in [13], see also Subsection 5.2.

Let {M,,}>>_, be any sequence of real symmetric matrices converging to 0. In order to show
that

VI(f o (X + M) = VI(f 0 M)(X) = VHI(f 0 1) (X)[Mn] _

lim 0
m—>00 [ Mol
fors =1,...,k— 1, we may assume without loss of generality that M,,/||M,,| converges to

a symmetric matrix M. Thus, we assume throughout that {M,,}>°_, is any sequence of real

symmetric matrices converging to 0 with My, /|| M,, || converging to M € S" and show inductively
that

. V(foX 4+ My) —V(f o M)(X)
pm [ M |

=Vt (for)X)[M], fors=1,....k—1. (19)

Finally, we denote by {Uy,};_; a sequence of orthogonal matrices in O", converging to U € O"
and such that

Diag u + M,, = U,,(Diag »(Diag u + Mm))U,E forallm=1,2,... (20)

The next lemma combines [14, Lemma 5.10] and [7, Theorem 3.12].

Lemma 3.1. Forany u € R’i and any sequence of real symmetric matrices M,, — 0 we have
MDiagu + Mp)" = 1t + G M XD, AKX M X) DT +o(IMul), 1)

where Xl::[ei|i e ] foralll=1,...,r.

We denote
By = MXTM, X)), (XM, X )T (22)
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Since M,,/||My,| converges to M as m goes to infinity and the eigenvalues are continuous
functions, we define

o _ OXTMX)T, . oaxTmMxH)HT. (23)

= lim
m=00 || Mp, ||
Throughout the paper, we reserve the symbols /4, and & to denote the vectors in (22) and (23).
With this notation Lemma 3.1 says that
A(Diag 1t + M) = 1T + hy + o(| M ). 24
Taking the limit in (20) as m goes to infinity Theorem A.1 ensures that U is block diagonal
with respect to i and
UTM;,U = Diagh, (25)
where Mj, is defined by (3).

4. Analyticity of isolated eigenvalues

Let A be in §” and suppose that the jth largest eigenvalue is isolated, that is,
Aj—1(A) > X (A) > Ajy1(A).

The goal of this section is to give two justifications of the known fact that A ; () is an analytic
function in a neighbourhood of A. A function of several real variables is analytic at a point if in
a neighbourhood of this point it can be expressed as power series. The corresponding complex
variable notion is holomorphic.

Our first justification is from [24, Theorem 2.1].

Theorem 4.1. Suppose A € 8" and f : R" — R is analytic at A(A). Suppose f(Px) = f(x)
for every permutation matrix P for which PA(A) = A(A). Then f o X is analytic at A.

To see how this theorem implies the analyticity of A ;(-) take
f(x1, ..., x,) = the jth largest element of {xy, ..., x,}. (26)

Notice that f is a piece wise affine function. Moreover, for any x € R” in a neighbourhood of the
vector A(A) it is given by

fx) =x;j.
Thus, f is analytic in that neighbourhood. Next, f is a symmetric function and thus by definition
f(Px) = f(x) for every x € R" and every permutation matrix P. Theorem 4.1 ensures that
Aj = f o Xis an analytic function.

Our second justification uses the following result from [1]. (In the theorem below, A;(X)
denotes an arbitrary eigenvalue of a matrix X, not necessarily the ith largest one.)

Theorem 4.2 (Arnold 1971). Suppose A € C"*" has q eigenvalues 11(A), ..., ry(A) (counting
multiplicities) in an open set 2 C C, and suppose the remaining n — q eigenvalues are not in the
closure of Q. Then there is a neighbourhood A of A and holomorphic mappings S : A — C9*4
and T : A — CP=D*=D guch that for all X € A

S(X) 0
0 T(X)

and S(A) has eigenvalues L1 (A), ..., Ay(A).

X is similar to <
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To deduce the result we need, since the jth largest eigenvalue is isolated, we can find an open
set Q C C such that only that eigenvalue is in € and the remaining n — 1 eigenvalues are not in
the closure of 2. Theorem 4.2 ensures that, there is a neighbourhood 4 of A and a holomorphic
mapping S : 4 — C such that S(X) is equal to the jth largest eigenvalue of X for all X in 4.

If A is a real symmetric matrix, then the intersection of 4 with S” is a neighbourhood of A in
$". The restriction S(X) of S(X)to 4N " is a holomorphic real-valued function. Therefore, the
coefficients in the power series expansion of S(X) must be real numbers. Thus, the jth largest
eigenvalue is a real analytic function in the neighbourhood 4 N §” or A.

All these considerations make the following observation clear.

Theorem 4.3. Suppose that A € S™ has distinct eigenvalues and f : R" — R is k-times (contin-
uously) differentiable in a neighbourhood of A(A). Then f o A is k-times (continuously) differ-
entiable in a neighbourhood of A.

5. The kth derivative of functions of eigenvalues at a matrix with distinct eigenvalues

Let f : R" — R be an arbitrary k-times (continuously) differentiable function. In this sec-
tion, we do not assume that f is a symmetric function. Our goal is to derive a formula for
the kth derivative of f o A on the set of symmetric matrices with distinct eigenvalues. The set
{x € R"|x; # x; for every i # j} is a dense open set in R", and the set of symmetric matrices
with distinct eigenvalues is a dense open set in S”. (For a convex analysis proof of the last fact,
see [20, Corollary 1.6].)

One can obtain the kth derivative of f o A at a matrix with distinct eigenvalues by applying
the Chain Rule to the composition F = f o A. For example, the following formulae are the first
three derivatives of F'; see [2, Section X.4]. For any symmetric matrices Hy, Hy, H3:

VEX)[Hi] =V f(A)[VAx)[H1]],
VEF(0)[Hi, Hyl = V2 f (L) IVA)[H], VA [H] + V f L)) [VZA(X) [ Hi, Holl,

V3F(x)[Hi, Ha, H3] = V7 f (A(x)[VA)[Hi], VA)[Ha], VA [H3]]
+ V2 fF G VA)[H 1, VL) [Ha, H3]l
+ V2 £ () [VA)[Ha ], VAA()[Hy, H3]]
+ V2 £ () [VA)[H3], VAA()[H), Ha]l
+ V)V A@)[Hy, Hp, H3]l.

This approach to the kth derivative requires every derivative of A up to the kth. Even if one knows
all these derivatives it is not clear how the resulting expression can be simplified. Our goal in
this section is to derive a formula for the kth derivative of f o A that does not require explicit
knowledge of the derivatives of A. Of course the latter can be obtained as a particular case since
if f is defined by (26) then A; = f o A.

Fix a vector u € R’l with distinct entries. Thus, every block in the partition that it defines
has exactly one element. This means that for any j,i € N,, i ~ j < i = j, and that makes
any tensor block constant. In particular, for the matrices X;, defined in Lemma 3.1, we have
X = [el], I =1,...,n. This implies that h,, = diag M,, and that 7 = diag M. The definition of
TO(Q given in (11) is now:
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if i) = ixq1,

e . 27
, lfll#lk_,_l. ( )

S )
(To(ll]bzl...tlel = { Pl ik i1 ik i i 1 ik
iy —Hig

We derive (18) by induction on the order of the derivative.
5.1. Description of the kth derivative

Let f : R" — R be k-times (continuously) differentiable function defined on the set
Q:={x € R"|x; # xj for every i # j}.

For every s € N; and every o € P® we define an s-tensor-valued map Ay QC R — TS
inductively, as follows. For s = 1 and o = (1) we define

A 1) (x) =V f(x).

Assuming that the maps Ay (x) have been defined for each o € P* with s € [1, k) we define

Aoy ()= (Ao ()0, foralll € Ny, and

A gy 1) (X) =Vl g (x). (28)

We are now ready to formulate our first main theorem.

Theorem 5.1. Let X be a symmetric matrix with distinct eigenvalues. Let f be a function defined
on a neighbourhood of A(X). Then the spectral function F = f o A is k-times (continuously)
differentiable at X if and only if f is k-times (continuously) differentiable at A(X). Moreover,

VEF(X) =V [ ) Diag’o/o LX) | VT, (29)

oePk

where V is any orthogonal matrix such that X = V (Diag AV,

The proof proceeds by induction and is presented in the next two subsections.
5.2. Proof of Theorem 5.1: the gradient

Using (24) we compute

i oM Diagp + M) — (f o 1) (Diag 1)

m—>00 [ Mo
— iy LW A A oM D) — f ()
= lum
m—00 Mol
— i LW V@] + o1 M) — f(1)
m—00 | Mo I
=V wlh]

= (Vf(n), diag M)
= (Diag V f(u)[M].
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This shows that V(f o A)(Diag ) = Diag(l)Vf(u). One can see now that

V(f o2 (X) = VDiag"V X))V =V | > Diag” -/, (a(X)) | VT, (30)
oeP!
where X = V (Diag A(X)) VT and o7 ) (x) =V f(x).If f is k-times (continuously) differentia-
ble, then 2 M (x) =V f(x)is (k — 1)-times (continuously) differentiable.

