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Abstract

We are interested in higher-order derivatives of functions of the eigenvalues of real symmetric matrices
with respect to the matrix argument. We describe a formula for the kth derivative of such functions in two
general cases.

The first case concerns the derivatives of the composition of an arbitrary (not necessarily symmetric)
k-times differentiable function with the eigenvalues of symmetric matrices at a symmetric matrix with distinct
eigenvalues.

The second case describes the derivatives of the composition of a k-times differentiable separable sym-
metric function with the eigenvalues of symmetric matrices at an arbitrary symmetric matrix. We show
that the formula significantly simplifies when the separable symmetric function is k-times continuously
differentiable.

As an application of the developed techniques, we re-derive the formula for the Hessian of a general
spectral function at an arbitrary symmetric matrix. The new tools lead to a shorter, cleaner derivation than
the original one.

To make the exposition as self contained as possible, we have included the necessary background results
and definitions. Proofs of the intermediate technical results are collected in the appendices.
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1. Introduction

We say that a real-valued function F of a real symmetric matrix argument is spectral if

F(UXUT) = F(X)

for every real symmetric matrix X in its domain and every orthogonal matrix U . That is, F(X) =
F(Y ) if X and Y are symmetric and similar. The restriction of F to the subspace of diagonal matri-
ces defines a function f (x) = F(Diag x) on a vector argument x ∈ Rn. The function f : Rn → R

is symmetric, that is, has the property

f (x) = f (Px) for any permutation matrix P and any x in the domain of f,

and in addition, F(X) = (f ◦ λ)(X), in which the eigenvalue map

λ(X) = (λ1(X), . . . , λn(X))

is the vector of eigenvalues of X arranged in non-increasing order.
What smoothness properties of the symmetric function f are inherited by F ? The eigenvalue

map λ(X) is continuous but not always differentiable with respect to X. Even in domains where
λ(X) is differentiable, it is difficult to organize the differentiation process so that one arrives at
an elegant formula for the higher-order derivatives of (f ◦ λ)(X).

An important subclass of spectral functions is obtained when f (x) = g(x1) + · · · + g(xn)

for some function g of one real variable. We call such symmetric functions separable; their
corresponding spectral functions are called separable spectral functions.

In [13] there is an explicit formulae for the gradient of the spectral function F in terms of the
derivatives of the symmetric function f :

∇(f ◦ λ)(X) = V (Diag ∇f (λ(X)))V T, (1)

where V is any orthogonal matrix such that X = V (Diag λ(X))V T is the ordered spectral decom-
position of X. In [17] a formula for the Hessian of F was given, whose structure appeared quite
different from the one for the gradient. Calculating the third and higher-order derivatives of F

becomes unmanageable without an appropriate language for describing them.
In this work we generalize the work in [13,17] by proving, in two general cases, the following

formula for the kth derivative of a spectral function

∇k(f ◦ λ)(X) = V

⎛⎝∑
σ∈P k

DiagσAσ (λ(X))

⎞⎠V T, (2)

where again X = V (Diag λ(X))V T. The sum is taken over all permutations on k elements, which
are a convenient tool for enumerating the maps Aσ (x). The precise meanings of the operators
Diagσ and the conjugation by the orthogonal matrix V are explained in the next section; see (6)
and (9) respectively. The maps Aσ (x) depend only on the partial derivatives of f (x) up to order
k, and do not depend on the eigenvalues; they reveal how the higher-order derivatives depend on
the eigenvalue map λ(X). Formula (2) depends on the eigenvalues only through the compositions
Aσ (λ(X)) and conjugation by the orthogonal matrix V .

We show that (2) is valid (a) when f is a k-times (continuously) differentiable function,
not necessarily symmetric, and X is a matrix with distinct eigenvalues, and (b) when f is a
k-times (continuously) differentiable separable symmetric function and X is an arbitrary sym-
metric matrix. We give a recipe for computing the maps Aσ (x) in these two cases.
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Our results for separable spectral functions imply those of [5,4] for one-parameter families of
symmetric matrices; see also the monographs [9,10]. More precisely, when restricted to the space
of real symmetric matrices, the Daleckiĭ–Kreĭn formulae describe the kth order derivative of the
function t → F(X(t)), where X(t) is a k-times continuously differentiable curve of symmetric
matrices and F = f ◦ λ is a separable spectral function with f being k-times continuously dif-
ferentiable. We describe the higher-order derivatives of X → F(X) from which one can obtain
the derivatives of t → F(X(t)) by applying the chain rule.

Our results also capture and extend those in [21] when specialized to symmetric matrices. (The
gradients of separable spectral functions are the functions considered in [21] when restricted to
the space of symmetric matrices.) For example, Theorem 4.1 in [21] shows that if the separable
function f is k-times continuously differentiable and t ∈ R �→ X(t) is a k-times differentiable
curve of symmetric matrices, then F(X(t)) is k-times differentiable, where F = f ◦ λ. Thus,
Theorem 4.1 in [21] strengthens the Daleckiĭ–Kreĭn result by dispensing with the requirement

that �k

�tk
X(t) be continuous. In Theorem 6.1 we assume only that f is k-times differentiable to

obtain that F(X) is k-times differentiable with respect to the symmetric matrix variable X. In that
case, one can again use the chain rule to obtain the derivatives of F(X(t)). In addition, Theorem
6.9 shows that if f is k-times continuously differentiable then F(X) is also k-times continuously
differentiable with respect to the variable X.

If f is a k-times continuously differentiable separable symmetric function, (2) can be signif-
icantly simplified. In that case, if σ1 and σ2 are two permutations on k elements with one cycle
in their cycle decomposition then Aσ1(x) = Aσ2(x) and these maps allow a simple determinant
description. If σ has more than one cycle, then Aσ (x) ≡ 0.

In Section 7, we re-derive the formula for the Hessian of a general spectral function at an
arbitrary symmetric matrix. The techniques developed here lead to a shorter, more streamlined
derivation than the original derivation in [17].

The language that we use, based on the generalized Hadamard product, allows us to differentiate
(2) just as one would expect: writing the differential quotient and taking the limit as the perturbation
goes to zero. This gives a clear view of where the different pieces in the differential come from
and gives the process a routine calculus-like flavour.

In the next section, we give the necessary notation, definitions, and background results. Proofs
of the technical tools are in the appendices.