If the eigenvalues of X are notdistinctand f is a symmetric function, calculation of the gradient
of f o A is almost identical and leads to the same final formula. Indeed, using (25) we get

VIRl = (V f (), diag (U" MinU)) = (U (Diag V f (u)U")[M] = (Diag V f (1)) [M].
In the last equality we used Lemma 2.1(i), U is block diagonal and orthogonal, and f is symmetric,
so V f(u) is block constant.
5.3. Proof of Theorem 5.1: the induction step

Suppose now that for some 1 < s < k

Vi(fo(X)=V (Z Diag"s?/a(k(X))) v,

oePs

where X = V (Diag (X)) V. Suppose also that for every o € P?, the s-tensor-valued map Ay
R" — T*" is (k — s)-times (continuously) differentiable.
Using (24), we differentiate V*(f o A) at Diag u:

VL (f 0 1) (Diag w)[M]

_ i Y o (Diag + M) — V' (f 0 1) (Diag 1)

m—>o0 1M |
Un (oepsDiag” /o (A(Diag it + M) ) UL = ¥, e peDiag” 7 (1)
= lim
m—>00 1M |
~ im Y U (Diag” /- (\(Diag tt + Myu)))Uyy — Diag® /o ()
m—o0 £ 1M |
oeP
~m Y Un (Diag® 5 (i + hm + o(| My [))) U} — Diag” .o/ (1)
m_)ooaeps (Mol

~ im Y Un (Diag® (5 (1) + VL5 (11)[hin] + o(| M 1)) U,y — Diag” o/ (1)
 m—oo 1Mo |

oePs

~ im Y Un (Diag® /5 (1)) Upy — Diag” o/, (1)
m—00

= | M

+ > U(Diag® (V.o (KU

oePs
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For every o € P* the tensor Ay (w) is block constant, so Theorem 2.9 ensures that

Uy (Diag® ./ (11)) UL — Diag® o/ - ;
tim Un(Pi2” o GO)Uy, = Diag” S0 40) _ 51y (7, (1),

m=>00 [ Mol

[M]

=1

= Z(Diag”“)é;/m) (u)[M].
=1

For every o € P* the gradient V., (u) is a block-constant (s + 1)-tensor, so Theorem 2.10
implies that

U (Diag” (V.o/ o (w)[h])U" = (Diag”c+V V. o/ (1)) [M] = (Diag”e+) /g, (1) [M].

We conclude that

VI (f o n)(Diag)[M] = | ) Diag .y (u) | [M]
lgssisl

for every symmetric matrix M. Because (14) is a one-to-one and onto map, we see that

Vi (fon(X)=V | > Diag’/s(h(X)) | VT,

oepstl

where X = V (Diag A(X))VT. )

Finally, we show that the (s + 1)-tensor-valued maps ./, (-) are at least (k — s — 1)-times
(continuously) differentiable. This is clear when [ = s + 1 and o € P¥, since ,5210(.) is (k — s5)-
times (continuously) differentiable for every o € P*. For the rest of the maps, every entry in
o, 1s the difference of two entries of .o/, divided by a quantity that never becomes zero over
the set Q. This shows that .o/ o, () is (k — s)-times (continuously) differentiable on the set €2 for
every o € P¥ and every l € Nj.

This concludes the proof of Theorem 5.1.

6. The kth derivative of separable spectral functions

In this section we show that (18) holds at an arbitrary symmetric matrix X (not necessarily
with distinct eigenvalues) for the class of separable spectral functions.

Let g be a real-valued function on the real interval I, and let X be a symmetric matrix with
eigenvalues in /. Associated with the separable symmetric function

fr oo xn) =g + -+ + g (xn) (3D
is the separable spectral function
F(X) = (f o M)(X). (32)

Choose an orthogonal matrix V such that X = V (Diag A(X))V . It follows from (1) that if g is
differentiable at the points {A; (X)|i € N, } then F is differentiable at X and

VF(X) = V(Diag (g'(:1(X)), ..., g (X)) V™. (33)
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Separable spectral functions and their derivatives are of great importance for modern opti-
mization; see [3,12,23]. For the role of general spectral functions see the two survey papers
[15,16].

Loner studied the class of matrix-valued functions (33) in [19], where he established a connec-
tion between monotonicity of the map (33) with respect to the semidefinite order and differentia-
bility propertied of g’. Lowner’s student Kraus, determined conditions on g’ that make the map
(33) convex with respect to the semidifinite order [11]. For more information, related, and recent
results see [2, Chapter V], [8, Section 6.6] and the monograph [6]. The matrix-valued map (33) is
the primary matrix function g'(X); see [8, Chapter 6] for a general discussion and the Daleckii—
Krein formulae for the kth derivative of a primary matrix function along a one dimensional curve.
The first two derivatives of (33) can be found in [2, Chapter V].

6.1. Description of the kth derivative

Let g : I — Rbe k-times differentiable. We begin by defining the function g!Wl(x) : I — R
as

g V) =g ().
Next, define the symmetric function gl?1(x, y) : I x I — Ras

g"(x), if x =y,
(X, 9) 1= gl () glM () (34)

g2
=y , ifx #£y.

The integral representation gD (x, y) = fol g"(y + t(x — y)) dr shows that gl1P](x, y) is as
smooth, in both arguments, as g”.

Denote by P* the set of all permutations from P* that have one cycle in their cycle decompo-
sition, so |l35| = (s — 1)! For every o € P* and every [ € Ny we have o(j) € PS5t Moreover,
as o varies over P* and [ varies over Ny, the permutation o(j) varies over P5*! in a one-to-one
and onto fashion.

Suppose that forevery o € P, where 1 < s < k, we have defined the function g["](xl, e, Xs)
onthe set I x I x --- x I (s times) and suppose that these functions are as smooth as g (the
sth derivative of g). For every o € P* and every [ € Ny we define

o] Vighxr, . x), if X = X1,
8 WL, - X 1) = ol ) =81 (X 1) " (35)
X]—Xs41 o X Xy,

where in the second case of the definition, both x; and x4 are in /th position and V; denotes the
partial derivative with respect to the /th argument. Using the integral formula

1
gl xy, L xp1) = / Vigl o e, oo X1 Xet A £ = X))y X1t - - -5 Xs) dE
0

for every [ € Ny, we see that gl°01(xy, ..., x,41) is as smooth as g®+D | the (s + 1)th derivative
of g. We continue inductively in this way until we define the functions { g["] x1,...,xx)|o € Pk}.
Finally, for every s € Ny and every o € P*, we define a s-tensor-valued map

Ay R"— T by
(Ao ()10 =gl gy, ). (36)
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If (i, ..., i5) ~x (j1, ..., js) then (Zy (x))1s = (oZ, (x))71Js, which shows that (36) defines
a block-constant map; moreover, it is as smooth as g(s ) for every s € Ng.
We are now ready to formulate our second main theorem.

Theorem 6.1. Let g be a k-times differentiable real-valued function defined on a real inter-
val 1. Let X € S" have eigenvalues in I, and let V be an orthogonal matrix such that X =
V (Diag A(X))VT. Then the separable spectral function F defined by (31) and (32) is k-times
differentiable at X, and its kth derivative is

VEF(X) =V [ ) Diag’o/o LX) | VT, (37)

oePk

where o/ 5(x) =0 if o ¢ PX.

The proof is given in the next subsection. We proceed by induction—consecutively differen-
tiating F'(X). In the base case k = 1, (37) reduces to the formula for the gradient (33).

6.2. Proof of Theorem 6.1: the induction step

Suppose that g : I — R is k-times differentiable and the formula for the sth derivative (1 <
s < k) of F at the matrix X is given by

VSF(X)=V (Z Diag® ./ (A(X))) vi=vy Z Diag® /o (M(X)) | VT.
oep oeps

For each 0 € P, the s-tensor-valued map .o/, : R — T5" is (k — s)-times differentiable. In
Section 3 we have described the simplifying assumptions and notation that we use below. We now

differentiate:

VD F (Diag 1) [M]
~ im VS F(Diag u + M,,) — V* F (Diag 1)
om0 1M
_ i Un (CoepDiag” /o 0-(Diag p + M) Uy, = ¥y s Diag” /5 (1)
m—>00 (Mol
~im Y Un (Diag” /5 (1t + hm + o(| M ) U, — Diag® /o (1)
mooo 1M |
oePs
~gim Y Un (Diag” (4o (1) + Vg (W] + (| My ) U, — Diag” /o (1)
- m—oo 1M
oePs
~im 3 U (Diag? o/ (1)U, — Diag® ./ (1)
m—o0 = 1M
oePs

+U ZDiag”(V&/a(u)[h]) uT.

cePs
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Using Theorem 2.9, we wrap up the first summand in the last expression:

lim Z U (Diag® o 5 (1)UL — Diag® .o/ 5 (1)
m—0oQ

- 1M |
oepPs

= ) (Diag™™ (L (1)) 50) [M]. (38)
oeps
leNg

Next, we focus our attention on the gradient V.o/; (w). Using the definition, (36), and the chain
rule, we get

N N
VI ()1 = Vigh iy, e =Y g0 iy i pa)e”, (39)
=1 =1

where we used (35) to obtain the second equality. For convenience, for every o € P and every
I € Ny we define the map T! : R* — T*" by

(Tp ()5 2= gl o iy ). (40)
Each of these maps is block constant.

Lemma 6.2. The gradient of ./ 5 () can be decomposed as

Vo () = Y (TL()", (41)

=1
where the “lifting” (Té (u)® is defined by (17).

Proof. Fix a multi index (i, .. ., iy). By definition of the gradient V.oZ, (1) we have

VI o ()] = (Vi g ()15 (Ve o ()12, (Vi g ()15 T
We compute the pth entry in the last vector. Using (39), we get

N
(Vi g )50 = 3 7170 iy iy ).
=1
ij=p

Using (17) and (40), we evaluate the right-hand side of (41):

N

s i1...0g,p
(Z(Té(ﬂ))rl> = Z((Té(u))n)il...is,p
=1

=1

= D (T8,

=1

= > (T )"
=1
iy=p

N
=g O iy ).
I=1
i,:p

The lemma follows. [
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Using (41) we return to the second term in the differentiation of V* F(X):

U | D Diag’ (Va/uIh) | UT=U ZDiag“((Z(Té(u»”) [h]) uT

cePs cePs =1

U > Y Diag” (Tl an | UT

oeps =1
= Y U(Diag’ (T3 (u) " [h)HU"
= ) (Diag”™ (T} ()IHIM]; (42)

in the last equality we used Theorem 2.10. Putting (38) and (42) together we obtain

VO+D F(Diag o) [M] = Diag’® (/5 ()L ) [M] + Diag”® (T (u)\" ) [M].
out g mn

oePs oePs
leNg leNg

We group the two sums into one and since M is an arbitrary symmetric matrix we can remove
it from both sides of the equation:

VOO F(Diag ) = Y Diag® (o (1) + (To () ).

oeps
leNg

This shows that V¥ F(Diag ) is differentiable. We show now that V¢ F(Diag ;1) has the
form (37). This last step is the subject of the next lemma.

Lemma 6.3. For every o € P* and everyl € Ny we have

i l
Ay (W) = (TEQ)Y + (A 5 (W) 43)
Proof. Fix an / € Ny and a multi index (iy, ..., iy, is+1). We consider two cases depending on

whether u; _, equals u; or not.
Case I. Suppose i; ~, is41. Using (36) and (35) the entry on the left-hand side of (43) corre-
sponding to the multi index (i1, ..., i, is4+1) 1S

(A gy ()00 = OOy ) = Vig T ).
On the other hand, the right-hand side evaluates to

(TG0 + (S0 )55 = (T GOIE) 0451 4+ (S ()™~
= (TG0 4.0 = (T2 )
= 10 iy iy i) = Vigl iy )

in the third equality we used (16) and the fact that 7;(u) is block constant.
Case II. Suppose i; », is+1. Using (36) and (35) the entry on the left-hand side corresponding
to the multi index (i1, ..., iy, i54+1) iS
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(A gy ()54 = QOO ()
UV wiys o i e i) — 8 iy i 1)
Hip — Mgy ’

where both (1;, and p;_, are in the /th position. On the other hand, the right-hand side evaluates
to

(TLDD + (5 ()i
= ((Té (/L))i(f]))il.”iSiS+l + ((&ig (M))ggt)il"'isi“*l
= 0+ (Ao () o)+

(A o (M))il--~ilflis+1i1+1-~-ix — (A (M))il~~-il—1i1il+l~-~is
a T
. U iys s gy e i) — 8 iy e R e )
Migy — Mi;

In both cases, the two sides are equal. [

This concludes the inductive step and the proof of Theorem 6.1.
The two separate developments in Section 5 and Section 6 must be reconciled in their common
case. This is done by the following theorem proved in Appendix C.

Theorem 6.4. Suppose that X € S" has distinct eigenvalues, and the spectral function F is
separable and k-times differentiable at X. Then the two formulae for the kth derivative of F at
X, namely, the one given in Theorem 5.1 where the operators Ay are defined by the inductive
equations (28), and the one in Theorem 6.1 where the operators o/ » are defined by equations
(36), are the same. More precisely we have

Z Diag",;;ig(x) = Z Diag®.o/;(x) foreverys=1,2,...,k,
gePs ogeP’
where x = A(X).

It is worth presenting a particular case of Theorem 6.1. More specializations of Theorem 6.1,
when g is C*, are given in Subsubsection 6.3.1.

Corollary 6.5. Let g be twice differentiable in I, let X € S" have all eigenvalues in I, and
suppose that X = V (Diag AM(X)) VT for some orthogonal matrix V. Then

V2F(X) = V(Diag"? .o/ 12y M(X) VT, (44)
where o/ (12)() is defined by

V4 .
i 8" (xi), ifxi = xj,
R4 =1 g'(xi)—g'(x;
O T,

Using approximation techniques, it was shown in [2, Theorem V.3.3] that for any two symmetric
matrices H; and H»
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V2F(X)[H1, Hal = (V (< 12)(M(X)) o VTH V) VT, Hy), (45)

where ‘o’ denotes the usual Hadamard product. We now show that (44) is the same as (45).

Proposition 6.6. For any n x n matrix A, any orthogonal V, and any symmetric Hy and H»,

(V (Diag"? A) V) [H, Hal = (V(Ao (VITHIV)VT, Ha),

¢

where ‘o’ stands for the ordinary Hadamard product.

Proof. We develop the two sides of the stated equality and compare the results. By Theorem 2.6,
the left-hand side is equal to

V (Diag'? A)VI[Hy, Hy] = (A, H, o(12) H).
On the other hand
(V(Ao (VIH\ V)V, Hy) = (Ao Hy, o) = (A, Hi o Hp).

Finally one can check directly from the definitions that H; o(j2) Hy = H) o H) = H) o Hy,using
the symmetry of Hr. [J

6.3. C* separable spectral functions

Theorem 6.1 holds for every k-times differentiable function g. In this section, we explain
why (37) can be significantly simplified if g is k-times continuously differentiable. In particular,
we show three properties of the functions g["](xl, ..., Xg). First, we express g["](xl, cee, Xg)
as a ratio of two determinants whenever xi,...,x; are distinct. Second, the determinant formula
ensures that g["](xl, ..., Xg) is a symmetric function of its arguments. Finally, we show that
g (xy, ..., x) = g%l (xy, ..., x;) for all oy and o7 in P*. Thus, all tensors {.Z (x)|o € P¥}
in (37) are equal to each other, but are lifted onto different k-dimensional “diagonal planes” in
the 2k-dimensional tensor.

The Vandermonde determinant

s—1 s—1 s—1

'xl x2 “ e xx
V(xi,... X)) = =[] —x).
X1 X2 Xs j<i
1 1 1
has a variant
Y1 y2 Vs
s—2 s—2 s=2
x] x2 .. x_&‘
V(y17~-~ays) =
X1y eooy Xg
xl xz .. xs
1 1 1

forany y € R®; whens = 1, we set V(x;) = l and V <)ycl> =y.
1
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Lemma 6.7. For any vector (xy, ..., Xs, Xs+1) with distinct entries, any y € Rt andl e N;
V y1’~-~,)’s V y1,-"7y171,)7s+1,y1+1,-~-7)’s
X1y eoes Xg X1y oo ey XI—15 Xs15 X[415 -+ 5 X
V(.XI, "-7-xS) V(x19 ey X[—15 Xs415 XI41, -"sxs)
v (yl, -.-,yz,ys+1,yz+1,-.-,ys)
X1y oo ey X1y Xs 15 X415 - o5 Xs
= (X — Xs41) : (46)
V(.x],.-.,xl,xs+],xl+],.-.,Xs)

Proof. When s = 1 we have

v (yl) v <yz> v <y1, yz)
X1 X2 X1, X2
- = (x] — X))t
Vi(x1) Vi(x2) V(x1, x2)
For the rest of the proof we assume s > 2. Consider both sides of (46) as a multivariate

polynomial (of degree one) in the variables yq, . . ., ys, Ys+1. We show that y; has equal coefficients
on both sides for all k € Ny 1. First observe that

-1
VX1, ooy X1 X1y X1y o5 X)) = (=D VXD, o X1, X1 ey X, X)),
Vv Yis ooy Yi—15 Ys+15 Yi+1s -+ Vs :(_l)sflv Vs oo YI=15 Yi4+1s -+« Vs Vs+1
X1y eoes X[—15 Xs+15 X[415 -+ -5 X Xlsooes XI—15 X[415 + - o5 X5y Xg+1

We consider four cases according to the position of the index k in the partition Ny =
{1,..., ] —1Ju{l}u{i+1,...,s}U{s+1}. (In all of the following product formulae, we
assume that j < i. This condition is omitted for typographical reasons. Also a circumflex above
a factor in a product denotes that it is missing.) First, letk € {1, ...,/ — 1}. The coefficient of yj
on the left-hand side of (46) is

[hjersonisen @7 =50 e T jensien 65 = 50

(—1)k+1
[Tijen gm0 = x0) i jenge v &7 = x0)
(_1)k+1
(e = x) e (et — X)) (X — Xg1) - (o — Xy)
(_1)k+1

(1 — xk) - (et — 200 (k= X)) -+ Ok — X7) =+ Ok — Xyg 1)
B (=DM — xe41)
o = X)) e (ke — k) (5 — Xk1) - (o — Xs1)
[Ti jeng w7 — %0