2. Notation and background results

By Rn we denote the standard n-dimensional Euclidean space of n-tuples of real numbers
with standard inner product and norm. By Sn, On, and P n we denote the sets of all n × n

real symmetric, orthogonal, and permutation matrices, respectively. By Mn we denote the real
Euclidean space of all n × n matrices with inner product 〈X, Y 〉 = tr(XY T) and corresponding
norm ‖X‖ = √〈X, X〉. For A ∈ Sn, λ(A) = (λ1(A), . . . , λn(A)) is the vector of its eigenvalues
arranged in non-increasing order:

λ1(A) � λ2(A) � · · · � λn(A).

By Nk we denote the set {1, 2, . . . , k}. For any vector x in Rn, Diagx denotes the diagonal
matrix with the entries of vector x on the main diagonal, and diag: Mn → Rn denotes its adjoint
operator, defined by diag(X) = (x11, . . . , xnn). By Rn↓ we denote the cone of all vectors x in Rn

such that x1 � x2 � · · · � xn. Denote the standard orthonormal basis in Rn by e1, e2, . . . , en. For
a permutation matrix P ∈ P n we say that σ : Nn → Nn is its corresponding permutation map
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if for any h ∈ Rn we have Ph = (hσ(1), . . . , hσ(n))
T, that is, P Tei = eσ(i) for all i = 1, . . . , n.

The symbol δij denotes the Kroneker delta. It is equal to one if i = j and zero otherwise.
Any vector μ ∈ Rn defines a partition of Nn into disjoint blocks, where integers i and j are in

the same block if and only if μi = μj . In general, the blocks that μ determines need not contain
consecutive integers. We agree that the block containing the integer 1 is the first block, I1, the
block containing the smallest integer that is not in I1 is the second block, I2, and so on. By r we
denote the number of blocks in the partition. For any two integers, i, j ∈ Nn we say that they
are equivalent (with respect to μ) and write i ∼ j (or i ∼μ j ) if μi = μj , that is, if they are in
the same block. Two k-indices (i1, . . . , ik) and (j1, . . . , jk) are called equivalent if il ∼ jl for all
l = 1, 2, . . . , k, and we write (i1, . . . , ik) ∼ (j1, . . . , jk) (or (i1, . . . , ik) ∼μ (j1, . . . , jk)).

A k-tensor on a linear space is a real-valued function of k arguments from the linear space that
is linear in each argument separately. Denote the set of all k-tensors on Rn by T k,n. The value of
the k-tensor at (h1, . . . , hk) is denoted by T [h1, . . . , hk]. For any (i1, . . . , ik), a k-tuple of integers
from Nn, we denote by T i1...ik the value T [ei1 , . . . , eik ]. Matrices from Mn are viewed as 2-tensors
on Rn, with respect to the fixed basis, and for an M ∈ Mn we have Mij = M[ei, ej ] :=〈ei, Mej 〉.

The following lemma motivates the following definitions. It is an application of the chain rule
to the equality f (μ) = f (Pμ).

Lemma 2.1. Let f : Rn → R be a symmetric function that is k-times differentiable at the point
μ ∈ Rn, and let P be a permutation matrix such that Pμ = μ. Then

(i) ∇f (μ) = P T∇f (μ),

(ii) ∇2f (μ) = P T∇2f (μ)P, and
(iii) ∇sf (μ)[h1, . . . , hs] = ∇sf (μ)[Ph1, . . . , Phs], for any h1, . . . , hs ∈ Rn, and s ∈ Nk.

Definition 2.2. A tensor T ∈ T k,n is called symmetric if

T [hσ(1), . . . , hσ(k)] = T [h1, . . . , hk]
for any permutation σ on Nk and any h1, . . . , hk ∈ Rn.

Definition 2.3. (i) Given a vector μ ∈ Rn, a tensor T ∈ T k,n is called point symmetric with respect
to μ if for any permutation P ∈ P n such that Pμ = μ we have

T [Ph1, . . . , Phk] = T [h1, . . . , hk]
for any h1, . . . , hk ∈ Rn.

(ii) A k-tensor-valued map μ ∈ Rn → F(μ) ∈ T k,n is point symmetric if for every μ ∈ Rn

and every permutation matrix P ∈ P n we have

F(Pμ)[Ph1, . . . , Phk] = F(μ)[h1, . . . , hk]
for any h1, . . . , hk ∈ Rn.

If the map μ ∈ Rn → F(μ) ∈ T k,n is point symmetric then the tensor F(μ) is point sym-
metric with respect to μ, for every μ ∈ Rn.

Definition 2.4. (i) A tensor T ∈ T k,n is called block constant with respect to μ if T i1...ik = T j1...jk

whenever (i1, . . . , ik) ∼μ (j1, . . . , jk).
(ii) A k-tensor-valued map μ ∈ Rn → F(μ) ∈ T k,n is block constant if F(μ) is block con-

stant with respect to μ for every μ ∈ Rn.
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Every tensor that is block constant with respect to μ is point symmetric with respect to μ.
By Lemma 2.1, for any differentiable symmetric function f : Rn → R the mapping μ ∈ Rn →
∇f (μ) ∈ Rn is a point-symmetric, block-constant, 1-tensor-valued mapping. In general, for every
s ∈ Nk the mapping (when it exists) μ ∈ Rn → ∇sf (μ) is a point-symmetric, s-tensor-valued
map. In addition, if the mapping μ ∈ Rn → ∇sf (μ) is continuous, then the tensor ∇sf (μ) is
symmetric.

By T [h] we denote the (k − 1)-tensor on Rn given by T [·, . . . , ·, h].

Lemma 2.5. If a k-tensor-valued map μ ∈ Rn → T (μ) ∈ T k,n is point symmetric and differen-
tiable, then its derivative μ ∈ Rn → ∇T (μ) ∈ T k+1,n is a point-symmetric map.

Proof. We use the formula for the first-order Taylor expansion. Let vectors h1, . . . , hk, h be given
and let {vm} be any sequence of vectors in Rn approaching zero such that vm/‖vm‖ approaches
h as m → ∞

T (μ + vm)[h1, . . . , hk] = T (μ)[h1, . . . , hk] + ∇T (μ)[h1, . . . , hk, vm] + o(‖vm‖).
On the other hand, for any permutation P we have

T (μ + vm)[h1, . . . , hk]
= T (Pμ + Pvm)[Ph1, . . . , Phk]
= T (Pμ)[Ph1, . . . , Phk] + ∇T (Pμ)[Ph1, . . . , Phk, P vm] + o(‖Pvm‖)
= T (μ)[h1, . . . , hk] + ∇T (Pμ)[Ph1, . . . , Phk, P vm] + o(‖vm‖).

Subtracting the two equalities, dividing by ‖vm‖ and letting m go to infinity, we get

∇T (Pμ)[Ph1, . . . , Phk, Ph] = T (μ)[h1, . . . , hk, h].
The result follows. �

For any given fixed vector μ ∈ Rn we define a linear operation on matrices: M ∈ Mn → Min ∈
Mn, as follows

M
ij

in =
{
Mij , if i ∼μ j,

0, otherwise,
(3)

and

Mout = M − Min. (4)

Even though in Min and Mout we omit the dependence on μ, no confusion will arise since the
μ will be clear from the context.

2.1. Generalized Hadamard product

The Hadamard product of two matrices H1 = [Hij

1 ] and H = [Hij

2 ] of the same size is the

matrix of their element-wise product H1 ◦ H2 = [Hij

1 H
ij

2 ]. The standard basis on the space Mn

is given by the set {Hpq ∈ Mn|Hij
pq = δipδjq for all i, j ∈ Nn}.

For each permutation σ on Nk , we define the σ -Hadamard product of k matrices to be a
k-tensor on Rn as follows. Given any k basic matrices Hp1q1 , Hp2q2 , . . . , Hpkqk

(Hp1q1 ◦σ Hp2q2 ◦σ · · · ◦σ Hpkqk
)i1i2...ik =

{
1, if is = ps = qσ(s), ∀s = 1, . . . , k,

0, otherwise.
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Extend this product to a multi-linear map on k matrix arguments:

(H1 ◦σ H2 ◦σ · · · ◦σ Hk)
i1i2...ik = H

i1iσ−1(1)

1 · · · Hikiσ−1(k)

k . (5)

For example, when k = 1 there is just one permutation on N1, namely the identity σ = (1),
and ◦(1)H = diag H . When k = 2 there are two permutations on N2: the identity (1)(2) and the
transposition (12). The two corresponding σ -Hadamard products of two matrices are

H1 ◦(1)(2) H2 = (diag H1)(diag H2)
T,

H1 ◦(12) H2 = H1 ◦ HT
2 .

Let T be an arbitrary k-tensor on Rn and let σ be a permutation on Nk . Let Diagσ T be the
2k-tensor on Rn defined by

(Diagσ T )
i1 ...ik
j1 ...jk =

{
T i1...ik , if is = jσ(s), ∀s = 1, . . . , k,

0, otherwise.
(6)

When k = 1 we have Diag(1)x = Diag x for any x ∈ Rn. Any 2k-tensor T on Rn can be viewed
as a k-tensor on the linear space of 2-tensors in the following way

T [H1, . . . , Hk] :=
n∑

p1,q1=1

· · ·
n∑

pk,qk=1

T
p1 ...pk
q1 ...qk H

p1q1
1 · · · Hpkqk

k . (7)

It can be shown that the right-hand side of (7) is invariant under orthonormal changes of the basis
in Rn. If T is a 2k-tensor on Rn and H ∈ Mn then by T [H ] we denote the 2(k − 1)-tensor on Rn

defined by

(T [H ])
i1 ...ik−1
j1 ...jk−1 :=

n,n∑
p,q=1

T
i1 ...ik−1p

j1 ...jk−1q Hpq. (8)

Define the dot product of two tensors in T k,n in the usual way

〈T1, T2〉 =
n∑

p1,...,pk=1

T
p1...pk

1 T
p1...pk

2 ;

the corresponding norm is ‖T ‖ = √〈T , T 〉. We define an action (called conjugation) of the
orthogonal group On on the space of all k-tensors on Rn. For any k-tensor T and any U ∈ On

this action is denoted by UT UT ∈ T k,n:

(UT UT)i1...ik =
n∑

p1=1

· · ·
n∑

pk=1

(T p1...pkUi1p1 · · · Uikpk ). (9)

This action is norm preserving and associative, that is,

‖V XV T‖ = ‖X‖ and V (UT UT)V T = (V U)T (V U)T

for all U, V ∈ On; see [22, Lemma 4.1].
The Diagσ operator, the σ -Hadamard product, and conjugation by an orthogonal matrix are

connected by the following multi-linear duality relation; see [22, Theorem 4.3].

Theorem 2.6. For any k-tensor T ∈ T k,n, any matrices H1, . . . , Hk, any orthogonal matrix V,

and any permutation σ in P k we have
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〈T , H̃1 ◦σ · · · ◦σ H̃k〉 = (V (Diagσ T )V T)[H1, . . . , Hk], (10)

where H̃i = V THiV , i = 1, . . . , k.

We also need the following two lemmas from [22].

Lemma 2.7. Let T be a k-tensor on Rn, and H be a matrix in Mn. Let Hi1j1 , . . . , Hik−1jk−1 be
basic matrices in Mn, and let σ be a permutation on Nk.

(i) If σ−1(k) = k, then

〈T , Hi1j1 ◦σ · · · ◦σ Hik−1jk−1 ◦σ H 〉 =
(

k−1∏
t=1

δit jσ(t)

)
n∑

t=1

T i1...ik−1tH tt .

(ii) If σ−1(k) = l, where l /= k, then

〈T , Hi1j1 ◦σ · · · ◦σ Hik−1jk−1 ◦σ H 〉 =
⎛⎜⎝k−1∏

t=1
t /=l

δit jσ (t)

⎞⎟⎠ T i1...ik−1jσ(k)H
jσ(k)iσ−1(k) .

Lemma 2.8. Let T be any 2k-tensor on Rn, V ∈ On, and let H be any matrix. Then

V (T [V THV ])V T = (V T V T)[H ].

2.2. Operations with tensors

For a fixed vector μ ∈ Rn and any l ∈ Nk define the linear map

T ∈ T k,n → T
(l)
out ∈ T k+1,n

as follows:

(T
(l)
out)

i1...ik ik+1 =
{

0, if il ∼μ ik+1,
T i1 ...il−1ik+1il+1 ...ik −T i1 ...il−1il il+1 ...ik

μik+1−μil
, if il �μ ik+1.

(11)

If T is a block-constant tensor with respect to μ, then so is T
(l)

out for each l ∈ Nk . If x ∈ Rn →
T (x) ∈ T k,n is a k-tensor-valued map, then x ∈ Rn → T (x)

(l)
out ∈ T k+1,n is a (k + 1)-tensor-

valued map, defined for each x by (11) with μ :=x. The maps defined by (11) are linear, that is,
for any two tensors T1, T2 ∈ T k,n and α, β ∈ R we have

(αT1 + βT2)
(l)
out = α(T1)

(l)
out + β(T2)

(l)
out for all l = 1, . . . , k. (12)

One can iterate this definition: on the space T k+1,n define k + 1 linear maps into T k+2,n, and
so on.