Hi,jeNSH (xj — xi)

= (=D (= x541)

bl

which is the coefficient of y; on the right-hand side of (46).
Now suppose k = I. Then the coefficient of y; on the left-hand side of (46) is

Hi,jeNHl\{l,erl}(xj —X;)

(_ 1)l+1
[Tijeng s+ & = %)

(_1)l+1
S = x) (e = x) (g = X)) - (g — Xs)
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B (=DM — x541)

= xp) e (g = x) O — xig) e (0 — Xgg1)

1y — xm)nt,jewsﬂ\{l}(xf — i)
Hi,jeNSH (xj — xi)

)

which is the corresponding coefficient on the right-hand side of (46).
Whenk € {{ + 1, ..., s}, the coefficient of y; on the left-hand side of (46) is

(D! [ jengntes+ny &7 —x) (Dt [0 jen i @) — x0)
[T jeng s+ G = xi) [T jeng i —x0)
(_1)k+1
o — X)) - (k1 — x) (o — Xgepr) - (X — Xg)

- (—=D*
(e = xp) o (o = xp) o (k=1 — X)) (X — Xpep1) + - - (K — X541)
_ (=D — xe41)
(X1 = xp) -+ (k=1 — X)) (X — Xpep1) -+ - (X — X541)
[ jen, v &g — x0)

Hi,jeNHl (xj — xi)

= (=D = x541)

)

which is the coefficient of y; on the right-hand side.
Finally, when k = s + 1 the coefficient of y,4 on the left-hand side of (46) is

Hi,jeNS+1\{l,s+l}(xj — Xi)

0 _ (_1)1"1‘1(_1)5—1
i jeng & = x0)

B (_1)S+2
(61 — Xs41) - (X — Xsg1) - - (Xg — Xs 1)

(=D 2 (x — x541)

(x1 — xx+1) s (xg — xs+1)

I jeng s+ & = %)

= (1" (x — x11)
’ ni,jeN_H_. (xj —xi)

’

which is again the coefficient of ys4 on the right-hand side. [

Theorem 6.8. Suppose g € C¥(I). Then for every permutation o € P*, where 1 < s < k, and
every vector (X1, ..., Xs) with distinct entries

v (g’(m),-.-,g/(xs))
X1y ooy Xg

V(xly*-'5~x$‘)

g, xp) = (47)

In particular, g\ (x1, ..., xy) is a symmetric function.
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Proof. The proof is by induction on s. When s = 1, the definitions ensure that

v <g’(X1)>
X1

[(D] — o _
g x) =g (x1) =
V(x1)
Suppose (47) holds for s, where 1 < s < k. Let (xq, ..., X5, Xs+1) be~ a vector with distinct
entriesandlety = (g'(x1), ..., g'(xs), g (x541)). Fix a permutation o € P* and anindex/ € Nj.

Using (35) together with Lemma 6.7 and the induction hypothesis we get

g[g(l)](xly sy xS7 xs+l)
gy x) — g X X )
Xl — Xs+1

V(yla--wys)
1 X1y enns Xs

v (yl,.-.,yz_l,ys+1,yz+1,---,ys>

X1, "'3-xl—17-xs+17-xl+la ceey Xs
('xl _'xS-'r]) V(-xla L 7-xS) V(xla e 7~xl—15-xs+15xl+17 e a-xS)
V )’1,--‘7y1’}’s+]’yl+l7---,}7s
_ -xla""-xl9-xS+19'xl+]’--~a'xS
V(xly ceesy X Xs415 X[41, ~-~7xs)
v Y1y -oes Vsl
_ xla"'v-xs-‘rl
V('x19 ~--,xs+1)

Since Pstl = {omlo € P51 e Ny} the induction step is completed. Finally, since
g[(’] (x1, ..., x5) is continuous, (47) shows that it is symmetric everywhere on its domain. [

We can now significantly simplify Theorem 6.1. Define the k-tensor-valued map .« : R" —
Tk by

v (g’(xn), e g’(xik))
P Xigs oo o Xig
(o (x))1tk = (48)
V(-xils ey -xik)
Technically, this definition is good only when x;,, ..., x;, are distinct, but Lemma 6.8 shows
that it can be extended continuously everywhere. If (iy,...,ix+1) ~x (J1,---, jk+1), then

(o (x))11+i+1 = (of (x))/1++Jk+1 | which shows that (48) defines a block-constant map. Moreover,
</ (x) is a symmetric tensor that is continuous with respect to x.

Theorem 6.9. Let g be a C¥ function defined on an interval I. Let X € S" have eigenvalues in
the interval I, and let V € O" be such that X = V (Diag (X)) VY. Then the separable spectral
function F defined by (31) and (32) is k-times continuously differentiable at X, and its kth
derivative is

VEF(X) =V Z Diag® o/ (A(X)) | VT, (49)
oepk
where </ (x) is defined by (48). (P* is the set of all permutations from P* with exactly one cycle
in their cycle decomposition.)
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For most practical applications of derivatives, it is important to know what the result is when
they are viewed as multi-linear maps and applied to vectors from the underlying space.

The last part of this subsection is devoted to representations of the formula for the kth derivative
at X of a C* separable spectral function, applied at k symmetric matrices.

6.3.1. Derivatives as multi linear operators

The next corollary specializes Theorem 6.9 to the case k = 3. It should be compared
with [2, (V.22)] and [8, §6.6]. One should keep in mind that we are differentiating separable
spectral functions, whose gradients are the primary matrix functions considered in [2, Chapter
V.

Corollary 6.10. For g € C3(I) and any Hy, Hy, H3 in S" we have
n,n,n
VIF(X)IH, Hy H3)=2 Y Q)PP AP g0 g,
p1,p2,p3=1

where X = V (Diag A(X))VT, and H; = VT H;V fori = 1,2, 3.
Proof. Without loss of generality suppose that X = Diag u for some u € R’l. Then

V3 F(Diag w)[Hi, H», H3]

= ZDiag"&/(u) [H:, Hy, H3]

oeP3
= Y (A (w). Hi op Hy 0 H3)
oeP3
= (o (), Hy o(123) Hz o(123) H3) + {/ (), H1 o132y Ha o132y H3)
n,n,n nnn
= Z of ()19 {91 ST Z o ()P1P2P3 HPVP2 P23 PSP
q1,92,93=1 p1,p2,p3=1

After re-parametrization of the first sum (g1 = p2, g2 = p3, g3 = p1), using the symmetry of the
tensor .o/ (u) and the matrices Hy, H>, Hz, we continue
n,n,n

= Z (%(M)PZPSPI + %(M)lem)l_]lﬂlm H2172P3 H3p3p1

P1,02,p3=1
n,n,n

P1DP2 gy P2P3 17 P3P1
=2 Z o ()PP PP g vt
P1,p2,p3=1

which is what we wanted to show. [

In the general case when Hji,...,Hj are distinct symmetric matrices, we cannot simplify the
formula for VK F (X)[H1, - .., Hr] much more than the example in Corollary 6.10.

To show that we can do at least that much, let o and 6 be in pk , that is, permutations in
P¥ with one cycle in their cycle decomposition. Suppose that ¢ = #~!, that .7 is a symmetric
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k-tensor on R", and that Hy,...,H} are distinct symmetric matrices. Then, re-parameterizing the

sum
n,..., n
Z o1k qulqafl(l) . Hquqﬁfl(k)
q1,--qr=1
according to the substitutions g; = ps(;) fori = 1,2, ...,k we get the sum

n,..,n
Z o/ Po())-Patk) H]Pa(l)Pl o Hkpa(k)Pk

z : J%pl“,pkl_llprr(l)pl . Hkpa(k)Pk
Pl D=1

|
=
S
=
T
T3
S
N
T
5
S
S
N
z

In the first equality above we used the fact that .o/ is a symmetric tensor, while in the second we

used that H; is a symmetric matrix fori = 1,2, ..., k.
We summarize the preceding paragraph in the following theorem.

Theorem 6.11. Let 156‘ be a subset of f’k, k > 3, such thatifo € 15(;‘ then o~ ¢ Isé‘.

For g € Ck(l) and any Hi, ..., Hy in 8" we have
n,...n
VEFXOUHL ... Hl=2 ) Y A Qx)P-Pea 0 gl e,
0613(’)‘ D1y D=1

where X = V (Diag M\(X)VT, and H; = VTH;V fori =1,2,... k.
If, H = --- = Hy then (50) can be simplified even more.
Theorem 6.12. For g € CX(I) and any H € S"

VEFOIH, ... H]= (k=D > A QX))P1-PLHPP2HPPS . HPRP
Py Pk=1
where X = V (Diag M(X)VT, and H = VTHV.

Proof. Let H be in S”. Using (49), (10), and (5) we find

VEF(X)[H,...,H]=V | > Diag’#/(.(X)) | VT[H, ..., H]

oePk
= Y (A (X)), Hog Hoy 05 H)
oePk
n,..n
S DD D Ye O LELD: TR - Ll

(50)

(S
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Let o € P* be any permutation with one cycle in its cycle decomposition. In order to prove
the result we show that

n,...n
3 G AN e
q1.--qr=1
n,...n
= Z o (M(X))P1-Pk [IPYP2 (I P2P3 .. I PEPT 52)
Plseess Pk=1

In order to do that we find a re-parametrization (that is, we change the order of summation) of
the right-hand side sum that gives the left-hand side sum. Since o has one cycle in its cycle
decomposition, the map i € N +— o7i(1) € Ny is a permutation as well. Change the order of
summation in the right-hand side of (52) according to the rule

Di ={qg-i(1 foralli =1,2,...,k.