Given a permutation σ on Nk , we can view it as a permutation on Nk+1 that fixes the last ele-
ment. Let τl be the transposition (l, k + 1), for all l = 1, . . . , k, k + 1. Define k + 1 permutations
on Nk+1 as follows:

σ(l) = στl for l = 1, . . . , k, k + 1. (13)

Given the cycle decomposition of σ , we obtain σ(l) for each l = 1, . . . , k by inserting the element
k + 1 immediately after the element l; when l = k + 1, we obtain the permutation σ(k+1) by



H.S. Sendov / Linear Algebra and its Applications 424 (2007) 240–281 247

appending the one-element cycle (k + 1) to σ . Notice that σ−1
(l) (k + 1) = l for all l, and that the

map

(σ, l) ∈ P k × Nk+1 → σ(l) ∈ P k+1 (14)

is one-to-one and onto.
We are now ready to formulate the next theorem. It is the first calculus-like rule that we need

for differentiating spectral functions. It is proved in Appendix B.

Theorem 2.9. Let M be a given real symmetric matrix and let {Mm}∞m=1 be a sequence of real
symmetric matrices converging to 0, such that the normalized sequence Mm/‖Mm‖ converges to
M. Let μ be in Rn↓ and Um → U ∈ On be a sequence of orthogonal matrices such that

Diag μ + Mm = Um(Diag λ(Diag μ + Mm))UT
m for all m = 1, 2, . . .

Then for any block-constant k-tensor T on Rn and any permutation σ on Nk we have

lim
m→∞

Um(Diagσ T )UT
m − Diagσ T

‖Mm‖ =
k∑

l=1

(Diagσ(l)T
(l)

out)[M]. (15)

Next, for a fixed vector μ ∈ Rn and any l ∈ Nk define the linear map

T ∈ T k,n → T
(l)
in ∈ T k+1,n,

as follows:

(T
(l)
in )i1...ik ik+1 =

{
T i1...il−1ik+1il+1...ik , if il ∼μ ik+1,

0, if il �μ ik+1.
(16)

If T is a block-constant tensor with respect to μ, then so is T
(l)

in for each l = 1, . . . , k. If x ∈
Rn → T (x) ∈ T k,n is a k-tensor-valued map, then x ∈ Rn → T (x)

(l)
in ∈ T k+1,n is a (k + 1)-

tensor-valued map defined for each x by (16) with μ :=x. The maps defined by (16) are linear,
that is, for any two tensors T1, T2 ∈ T k,n and α, β ∈ R we have

(αT1 + βT2)
(l)
in = α(T1)

(l)
in + β(T2)

(l)
in for all l = 1, . . . , k.

Finally, for any T ∈ T k,n and any l ∈ Nk define T τl ∈ T k+1,n as follows:

(T τl )i1...ik ik+1 =
{
T i1...il−1il il+1...ik , if il = ik+1,

0, if il /= ik+1.
(17)

In other words, T τl is a (k + 1)-tensor with zero entries off the plane il = ik+1. On the plane
il = ik+1 we place the original tensor T .

When μ has distinct entries, then il ∼μ ik+1 if and only if il = ik+1 and therefore T
(l)

in = T τl

for every l ∈ Nk .
The next theorem is the second and final calculus-like rule that we need. It is proved in

Appendix B.

Theorem 2.10. Fix a vector μ ∈ Rn. Let U ∈ On be a block-diagonal (with respect to μ) orthog-
onal matrix and let σ be a permutation on Nk. Let M be in Sn, and let h ∈ Rn be a vector such
that UTMinU = Diag h. Then

(i) for any block-constant (k + 1)-tensor T on Rn

U(Diagσ (T [h]))UT = (Diagσ(k+1)T )[M];
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(ii) for any block-constant k-tensor T on Rn

U(Diagσ (T τl [h]))UT = (Diagσ(1)T
(l)
in )[M] for all l = 1, . . . , k,

where the permutations σ(1), for l ∈ Nk, are defined by (13).

3. Several standing assumptions

Suppose f : Rn → R is a k-times differentiable symmetric function. For any integer s ∈ [1, k),
in order to obtain the (s + 1)th derivative ∇s+1(f ◦ λ)(X) of the composition f ◦ λ, we differenti-
ate ∇s(f ◦ λ)(X) and use the tensorial language presented in Section 2 to simplify the calculation.
More precisely, for each σ ∈ P s we define a s-tensor-valued map Aσ : Rn → T s,n, depending
only on the function f and its partial derivatives, such that

∇s(f ◦ λ)(X) = V

(∑
σ∈P s

DiagσAσ (λ(X))

)
V T, (18)

where X = V (Diag λ(X))V T.
By [22, Section 5] it is enough to prove (18) only when X is an ordered diagonal matrix. That

is, X = Diag μ for some vector μ ∈ Rn↓.
That (18) holds when s = 1 was shown in [13], see also Subsection 5.2.
Let {Mm}∞m=1 be any sequence of real symmetric matrices converging to 0. In order to show

that

lim
m→∞

∇s(f ◦ λ)(X + Mm) − ∇s(f ◦ λ)(X) − ∇s+1(f ◦ λ)(X)[Mm]
‖Mm‖ = 0

for s = 1, . . . , k − 1, we may assume without loss of generality that Mm/‖Mm‖ converges to
a symmetric matrix M . Thus, we assume throughout that {Mm}∞m=1 is any sequence of real
symmetric matrices converging to 0 with Mm/‖Mm‖ converging to M ∈ Sn and show inductively
that

lim
m→∞

∇s(f ◦ λ)(X + Mm) − ∇s(f ◦ λ)(X)

‖Mm‖
= ∇s+1(f ◦ λ)(X)[M], for s = 1, . . . , k − 1. (19)

Finally, we denote by {Um}∞m=1 a sequence of orthogonal matrices in On, converging to U ∈ On

and such that

Diag μ + Mm = Um(Diag λ(Diag μ + Mm))UT
m for all m = 1, 2, . . . (20)

The next lemma combines [14, Lemma 5.10] and [7, Theorem 3.12].

Lemma 3.1. For any μ ∈ Rn↓ and any sequence of real symmetric matrices Mm → 0 we have

λ(Diag μ + Mm)T = μT + (λ(XT
1 MmX1)

T, . . . , λ(XT
r MmXr)

T)T + o(‖Mm‖), (21)

where Xl :=[ei |i ∈ Il] for all l = 1, . . . , r .

We denote

hm := (λ(XT
1 MmX1)

T, . . . , λ(XT
r MmXr)

T)T. (22)
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Since Mm/‖Mm‖ converges to M as m goes to infinity and the eigenvalues are continuous
functions, we define

h := lim
m→∞

hm

‖Mm‖ = (λ(XT
1 MX1)

T, . . . , λ(XT
r MXr)

T)T. (23)

Throughout the paper, we reserve the symbols hm and h to denote the vectors in (22) and (23).
With this notation Lemma 3.1 says that

λ(Diag μ + Mm)T = μT + hm + o(‖Mm‖). (24)

Taking the limit in (20) as m goes to infinity Theorem A.1 ensures that U is block diagonal
with respect to μ and

UTMinU = Diag h, (25)

where Min is defined by (3).

4. Analyticity of isolated eigenvalues

Let A be in Sn and suppose that the j th largest eigenvalue is isolated, that is,

λj−1(A) > λj (A) > λj+1(A).

The goal of this section is to give two justifications of the known fact that λj (·) is an analytic
function in a neighbourhood of A. A function of several real variables is analytic at a point if in
a neighbourhood of this point it can be expressed as power series. The corresponding complex
variable notion is holomorphic.

Our first justification is from [24, Theorem 2.1].

Theorem 4.1. Suppose A ∈ Sn and f : Rn → R is analytic at λ(A). Suppose f (Px) = f (x)

for every permutation matrix P for which Pλ(A) = λ(A). Then f ◦ λ is analytic at A.

To see how this theorem implies the analyticity of λj (·) take

f (x1, . . . , xn) = the j th largest element of {x1, . . . , xn}. (26)

Notice that f is a piece wise affine function. Moreover, for any x ∈ Rn in a neighbourhood of the
vector λ(A) it is given by

f (x) = xj .

Thus, f is analytic in that neighbourhood. Next, f is a symmetric function and thus by definition
f (Px) = f (x) for every x ∈ Rn and every permutation matrix P . Theorem 4.1 ensures that
λj = f ◦ λ is an analytic function.

Our second justification uses the following result from [1]. (In the theorem below, λi(X)

denotes an arbitrary eigenvalue of a matrix X, not necessarily the ith largest one.)

Theorem 4.2 (Arnold 1971). Suppose A ∈ Cn×n has q eigenvalues λ1(A), . . . , λq(A) (counting
multiplicities) in an open set � ⊂ C, and suppose the remaining n − q eigenvalues are not in the
closure of �. Then there is a neighbourhood � of A and holomorphic mappings S : � → Cq×q

and T : � → C(n−q)×(n−q) such that for all X ∈ �

X is similar to

(
S(X) 0

0 T (X)

)
and S(A) has eigenvalues λ1(A), . . . , λq(A).
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To deduce the result we need, since the j th largest eigenvalue is isolated, we can find an open
set � ⊂ C such that only that eigenvalue is in � and the remaining n − 1 eigenvalues are not in
the closure of �. Theorem 4.2 ensures that, there is a neighbourhood � of A and a holomorphic
mapping S : � → C such that S(X) is equal to the j th largest eigenvalue of X for all X in �.

If A is a real symmetric matrix, then the intersection of � with Sn is a neighbourhood of A in
Sn. The restriction S̃(X) of S(X) to � ∩ Sn is a holomorphic real-valued function. Therefore, the
coefficients in the power series expansion of S̃(X) must be real numbers. Thus, the j th largest
eigenvalue is a real analytic function in the neighbourhood � ∩ Sn or A.

All these considerations make the following observation clear.

Theorem 4.3. Suppose that A ∈ Sn has distinct eigenvalues and f : Rn → R is k-times (contin-
uously) differentiable in a neighbourhood of λ(A). Then f ◦ λ is k-times (continuously) differ-
entiable in a neighbourhood of A.

5. The kth derivative of functions of eigenvalues at a matrix with distinct eigenvalues

Let f : Rn → R be an arbitrary k-times (continuously) differentiable function. In this sec-
tion, we do not assume that f is a symmetric function. Our goal is to derive a formula for
the kth derivative of f ◦ λ on the set of symmetric matrices with distinct eigenvalues. The set
{x ∈ Rn|xi /= xj for every i /= j} is a dense open set in Rn, and the set of symmetric matrices
with distinct eigenvalues is a dense open set in Sn. (For a convex analysis proof of the last fact,
see [20, Corollary 1.6].)

One can obtain the kth derivative of f ◦ λ at a matrix with distinct eigenvalues by applying
the Chain Rule to the composition F = f ◦ λ. For example, the following formulae are the first
three derivatives of F ; see [2, Section X.4]. For any symmetric matrices H1, H2, H3:

∇F(X)[H1] = ∇f (λ(x))[∇λ(x)[H1]],
∇2F(x)[H1, H2] = ∇2f (λ(x))[∇λ(x)[H1], ∇λ(x)[H2]] + ∇f (λ(x))[∇2λ(x)[H1, H2]],

∇3F(x)[H1, H2, H3] = ∇3f (λ(x))[∇λ(x)[H1], ∇λ(x)[H2], ∇λ(x)[H3]]
+ ∇2f (λ(x))[∇λ(x)[H1], ∇2λ(x)[H2, H3]]
+ ∇2f (λ(x))[∇λ(x)[H2], ∇2λ(x)[H1, H3]]
+ ∇2f (λ(x))[∇λ(x)[H3], ∇2λ(x)[H1, H2]]
+ ∇f (λ(x))[∇3λ(x)[H1, H2, H3]].

This approach to the kth derivative requires every derivative of λ up to the kth. Even if one knows
all these derivatives it is not clear how the resulting expression can be simplified. Our goal in
this section is to derive a formula for the kth derivative of f ◦ λ that does not require explicit
knowledge of the derivatives of λ. Of course the latter can be obtained as a particular case since
if f is defined by (26) then λj = f ◦ λ.

Fix a vector μ ∈ Rn↓ with distinct entries. Thus, every block in the partition that it defines
has exactly one element. This means that for any j, i ∈ Nn, i ∼ j ⇔ i = j , and that makes
any tensor block constant. In particular, for the matrices Xl , defined in Lemma 3.1, we have
Xl = [el], l = 1, . . . , n. This implies that hm = diag Mm and that h = diag M . The definition of
T

(l)
out given in (11) is now:
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(T
(l)
out)

i1...ik ik+1 =
{

0, if il = ik+1,
T i1 ...il−1ik+1il+1 ...ik −T i1 ...il−1il il+1 ...ik

μik+1−μil
, if il /= ik+1.