Notice that pi+1 = gy-a+1 (1) = go-1(s—i(1))- After the substitution HP\P2HP2P3 ... HPkP)
becomes the product

HI 10920 920930 ... 9= m9o—10)
= H%19%~1c-10) g9%=21%~16=20) ... Flo=* 09—k 1)

= D% -1y g92%-1) ... g%95—1w)

The final equality follows by a re-ordering of the product since the indices {o ' (1), e ~2(1), ...,
o k1)) are a permutation of the indices {1, 2, ..., k}. Finally we have

A MX))P1PE = of (LX) T 0Tt = o/ (X)) T,

since .7 (A(X)) is a symmetric tensor and the indices {0 ~!(1), o 21),...,c *¥} are a per-
mutation of the indices {1,2,...,k}. O

7. The Hessian of a general spectral function
In this section we calculate a formula for the Hessian of a general spectral functions at an
arbitrary symmetric matrix. That formula was first obtained in [17] but the insight for it came

from [18]. Our current approach is streamlined and shows clearly where the different pieces of
the Hessian come from.

7.1. Two matrix-valued maps

Let f: R" — R be a symmetric twice (continuously) differentiable function. Let .« (1)(2) :
R" — M" be defined by

A (1) (x) = V£ (x),

and let 7 (12) : R" — M" be defined entry wise by
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0, if i1 =iy,

1(11122( X) = [l ) = f, (), if iy ~xipand iy # i,
F 0= f @ L
W, lfll Xyl

Several of the properties of .27 (12)(x) are easily seen from the following integral representation.

Lemma 7.1. If f is a C? function, then for every iy, i» € N, we have
11122)( )_/ l]l] > Xij +t(xi2 _xi1)7-~-’xi2 +t(.x[1 _.sz),...)
lllz( , Xip + t()ci2 — x,»,), ce Xip l()c,'l —xiz), ...)dt,

where the first displayed argument is in position i1 and the second is in position iz. The missing
arguments are the corresponding entries of x, unchanged.

Proof. The first case, when i1 = i is immediate. In the second, i; ~ i> implies that x;, = x;,

and the integrand does not depend on ¢. In the third case, i] ~, i, the Fundamental Theorem of
Calculus, tell us that

1 1'd
—f —fi/l(...,xil+t(x,-2—x,-]),...,xi2+t(x,-]—xiz),...)dt
Xiy — Xiy JO

ot
l./l(...,xiz,...,xil,...)— i’](...,xil,...,xiz,...)
- Xi, — Xij
fi’z(...,xil,...,xiz,...)—fi’l(...,xil,...,xiz,...)
- Xiy — Xij
= /|3 (x).

In the second equality we used that x + V f(x) is a point-symmetric map. [

Lemma 7.2. If f(x) is twice (continuously) differentiable, then both maps x — ./ (1y2)(x) and
x — o/ (12)(x) are point symmetric.

Proof Lemma 2.5 shows that x — .o/ (1)(2)(x) is point symmetric, so if i1 ~ j, then l’l’” (x) =
/1/1 (n). Also, if iy ~; jiandip ~y jo with iy = ip and j; # j», then fl’l’lz(x) (x). Point
symmetry of x — V f(x) implies that if i; ~, ji, then le (x) = f]1 x). O

/1/2

Lemma 7.1 ensures that if f(x) is twice continuously differentiable then .o7(1y(2)(x) and
£/ (12)(x) are symmetric matrices and are continuous in x.

7.2. f o X is twice (continuously) differentiable if and only if f is

We now show that f o A is twice (continuously) differentiable at X if and only if f is same at
A(X). The ‘only if” direction can be seen by restricting f o A to the subspace of diagonal matrices.
To show the ‘if” direction, without loss of generality assume that X = Diag u, for some u € [Rﬁ,
that M,,/||M,, || converges to M as m goes to infinity, and that (20) holds. Using (30) together
with (24) we compute:
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V2(f o A)(Diag u)[M]
V(f o »)(Diag u + My,) — V(f o 1)(Diag i)

= lim
m=o0 1M

B Un (Diag"'V f (\(Diag s + M) Uy — Diag"'V f (1)

e 1Mo

_ iy Un@iag DV it i + oI M) Uy, — DiagVV f ()
m=o0 | M

_ iy Un@iag V(Y f () + V2 f ()] + 0| M D) U,y — Diag V'V f (1)
m=o0 | M

_ im Un@iag DV @NUp = Disg VS G 992 ot
m=>o0 | My

(53)
ForbrevityletT =V f(u),let.oZ (1)) = o/ 1)(2) (1), and let o/ (12) = o (12)(u). Using Corollary
2.9
. UnDiagPT)UT — DiagVT
lim

. [ M

= (Diag"? M. (54)

out

By Lemma 2.1 part (ii), there is a vector b that is block constant with respect to u, such that
o/ (1y(2) — Diag b is also block constant with respect to p. Then by Corollary 2.10, applied with
k=1,

U (Diag™ (V2 f ()[R U™
= U(DiagV ((+#(1)(2) — Diag b + Diag b)[1]))U"
= U (Diag"" ((+ (1)) — Diag b)[h])U" + U (Diag'" ((Diag b)[1]))U "
= (Diag V@ (/1)) — Diag b))[M] + (Diag' b)) [M]. (55)
This shows that f o X is twice differentiable.
To prove that f o A is twice continuously differentiable we reorganize the pieces. Direct ver-

ification shows that the sum .o/ (1y(2) + /(12 is block-constant. Then b can be chosen in such a
way that, in addition, .7 (12) + Diag b is a block-constant matrix and

A (12) + Diagh = T) + b (56)

out
Putting (53)—(56) together we obtain:
V2(f o 1)(Diag ) = Diag"? T} + Diag" @ (.o# (1(2) — Diag b) + Diag PV
= Diag(l)(z) (o 1)(2) — Diagb) + Diag(u) (o (12) + Diag b)
= Diag"® /(1)) + Diag"'? (1.
In the third equality we used the fact that Diag!"® (Diag b) = Diag!? (Diag b), which can
be verified directly. The formula for the Hessian of f o A at an arbitrary X is
V2(f e M(X) = V(Diag"® o/ 1)) (A(X)) + Diag!"? o (12) (X)) VT, (57)
where X = V (Diag A(X))VT.
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Finally, when f is C? both .o7(1)(2)(x) and ./(12)(x) are continuous and by [22, Proposition
6.2]1 V2(f o A)(X) is continuous as well.

Appendix A. A refinement of a perturbation result for eigenvectors

The main tool in the derivation of the formula for the Hessian in [17] was Lemma 2.4.
The statement of that lemma was broken down into nine parts, which led to consideration of
a variety of cases when deriving the Hessian. For the higher-order derivatives such case studies
would quickly become unmanageable. That is why the goal of this appendix is to transform
Lemma 2.4 from [17] into a form more suitable for computations. Section 3 gives the relevant
notation.

Any vector 1 € R" defines a partition of N, into disjoint blocks, where integers i and j are in
the same block if and only if u; = u ;. By r we denote the number of blocks in the partition. By
t; we denote the largest integer in /; foralll =1, ...,r.

Theorem A.1. Let {M,,};;’_, be a sequence of symmetric matrices converging to 0, such that the
normalized sequence M, /|| My, || converges to M. Let u be in R’l and let U,, — U € O" be a
sequence of orthogonal matrices such that

Diag u + M,, = U,,(Diag A(Diag u + Mm))UnTl, for all m=1,2,....

Then

(i) The orthogonal matrix U has the form

Vi 0 .- 0
0 %) 0

U = . 9
0 0 v,

where V) is an orthogonal matrix with dimensions |I;| x |I;| for all .
(ii) The following identity holds:

UTM;,U = Diagh, (A.1)
(iii) Foranyindicesi € I;, j € Iy, andt € {1, ..., r} we have the (strong) first-order expansion
o 8t — St i
Y ULUN =8ijou + ﬁM’f 1Mol + o1 M), (A2)
P M

pel;

with the understanding that the fraction is zero whenever §;; = 85y no matter what the
denominator is.

Proof. This lemma, with some modifications, is essentially Lemma 2.4 in [17]. Indeed, Part (i)
is [17, Lemma 2.4 Part (i)]. The equality in Part (ii) is an aggregate version of Parts (iv) and (vii)
from Lemma 2.4 in [17]. To prove Part (iii) we consider several cases.

Case 1. If i = j € I; and ¢t =/, then (A.2) becomes ) (U,i{’)2 =1+ o(||Mu|), which is
exactly Part (ii), Lemma 2.4 in [17].

PEl



Case 2.

Case 3.

Case 4.

Case 5.

Case 6.