(27)

We derive (18) by induction on the order of the derivative.

5.1. Description of the kth derivative

Let f : Rn → R be k-times (continuously) differentiable function defined on the set

� :={x ∈ Rn|xi /= xj for every i /= j}.
For every s ∈ Nk and every σ ∈ P s we define an s-tensor-valued map Ãσ : � ⊂ Rn → T s,n

inductively, as follows. For s = 1 and σ = (1) we define

Ã(1)(x) :=∇f (x).

Assuming that the maps Ãσ (x) have been defined for each σ ∈ P s with s ∈ [1, k) we define

Ãσ(1)
(x) := (Ãσ (x))

(l)
out for all l ∈ Ns , and

Ãσ(s+1)
(x) :=∇Ãσ (x). (28)

We are now ready to formulate our first main theorem.

Theorem 5.1. Let X be a symmetric matrix with distinct eigenvalues. Let f be a function defined
on a neighbourhood of λ(X). Then the spectral function F = f ◦ λ is k-times (continuously)
differentiable at X if and only if f is k-times (continuously) differentiable at λ(X). Moreover,

∇kF (X) = V

⎛⎝∑
σ∈P k

DiagσÃσ (λ(X))

⎞⎠V T, (29)

where V is any orthogonal matrix such that X = V (Diag λ(X))V T.

The proof proceeds by induction and is presented in the next two subsections.

5.2. Proof of Theorem 5.1: the gradient

Using (24) we compute

lim
m→∞

(f ◦ λ)(Diag μ + Mm) − (f ◦ λ)(Diag μ)

‖Mm‖
= lim

m→∞
f (μ + hm + o(‖Mm‖)) − f (μ)

‖Mm‖
= lim

m→∞
f (μ) + ∇f (μ)[hm] + o(‖Mm‖) − f (μ)

‖Mm‖
= ∇f (μ)[h]
= 〈∇f (μ), diag M〉
= (Diag ∇f (μ))[M].
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This shows that ∇(f ◦ λ)(Diag μ) = Diag(1)∇f (μ). One can see now that

∇(f ◦ λ)(X) = V (Diag(1)∇f (λ(X)))V T = V

⎛⎝∑
σ∈P 1

DiagσÃσ (λ(X))

⎞⎠V T, (30)

where X = V (Diag λ(X))V T and Ã(1)(x) = ∇f (x). If f is k-times (continuously) differentia-
ble, then Ã(1)(x) = ∇f (x) is (k − 1)-times (continuously) differentiable.

If the eigenvalues of X are not distinct and f is a symmetric function, calculation of the gradient
of f ◦ λ is almost identical and leads to the same final formula. Indeed, using (25) we get

∇f (μ)[h] = 〈∇f (μ), diag (UTMinU)〉 = (U(Diag ∇f (μ))UT)[M] = (Diag ∇f (μ))[M].
In the last equality we used Lemma 2.1(i), U is block diagonal and orthogonal, and f is symmetric,
so ∇f (μ) is block constant.

5.3. Proof of Theorem 5.1: the induction step

Suppose now that for some 1 � s < k

∇s(f ◦ λ)(X) = V

(∑
σ∈P s

DiagσÃσ (λ(X))

)
V T,

where X = V (Diag λ(X))V T. Suppose also that for every σ ∈ P s , the s-tensor-valued map Ãσ :
Rn → T s,n is (k − s)-times (continuously) differentiable.

Using (24), we differentiate ∇s(f ◦ λ) at Diag μ:

∇s+1(f ◦ λ)(Diag μ)[M]
= lim

m→∞
∇s(f ◦ λ)(Diag μ + Mm) − ∇s(f ◦ λ)(Diag μ)

‖Mm‖

= lim
m→∞

Um

(∑
σ∈P s DiagσÃσ (λ(Diag μ + Mm))

)
UT

m −∑
σ∈P s DiagσÃσ (μ)

‖Mm‖

= lim
m→∞

∑
σ∈P s

Um(DiagσÃσ (λ(Diag μ + Mm)))UT
m − DiagσÃσ (μ)

‖Mm‖

= lim
m→∞

∑
σ∈P s

Um(DiagσÃσ (μ + hm + o(‖Mm‖)))UT
m − DiagσÃσ (μ)

‖Mm‖

= lim
m→∞

∑
σ∈P s

Um(Diagσ (Ãσ (μ) + ∇Ãσ (μ)[hm] + o(‖Mm‖)))UT
m − DiagσÃσ (μ)

‖Mm‖

= lim
m→∞

∑
σ∈P s

Um(DiagσÃσ (μ))UT
m − DiagσÃσ (μ)

‖Mm‖
+
∑
σ∈P s

U(Diagσ (∇Ãσ (μ)[h]))UT.
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For every σ ∈ P s the tensor Ãσ (μ) is block constant, so Theorem 2.9 ensures that

lim
m→∞

Um(DiagσÃσ (μ))UT
m − DiagσÃσ (μ)

‖Mm‖ =
s∑

l=1

(Diagσ(1) (Ãσ (μ))
(l)
out)[M]

=
s∑

l=1

(Diagσ(1)Ãσ(1)
(μ))[M].

For every σ ∈ P s the gradient ∇Ãσ (μ) is a block-constant (s + 1)-tensor, so Theorem 2.10
implies that

U(Diagσ (∇Ãσ (μ)[h]))UT = (Diagσ(s+1)∇Ãσ (μ))[M] = (Diagσ(s+1)Ãσ(s+1)
(μ))[M].

We conclude that

∇s+1(f ◦ λ)(Diag μ)[M] =

⎛⎜⎜⎝ ∑
σ∈Ps

l∈Ns+1

Diagσ(1)Ãσ(1)
(μ)

⎞⎟⎟⎠ [M]

for every symmetric matrix M . Because (14) is a one-to-one and onto map, we see that

∇s+1(f ◦ λ)(X) = V

⎛⎝ ∑
σ∈P s+1

DiagσÃσ (λ(X))

⎞⎠V T,

where X = V (Diag λ(X))V T.
Finally, we show that the (s + 1)-tensor-valued maps Ãσ(1)

(·) are at least (k − s − 1)-times

(continuously) differentiable. This is clear when l = s + 1 and σ ∈ P s , since Ãσ (·) is (k − s)-
times (continuously) differentiable for every σ ∈ P s . For the rest of the maps, every entry in
Ãσ(1)

is the difference of two entries of Ãσ divided by a quantity that never becomes zero over

the set �. This shows that Ãσ(1)
(·) is (k − s)-times (continuously) differentiable on the set � for

every σ ∈ P s and every l ∈ Ns .
This concludes the proof of Theorem 5.1.

6. The kth derivative of separable spectral functions

In this section we show that (18) holds at an arbitrary symmetric matrix X (not necessarily
with distinct eigenvalues) for the class of separable spectral functions.

Let g be a real-valued function on the real interval I , and let X be a symmetric matrix with
eigenvalues in I . Associated with the separable symmetric function

f (x1, . . . , xn) = g(x1) + · · · + g(xn) (31)

is the separable spectral function

F(X) = (f ◦ λ)(X). (32)

Choose an orthogonal matrix V such that X = V (Diag λ(X))V T. It follows from (1) that if g is
differentiable at the points {λi(X)|i ∈ Nn} then F is differentiable at X and

∇F(X) = V (Diag (g′(λ1(X)), . . . , g′(λn(X))))V T. (33)
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Separable spectral functions and their derivatives are of great importance for modern opti-
mization; see [3,12,23]. For the role of general spectral functions see the two survey papers
[15,16].

Löner studied the class of matrix-valued functions (33) in [19], where he established a connec-
tion between monotonicity of the map (33) with respect to the semidefinite order and differentia-
bility propertied of g′. Löwner’s student Kraus, determined conditions on g′ that make the map
(33) convex with respect to the semidifinite order [11]. For more information, related, and recent
results see [2, Chapter V], [8, Section 6.6] and the monograph [6]. The matrix-valued map (33) is
the primary matrix function g′(X); see [8, Chapter 6] for a general discussion and the Daleckiĭ–
Kreĭn formulae for the kth derivative of a primary matrix function along a one dimensional curve.
The first two derivatives of (33) can be found in [2, Chapter V].

6.1. Description of the kth derivative

Let g : I → R be k-times differentiable. We begin by defining the function g[(1)](x) : I → R

as

g[(1)](x) :=g′(x).

Next, define the symmetric function g[(12)](x, y) : I × I → R as

g[(12)](x, y) :=
{

g′′(x), if x = y,

g[(1)](x)−g[(1)](y)
x−y

, if x /= y.
(34)

The integral representation g[(12)](x, y) = ∫ 1
0 g′′(y + t (x − y)) dt shows that g[(12)](x, y) is as

smooth, in both arguments, as g′′.
Denote by P̃ s the set of all permutations from P s that have one cycle in their cycle decompo-

sition, so |P̃ s | = (s − 1)! For every σ ∈ P̃ s and every l ∈ Ns we have σ(1) ∈ P̃ s+1. Moreover,
as σ varies over P̃ s and l varies over Ns , the permutation σ(1) varies over P̃ s+1 in a one-to-one
and onto fashion.

Suppose that for every σ ∈ P̃ s , where 1 � s < k, we have defined the function g[σ ](x1, . . . , xs)

on the set I × I × · · · × I (s times) and suppose that these functions are as smooth as g(s) (the
sth derivative of g). For every σ ∈ P̃ s and every l ∈ Ns we define

g[σ(1)](x1, . . . , xs+1) :=
{∇lg

[σ ](x1, . . . , xs), if xl = xs+1,

g[σ ](x1,...,xl ,...,xs )−g[σ ](x1,...,xs+1,...,xs )

xl−xs+1
, if xl /= xs+1,

(35)

where in the second case of the definition, both xl and xs+1 are in lth position and ∇l denotes the
partial derivative with respect to the lth argument. Using the integral formula

g[σ(1)](x1, . . . , xs+1) =
∫ 1

0
∇lg

[σ ](x1, . . . , xl−1, xs+1 + t (xl − xs+1), xl+1, . . . , xs) dt

for every l ∈ Ns , we see that g[σ(1)](x1, . . . , xs+1) is as smooth as g(s+1), the (s + 1)th derivative
of g. We continue inductively in this way until we define the functions {g[σ ](x1, . . . , xk)|σ ∈ P̃ k}.

Finally, for every s ∈ Nk and every σ ∈ P̃ s , we define a s-tensor-valued map

Aσ : Rn → T s,n, by

(Aσ (x))i1...is :=g[σ ](xi1 , . . . , xis ). (36)
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If (i1, . . . , is) ∼x (j1, . . . , js), then (Aσ (x))i1...is = (Aσ (x))j1...js , which shows that (36) defines
a block-constant map; moreover, it is as smooth as g(s) for every s ∈ Nk .

We are now ready to formulate our second main theorem.

Theorem 6.1. Let g be a k-times differentiable real-valued function defined on a real inter-
val I. Let X ∈ Sn have eigenvalues in I, and let V be an orthogonal matrix such that X =
V (Diag λ(X))V T. Then the separable spectral function F defined by (31) and (32) is k-times
differentiable at X, and its kth derivative is

∇kF (X) = V

⎛⎝∑
σ∈P k

DiagσAσ (λ(X))

⎞⎠V T, (37)

where Aσ (x) ≡ 0 if σ /∈ P̃ k.

The proof is given in the next subsection. We proceed by induction—consecutively differen-
tiating F(X). In the base case k = 1, (37) reduces to the formula for the gradient (33).

6.2. Proof of Theorem 6.1: the induction step

Suppose that g : I → R is k-times differentiable and the formula for the sth derivative (1 �
s < k) of F at the matrix X is given by

∇sF (X) = V

(∑
σ∈P s

DiagσAσ (λ(X))

)
V T = V

⎛⎝∑
σ∈P̃ s

DiagσAσ (λ(X))

⎞⎠V T.

For each σ ∈ P s , the s-tensor-valued map Aσ : R → T s,n is (k − s)-times differentiable. In
Section 3 we have described the simplifying assumptions and notation that we use below. We now
differentiate:

∇(s+1)F (Diag μ)[M]
= lim

m→∞
∇sF (Diag μ + Mm) − ∇sF (Diag μ)

‖Mm‖
= lim

m→∞
Um

(∑
σ∈P̃ s DiagσAσ (λ(Diag μ + Mm))

)
UT

m −∑
σ∈P̃ s DiagσAσ (μ)

‖Mm‖
= lim

m→∞
∑
σ∈P̃ s

Um(DiagσAσ (μ + hm + o(‖Mm‖)))UT
m − DiagσAσ (μ)

‖Mm‖

= lim
m→∞

∑
σ∈P̃ s

Um(Diagσ (Aσ (μ) + ∇Aσ (μ)[hm] + o(‖Mm‖)))UT
m − DiagσAσ (μ)