Case 7.
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Ifi = j e [; and t # [, then (A.2) becomes Y _, (U,)? = o(||M,,||), which is a con-
sequence of Part (iii), Lemma 2.4 in [17].
Ifi + j € I;andt = [, then (A.2) becomes Y |
Part (vi), Lemma 2.4 in [17].
Ifi # j € [y and 1 # [, then (A.2) becomes 3 ., UPUJIP = o(| My, ), which is a con-
sequence of Part (v), Lemma 2.4 in [17].
Ifiel, jel;, withl#s #1t+#1, then (A.2) becomes
which is a consequence of Part (viii), Lemma 2.4 in [17].
Ifi e I}, j € I, with] # s and ¢t = [, then (A.2) becomes

Pl

el ’pU,{'lp = o(|| M, |), which is exactly

pet, Un Uil = o(| My)),

1 g
Z Uruir = ——— MY || M|l + oI Mu D),

vel, Mi — Kj

which we prove in Case 7.
Ifi eI}, j € I;,withl # s and t = s, then (A.2) becomes

1 .
DU U = —————MY || My | + o(| My ).
vels Wi — Hj

We now show that the expressions in both Case 6 and Case 7 are valid. Part (ix) from
Lemma 2.4 in [17] says thatif i € [}, j € I; with [ # s, we have

iprjp iprrjp
(m, 2 peyUn Uin 2 pet,Un Unn ) — M. (A3)

lim g

m— 00

+
| My |l ) | M |
Introduce the notation
iprrjp
131 L ZpEI/Um Um
" | M |l
and notice that

-
> B, =0 forallm,
=1
because U,, is orthogonal and the numerator of the last sum is the product of its ith and
Jjth row. Next, by Case 5 we have

. t
A, 2 B =

t#l,s

foralll=1,2,...,r,

SO
: l SN
lim (B), + B;) = 0.
For arbitrary reals a and b we compute
Ay

bu
(aBy, + by, — (m,ﬂmww )= (B, + By, )“—M — 0,
u Ui Ls
as m — oo. Using (A.3), thls shows that
: 1 sy _a=b
mlgnoo(aﬂm +bB,,) = — MY.

When (a,b) = (1,0) we obtain Case 6, and when (a,b) = (0,1) we obtain
Case7. O
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Appendix B. Tensor analysis

The aim of this appendix is to prove Theorems 2.9 and 2.10.

Recall that any vector 1 € R" defines a partition of N,, into disjoint blocks, where integers i
and j are in the same block if and only if 1; = 1 ;. By r we denote the number of blocks in the
partition. By ¢; we denote the largest integer in [; foralll =1, ..., r.

Theorem B.1. Let {M,,}°_ | be a sequence of symmetric matrices converging to 0, such that
the normalized sequence My, /||M,,|| converges to M. Let u be in R’i and Uy, — U € O" be a
sequence of orthogonal matrices such that

Diag u + M, = U,,(Diag A(Diag u + Mm))U,};, forallm =1,2,....

Then for every block-constant k-tensor T on R", any matrices Hy, . .., Hy, and any permutation
o on Ny we have

U, (Diag® T)UTY — Diag® T
lim ( m(Diag’ 1)U, — Diag )[Hl,...,Hk]
m—>00 | Ml
k
Z Dlaga(l)To(lz) Hl’ ey HkvM()ut]’ (Bl)

where Moy is the symmetric matrix of off-diagonal blocks of M as defined by (4).

Proof. The idea of the proof is to evaluate separately the expressions on both sides of (B.1) and
compare the results. Both sides of (B.1) are linear in each argument H;. That is why it is enough
to prove the result when H, fors = 1, , k,1s an arbitrary matrix, H;_; , from the standard basis
on M". In that case

sJs»

(U (Diag® T)UY — Diag® T)[Hi, j,, - - - » Hiy ji )
iedk

Ak
= (Uy, (Diag® T)UT)II Jk — (Diag® T) -k . (B.2)

Using the definition of the conjugate action and the fact that 7" is block constant, we develop
the first term on the right-hand side of the equality sign in (B.2):

,,,,,

iy
(Um(Dlag”T)U,;l;)“”‘ — Z (Dlag T) ‘11 ‘Ik l_[Ulvvajvq\/

py-an=1 v=1
n=l,...k
= E Tpl Pk l_[ Ulvpv U]”p =l
pyp=1
n=1,...k
— E Tpl <Pk l_[ U ivpy U]cr(v)Pv
pn=1
n=1,...k
Fous4 k
= E T”l el l_[ E U vPv U]rr(v)Pu
fn=1 v=1 \pv€l;,
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Putting everything together, we see that to evaluate the limit on the left-hand side of (B.1) we
must compute

iy

Tyeunsl [P k by Py yrJow Py P i
I tk:lT ! k nv:l (vaeltv Um Um - (Dlag T) Sdk

,,,,,

lim (B.3)
m—>00 | M |l
Assume that i; € I, and jsy € I, forall [ =1, ..., k. We investigate several possibilities.
Suppose first that among the pairs
(15 Jo))s (25 Jo@)s - -+ 5 (ks Jo k) (B.4)

at least two have nonequal entries. Without loss of generality we may assume they are (i1, jo (1))
and (i2, jo(2)), thatis, i1 # jy(1) and i2 # j,(2). Using (A.2), for any #1, 1, we observe that:

) 1 . , . .
lim Z Urlnl P1 Ur{lo(l)Pl Z Ulilzpz U’ila(Z)Pz
m=00 || My, ||

P1€1t| P2€It2

) 1  F— .
lim ——— (8,800 + ——— MU | My, | + o(1| M)
m—00 || My, || iy — Moy

1) -4 .
x <6f2j0@8v2z2 + 2222 MR M, | + o(||Mm||>>
1) MJU(Z)
1 ) — & -
= lim U U AfEIe ) | My, || + o[ My )
m—>00 || My, || Mip — M jo )y

Suyr, — 6 i
X | SRR MR | My | + o[ M )
Hiy — M)

=0.

Since in this case by definition (Diag® T') /:f]; = 0, we see that (B.3) is zero.

Suppose now that exactly one pair has unequal entries and let it be (i;, jo()). We consider two
subcases depending on whether or not i; and j; ;) are in the same block.

If both i; and j, ;) are in one block, that is, v; = s/, then using (A.2), for arbitrary ¢ we obtain:

i 1 i i
lim Z UlPyleor
m—00 || My, ||
PEl;

_ 1 Syt — 8, .
= lim —— (8, 8ur + Ut TSI Ao | Moy || + o(|| Mo |1)
m—00 || My || Hip = Ko
o([[Mm )
m=00 || My, ||

=0.

iy
In this subcase we again have (Diag® T') /1~ = 0; thus (B.3) is equal to zero.
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iy
If i; and j, ) are in different blocks, v; # sy, then (Diag® T') 71+« = 0 and by (A.2) we obtain:

k
! El i Jo )P
lim —— thl"'tfk Uﬂ\[)PuUma(v) v
et =1 v=1 \pvel,

R k Svyt, — Os,t ivi
viy viy 1
= Jim (30 T TT (B, S 2 MO M+ 0 Mo )
Tlyeees =1 mi 1 Ly Jo(v)

(B.5)

We show that the limit of at most two terms of the big sum in (B.5) may be non zero. Indeed, sum-
mands corresponding to k-tuples (71, .. ., #) with #; & {v;, s} converge to zero, because §;; j, , =
0, 84, = 851, = 0, and therefore

Spy — O L
UL pgivde )| My, || 4 o([| Mo 1) = ol My ).

8iyi. o Ouy +

UJjo@ vl i) — Mja(z)

Similarly, summands corresponding to k-tuples (¢1, ..., #x) with t, # v, for some v # [ con-

verge to zero, since then 6,,;, = &5,;, = 0 (v, = s, for all v # [). Thus, there are two summands

with possible non-zero limit, corresponding to the k-tuples (vi, ..., v;—1, v;, Vi41, ..., Vk) and
(01, ..., V-1, 81, Vi+1, - - - , V). Finally, if t, = v, (= s,,) for some v # [, then

1) — & -
el 2l pivie || My |+ o1 Mo 1) = 1+ o(| M ),

iy = I’Ljo(v)
since i, = jo(v) for v # . Thus, the limit of the summand in (B.5) corresponding to the k-tuple
(Ulv e V=1, VL, V] v ey Uk) is

aiujrr(v) Svutu +

T v -to—y b bopg g --bug

81} v T
lim Sivinad =
M= 00 ”Mm“ NI RYAY

S .
LMo | My || + ([ My )
Hip — My

Thortv—r byt by
= Mll]a(l)
9
Hip — Kz

while, analogously, the limit corresponding to the k-tuple (v1, ..., Vi—1, SI, Vi1, ..., Vk) 18
Lyg ey bsp by g oeely
B T o tvi—rbspbopgg-tog Mt
Hip = Ko
Putting these two limits together we see that (B.5), and therefore (B.3) is

Thorebo g bty obog  ptug by by b -ty

Mitiow)
Hip — Kz
Tivedi—iiipr i _ it ol
— Mll]a(l)
Hip — K jgq)
i ed i1 ik P i1 Jo @it ik s
. T ! + T I=1Jo)t+ iljo )
- out .

Hip — Ky

The first equality follows from the block-constant structure of 7'; the second follows from the
premise in this case that i; and j; () are in different blocks.
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Consider now the final case: i, = j,() for all v =1, ..., k. Using (A.2) one can see that
the only summand that may have a non-zero limit in the sum in the numerator of (B.3) is the
one corresponding to the multi-index (¢1, ..., tx) = (v1, ..., V¢). Thus, using the block-constant
structure of T (i, € I, forallv =1, ..., k), (B.3) is equal to

lim (T (1 + o(| My [)) = T'%) = 0.
m=00 || My ||

We now compute the right-hand side of (B.1) and compare with the preceding results. Suppose
that o (/) = m. By the definition of o) we have U(T)l m)y=k+1, G(T)l (k + 1) = [, and for any
integer i € Ng41\{m, k + 1} we have ga)l(i) = o~ !(i). Analogously, we have o) =k+1,
o)k +1) = o(l), and for any integer i € Ni1\{/, k + 1} we have o(1)(i) = o (i).

We again use the standard notation that a circumflex above a factor in a product means that
the factor is omitted. Since O'(T)l (k4+1) =1+ k+ 1 we use the second part of Lemma 2.7 to
compute

k

. 1
E (Diag®® To(ui)[Hiljlv cooy Hipjys Mowt]
=1

k

_ O gy . o

= Z<Tout’ H;, j, Oa(1y """ Oy Hi j, Oa(1) Mout)
=1

k Joo iy k)i —1(k+1)
_ (DNi1-ik gy (k+1) — 7 K0)
- Z(Tout °m (5i|ja(1)(1) e 5!’1/’0(1)(1) e Sikja(l)(k))Mout
=1

k
_ DNiy..ik jor . T . Jowyil
- Z(Tout)” e (8’110(1)(1) T 51115(1)(1) T 51kjo(1>(k>)Mout
I=1

k
_ DNiy ik joay (S, . - o Joit
- Z(Tout) a(>(811]o(l) e 811/0(1) o "Slkjo(k))Mout .
=1

The final equality results from changing the circumflexed factor (for each fixed /) while keeping
the other factors the same. If at least two of the pairs

(1, joy), G2, jo@))s - -+ (k> Jo k)

have different entries, then the final sum is zero. Now suppose exactly one of the pairs has unequal
entries, say i; # j, (). Then the sum is equal to

Diy.ik ] o - o Jowyit
(Tout) fethklo (61110(1) "'51110(1) "'5lkjo(k))Mout . (B.6)

If i; and j, () are in the same block, then (T[flllz)i‘ ~ikjs®) = by the definition of 7"

out- I i and
Jo @) are not in the same block, then (B.6) is equal to

SRR TR} 71 TS P S ol S WO TRy P70} 1 S PO 7 S
T T ® i1jo)

out ’

(ONIPY; Joyil
(T ko) M —
out out i, — Ky,
because M is symmetric. Finally, if i, = j,(,) forallv =1, ..., k, then (To(ll]i)"l""'k-/'“(l) =0 for
all /. These outcomes are equal to the results in the corresponding cases in the first part of the
proof, so the theorem follows. [
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Proposition B.2. Let T be any k + 1-tensor on R, let x € R", let V be in O", and let o be in
Pk Then

V (Diag® (T[x])VT = (V(Diag?®+> T)VT)[V (Diag x)VT].

Proof. Let H,j,, ..., Hjj, be any k basic matrices. Since o, (i) = o (i) for all i € Ny and
oG+1)(k +1) =k + 1, we can use Theorem 2.6 twice to compute
i.lmi.k .
(V(Diag” (T[x) V") /14 = (V(Diag” (TIx])V [ Hi jy -, Higji]
= <T[‘x]7 Hi]j] ¢ ..-0¢ Hikjk)
n,..,n
= S A
Plyes D=1
n,..,n

= Z PPt o pirt P et g PPl

i1j1 ik Jk
DPls-oos Ps Pkr1=1
n,...,n

pPip_—1 PrkP _—1

~ ~ k k+1 -1

= ) popn g TG g e ® g o P ek ke
Jji Lk Jk

Plseeos Pks Pkt1=1

= (T, Hi, j, %y - - - Poqry Higjr Cogrry Diagx)
= (V(Diag®®OT)V ) [H;,j,, ..., Hyj,, V(Diagx) V']
il'“ik
= ((V(Diag®® > T)VT)[V (Diag x) V1) 71k .
Since the indices iy, ..., iy and ji, ..., jx are arbitrary we are done. [J

The next lemma says that for any block-constant tensor 7', Diag® T is invariant under conju-
gation with a block-diagonal orthogonal matrix.

Lemma B.3. Let T be a block constant k-tensor on R" and let U € O" be a block diagonal
matrix (both with respect to the same partitioning of N,,). Then for any permutation o in Ny

U(Diag’ T)UT = Diag°T.

Plj()of._ Let{/y, ..., I,} bethe partitioning of the integers‘N » that determines the block structure, so
U'PU/P = O wheneveri ~ jori = p,and Zpels U'PU'P = §;; wheneveri € I,. Let (i1, ..., i)
be an arbitrary multi index and suppose that i; € I, for [ =1, ..., k. We expand the left-hand
side of the identity:
A n,..., n
. T l_l'“l_k . P1--Pk . . . .
(UDiag° T)UT) s = Z (Diag® T) @14 U PIyIdr ... yikpey jedk
Pssqs=1
s=1,..., k
Ny..., n
_ Z TPL-Pe P Po=1qy .| ik Pk %P1
Plyeos Pk=1
..., n
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Il
N

ceelty, Z UiPLJoPL . .. [JkPk[] o) Pk

Hyeens tr=1 PI€ly
1=1,...k

— Tty Z UiPLJePL . .. [JkPk ] Jo k) Pk

I’IEIU[
I1=1,....k

= Tt §
— Til"'ik(s

i1jo(l) " " -Sikja(k)

i1jo) *° .aikja(k)

ipig

= (Diag® T) /i-k
The penultimate equality follows from the fact that T is block constant. []

Given a block structure on N,, and any matrix M, by M;, we denote the matrix with the same
diagonal blocks as M and the rest of the entries set to zero, as in (3).

Theorem B.4. Let U € O" be a block diagonal orthogonal matrix. Let M € S" be given and let
h € R" be such that

UTM;,U = Diagh. (B.7)

Let Hy, ..., Hy be arbitrary matrices and let o be a permutation on Ny. Then

(i) for any block-constant (k + 1)-tensor T on R”,
(T[h]v I:Il OS¢ " Q¢ Hk) = (Ta Hl 00(k+1) e OU(k+1) Hk OO’(k+1) Min)-
(i) for any block-constant k-tensor T on R",

(T%[h], Hy op - - 05 Hy) = (T

in

Hj og, =+ 00y, Hk 00, Mi Yy foralll=1,...,k,

where the permutations oy forl =1, ..., k, k + 1 are defined by (13), H; = UTH; U for
i=1,...,k, and the lifting T is defined by (17).

Proof. To see that the first identity holds we use Theorem 2.6, Proposition B.2, (B.7), and Lemma
B.3 in that order, as follows:

(T[h], Hy o -+ o5 Hy)= (U(Diag’ T[h)U")[Hi. ..., Hy]
= (U(Diag’«» TYUN)[Hy, ..., Hy, U(Diagh)U"]
= (UDiag" ™" YU [Hy, ..., Hy, Mip]
= (Diag"®+V T)[Hy, ..., Hy, Miy]

= <T, Hl oo‘(k+1) e oU(k-H) Hk Og(k-H) Min)~
The final equality follows from Theorem 2.6.
To show the second identity, it suffices to prove it for arbitrary basic matrices H; ;s =1, ..., k.
Fix k basic matrices H;, j,, ..., H; j, and suppose thati; € I, forl =1, ..., k. Then

(Tr/[h], I:Iiljl Og *** O¢ Hikjk)
= (U(Diag’ T"[RDUD[H;,j,, - - ., Hi j,]
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(U (Diag® T [h])UT) itk

n,..,n ,
Z (Diag® T"[h]) 0a pitPighan . grikpk grikax

— Z (T‘L'] [h])Pl---Pk Ui]p] U./l Po—l(l) .. Uikpk Ujk[?g—l(k)
Ploepi=l1

n,...0n
— Z (T [h])P1- Pk UhP g ieyP1 .. ikPk ] o) Pk
Ploeess Pk=1

n,...,n n
— E E (T™)P1+PkPiet1 y it UiPLiomyPr . .| [JikPk ] Jo k) Pk
Plsews Pk=1 pry1=1

n,..,n
— Z T PPk PLL P JoOPL | . [Pk [] Jo () Pk
Plsees Pk=1
[
— 2 : Ty oty 2 : WPLyBP T Je)PL L [Tk PR Jo (k) Pk
tyentr=1 pn€ly
n=L,..., k
— Tlop-by E RPLPL JePL L ik PE ] Jo o P
prEly
I=1,...k
B o N S S 2: PLLTUPLLJo ()P
=Tm vk811]a(1) 81115(1) (Slk]a(k) AN VAl A
pIEIU]
— pitiks, s LS. . 2 PLTTipLT o) P
=T 811]0(1) 8’]]0(1) (Slk]cr(k) hPTUH PG o
PIEIUI
_ opipedp s, LS. s i1 jo (1)
=T 811]0(1) 81/]0(1) 8lk]a(k) Min :

To evaluate the right-hand side of the identity, we use the second part of Lemma 2.7 since
G(;l(k +1) =1+ k+ 1. Since o, (s) = o (s) for s € Nep1\{l, k + 1} and o) (k + 1) = o ()
foralll/ =1, ..., k, we can calculate

(N L
<Tin ’ Hll]l OG([) e OU([) Hl/(]k Oo

M;

o Min)
Jo g 1 _—1

— 1) o) te+D)

_ DNk oy (1) o = o
= (T;) ® 51110(,)0) o 31110(,)0) . '5tk/a(,><k> in

_ DNiy ik oy 8. . - o Johil
- (Tin ) o )511/a(1) o '811Jk+| o '5tkja(k) Min
_opitedkg, ST s Jowi

=T 811]0(1) 81/]k+l (slk]a(k) Min

_ Tilikg, — . {tJo 1)

=T 811]0(1) o '5111k+1 o '8lkja(k) Min

— Tilikg Y VP | Milja(z)

ey """ Cljo) ik Jo k) in
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In the third equality we used the fact that T is block constant, as well as the fact that Mij;’ Ol _

if jo’(l) e i[.

In the fourth equality we used the fact that M is symmetric. The final equality holds

because we changed the missing factor, while keeping the other factors the same. [

Proposition B.5. Let U € O" be block diagonal, let H be an n X n matrix, and let o be any

permutation on N.

(1) If T is a (k + 1)-tensor such that for some fixedl € Ny we have TP!-Pl-Pk+l = () whenever

pr~

Dk+1, then

(U (Diag’® T)U")[Hin] = 0.

(ii) If T is a (k + 1)-tensor such that for some fixedl € Ny we have TP'-Pl-Pk+l = () whenever

Pl % Dk+1, then

(U (Diag"® T)U™)[ Hou] = 0.
(i) If T is any (k + 1)-tensor, then

(U (Diag”@+) TYU ) [ Hout] = 0.

Proof. Fix

an index [ in Ny. Let H; j,, ..., H j,

arbitrary matrix. Using the definitions we compute

(U Diag’0 TYUNY[H;y jy, - .., Hiyjy» H]
nn i1
I S
= Z (U(Diaga([)T)UT)jl-<«fk+1 H ik 1Jk+1
ik+15Jk+1=1

Now suppose that 7" is a (k + 1)-tensor with 771--PI--Pk+l = ( whenever p; ~ pj41 and that
H = Hiy. Then H'"+1/k+1 £ 0 implies that ix11 ~ ji+1. In that case, by the fact that U is block
diagonal, U/k+1PIU%+1Pk+1 =£ () implies that p; ~ pi1, which implies that TPtPlPktl = (),

n,n n,..,n
PlPk+1 . . . . S
E E (DiaggU) T) 41-aks1 JUPLYNGL L k1 Pt [ k1 9k+1 ikt 1k
iki1sjkar=1 ps.as=1
R

n,n N, . .
. 1 -1 . k
§ § TP1-Pk+1i1P1 UJ p”(z) M Yk Pl UJ

ik+15Jk+1=1 {’S=1
5=

+1P_—1 . .
7@y ®*D prict1jk+1

n,n n,..,n . .
§ : 2 : (TPI«--Pk+1UilplU'/a(/)“)m gyl o

ik+1,Jk+1=1  ps=l1
s=1

) Pit1

. Uik+1pk+1 U]"(z) (k+1 Hik+1jk+1)

n,n n,...,n
E E (TP1Prtl yipigieypr . gupL gk
ik+1,Jk+1=1  ps=1
k+15Jk+1 s:lf,.,k+1
oo U1 PR+ [ Jo () PRt Hik+1jk+1)_

Thus every summand in the final double sum is zero.

be arbitrary basic matrices, and let H be an
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In the second case, suppose T is a (k + 1)-tensor with 7P1-Pi-+Pk+1 = () whenever p; » py1
and H = Hoyy. Then Hik+1Jk+1 = O implies thati; 1 ~ ji41. In that case, by the fact that U is block
diagonal, U /++1 PLik+1Pk+1 o O implies that p; » pyy 1, which implies that T'P1+PlPk+1 = . The
sum is zero.

In the third case, suppose that T is any (k + 1)-tensor and H = Hgy. A calculation almost
identical to the one at the beginning of the proof (it differs only in the last step) shows that

. o, T
(U (Diag &+ TYU )[H,\j,» ..., Hi ., H]
n,n n,..,n
— Z Z T PUPhtt [JE1P1 ] Jo (1) P
ity ka1 =1 =1
Ue+15Jk+1 .v=1’,A...,k+I

oo PR Jo () PE [Tk Pt L [] Tkt Phel ik 1 k1

Then H'k+1/k+1 4 O implies that ixy1 ¢ jx+1. In that case, by the fact that U is block diagonal,
UJkH1PH1 J+1Pk+1 = (), Again the sum is zero. [J

We are finally ready to conclude the proofs of our two main analytical tools.
Proof of Theorem 9. A consequence of Theorem B.1 and Proposition B.5. [J

Proof of Theorem 10. A consequence of Theorem 2.6, Theorem B.4, Proposition B.5, and the
factthat M = My, + Moy, O

If vector p defining the equivalence relation on N, has distinct entries, then every tensor from
T5" is block constant and the block-diagonal orthogonal matrices are precisely the signed identity
matrices (those with plus or minus one on the main diagonal and zeros everywhere else). In this
case we also have i ~ j if and only if i = j and thus Tlfll ) = T Moreover, since Proposition B.5
holds for arbitrary matrices (symmetric or not), Theorem 2.10 implies the next corollary, valid

for an arbitrary matrix H.
Corollary B.6. Let o be a permutation on Ny and let H be an arbitrary matrix. Then

(i) for any (k + 1)-tensor T on R",
Diag? (T [diag H]) = (Diago(k+1) T[H];
(ii) for any k-tensor T on R”"
Diag® (T"[diag H]) = (Diag”® T")[H] foralll =1,...,k,

where the permutations o, , for | € Ny, are defined by (13).

[ON

Appendix C. Proof of Theorem 6.4

Let X € S" have distinct eigenvalues, and let x = A(X). The proof of Theorem 6.4 is by induc-
tion on s. When s = 1 there is nothing to show since by definition .;z/(l) xX)=Vfx)= ,9/(1) (x)
for every x € R”". Suppose that for some integer s in [1, k) we have
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Z Diag® 7, (x) = Z Diag? o/ (x),
o€ePS oepP’
for every x € R" with distinct entries.

By definition, the tensor .27 (x) is equal to zero if the permutation o has more than one cycle
in its cycle decomposition. Then using Lemma 6.3 gives

Z Diag®.oZ,(x) = Z Diag”®.o/ 5, (x)
ocepstl oeP’
leNg 11

: lof
= E Diag®® .o/, (x)
oePs
leNg

= Z Diag"“)((&/a (x))ggt + (TUI (x))l(lll))
oePs
leNg

Let M e §" and suppose || M|| = 1.Let{M,,};_, be asequence of symmetric matrices converging
to zero and such that M, /|| M, || converges to M. Finally, let {U,, }_, be a sequence of orthogonal
matrices such that

Diag x + M,, = U,,(Diag A(Diagx + M,,))U}.

By taking a subsequence if necessary, we may assume that Uy, converges to U € O" when m
goes to infinity. Since the partition of the integers N, into blocks is determined by the repeated
eigenvalues of the matrix X, and the latter are all distinct, we have M;, = Diag (diag M). (More-
over, every tensor is block constant.) Thus, defining 2 € R" as in (23) we see that h = diag M
and by (25) we have UT M;,U = Diag (diag M). on the one hand, the induction hypothesis and
the first part of Theorem 2.10 give

> Diag”® (T, (x))yy | [M]
oePs
leng

U (Z Diag® (V.oZ, (x)[h])) uT

oeP’

t—0
oeP’

= lim U <Z Diag® (A (x 4 th) — Ay (x))) Ut

. o _ T
= lim U <Z Diag?® (/4 (x + th) ,szig(x))> U

ogePs

=U <Z Diag® (V.4 (x)[h])) uUT

ogePs

> Diag etV V.e/, (x)) [M]

(x
|

Z Diagacwl)t;/(,(”l)(x)) [M].

ogePs
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In the final equality we used the second line from (28). On the other hand, using (15), the induction
hypothesis, and again (15) we have

Y Diag”® (5 (x) | [M]

oePS
leNg
_ Un (Y, cps Diag? o/ 5 (x))UY — 3" ps Diag” o/ (x)
m—00 [ M
_ Un (Y, cps Diag? o/ 5 (x))UY — 3" . ps Diag® o/ (x)
m—00 [ M
= | 3 Diag®® (5 (x))5 | [M]
gePs
leNg
= ZDiaga(l)J;{J(l)(x) [M].
oePs

leNg

In the final equality we used the first line in (28). Thus we see that

> Diag”,(x) | M= ) Diag” oy (x) | [M],
oepstl oepstl

and since M was arbitrary, we are done.
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