‖Mm‖

= lim
m→∞

∑
σ∈P̃ s

Um(DiagσAσ (μ))UT
m − DiagσAσ (μ)

‖Mm‖

+ U

⎛⎝∑
σ∈P̃ s

Diagσ (∇Aσ (μ)[h])
⎞⎠UT.
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Using Theorem 2.9, we wrap up the first summand in the last expression:

lim
m→∞

∑
σ∈P̃ s

Um(DiagσAσ (μ))UT
m − DiagσAσ (μ)

‖Mm‖
=
∑
σ∈P̃ s

l∈Ns

(Diagσ(1) (Aσ (μ))
(l)
out)[M]. (38)

Next, we focus our attention on the gradient ∇Aσ (μ). Using the definition, (36), and the chain
rule, we get

∇[(Aσ (μ))i1...is ] =
s∑

l=1

∇lg
[σ ](μi1 , . . . , μis )e

il =
s∑

l=1

g[σ(1)](μi1 , . . . , μis , μil )e
il , (39)

where we used (35) to obtain the second equality. For convenience, for every σ ∈ P̃ s and every
l ∈ Ns we define the map T l

σ : Rn → T s,n by

(T l
σ (μ))i1...is :=g[σ(1)](μi1 , . . . , μis , μil ). (40)

Each of these maps is block constant.

Lemma 6.2. The gradient of Aσ (μ) can be decomposed as

∇Aσ (μ) =
s∑

l=1

(T l
σ (μ))τl , (41)

where the “lifting” (T l
σ (μ))τl is defined by (17).

Proof. Fix a multi index (i1, . . . , is). By definition of the gradient ∇Aσ (μ) we have

∇[(Aσ (μ))i1...is ] = ((∇Aσ (μ))i1...is ,1, (∇Aσ (μ))i1...is ,2, . . . , (∇Aσ (μ))i1...is ,n)T.

We compute the pth entry in the last vector. Using (39), we get

(∇Aσ (μ))i1...is ,p =
s∑

l=1
il=p

g[σ(1)](μi1 , . . . , μis , μil ).

Using (17) and (40), we evaluate the right-hand side of (41):(
s∑

l=1

(T l
σ (μ))τl

)i1...is ,p

=
s∑

l=1

((T l
σ (μ))τl )i1...is ,p

=
s∑

l=1

(T l
σ (μ))i1...is δilp

=
s∑

l=1
il=p

(T l
σ (μ))i1...is

=
s∑

l=1
il=p

g[σ(1)](μi1 , . . . , μis , μil ).

The lemma follows. �
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Using (41) we return to the second term in the differentiation of ∇sF (X):

U

⎛⎝∑
σ∈P̃ s

Diagσ (∇Aσ (μ)[h])
⎞⎠UT = U

⎛⎝∑
σ∈P̃ s

Diagσ

((
s∑

l=1

(T l
σ (μ))τl

)
[h]
)⎞⎠UT

= U

⎛⎝∑
σ∈P̃ s

s∑
l=1

Diagσ ((T l
σ (μ))τl [h])

⎞⎠UT

=
∑
σ∈P̃ s

l∈Ns

U(Diagσ ((T l
σ (μ))τl [h]))UT

=
∑
σ∈P̃ s

l∈Ns

(Diagσ(1) (T l
σ (μ))

(l)
in )[M]; (42)

in the last equality we used Theorem 2.10. Putting (38) and (42) together we obtain

∇(s+1)F (Diag μ)[M] =
∑
σ∈P̃ s

l∈Ns

(
Diagσ(1) (Aσ (μ))

(l)
out

)
[M] +

∑
σ∈P̃ s

l∈Ns

(
Diagσ(1) (T l

σ (μ))
(l)
in

)
[M].

We group the two sums into one and since M is an arbitrary symmetric matrix we can remove
it from both sides of the equation:

∇(s+1)F (Diag μ) =
∑
σ∈P̃ s

l∈Ns

Diagσ(1)

(
(Aσ (μ))

(l)
out + (T l

σ (μ))
(l)
in

)
.

This shows that ∇sF (Diag μ) is differentiable. We show now that ∇(s+1)F (Diag μ) has the
form (37). This last step is the subject of the next lemma.

Lemma 6.3. For every σ ∈ P̃ s and every l ∈ Ns we have

Aσ(1)
(μ) = (T l

σ (μ))
(l)
in + (Aσ (μ))

(l)
out. (43)

Proof. Fix an l ∈ Ns and a multi index (i1, . . . , is , is+1). We consider two cases depending on
whether μis+1 equals μil or not.

Case I. Suppose il ∼μ is+1. Using (36) and (35) the entry on the left-hand side of (43) corre-
sponding to the multi index (i1, . . . , is , is+1) is

(Aσ(1)
(μ))i1...is is+1 = g[σ(1)](μi1 , . . . , μis , μis+1) = ∇lg

[σ ](μi1 , . . . , μis ).

On the other hand, the right-hand side evaluates to

((T l
σ (μ))

(l)
in + (Aσ (μ))

(l)
out)

i1...is is+1 = ((T l
σ (μ))

(l)
in )i1...is is+1 + ((Aσ (μ))

(l)
out)

i1...is is+1

= ((T l
σ (μ))

(l)
in )i1...is is+1 + 0 = (T l

σ (μ))i1...is

= g[σ(1)](μi1 , . . . , μis , μil ) = ∇lg
[σ ](μi1 , . . . , μis );

in the third equality we used (16) and the fact that Tl(μ) is block constant.
Case II. Suppose il �μ is+1. Using (36) and (35) the entry on the left-hand side corresponding

to the multi index (i1, . . . , is , is+1) is
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(Aσ(1)
(μ))i1...is is+1 = g[σ(1)](μi1 , . . . , μis , μis+1)

= g[σ ](μi1 , . . . , μil , . . . , μis ) − g[σ ](μi1 , . . . , μis+1 , . . . , μis )

μil − μis+1

,

where both μil and μis+1 are in the lth position. On the other hand, the right-hand side evaluates
to

((T l
σ (μ))

(l)
in + (Aσ (μ))

(l)
out)

i1...is is+1

= ((T l
σ (μ))

(l)
in )i1...is is+1 + ((Aσ (μ))

(l)
out)

i1...is is+1

= 0 + ((Aσ (μ))
(l)
out)

i1...is is+1

= (Aσ (μ))i1...il−1is+1il+1...is − (Aσ (μ))i1...il−1il il+1...is

μis+1 − μil

= g[σ ](μi1 , . . . , μis+1 , . . . , μis ) − g[σ ](μi1 , . . . , μil , . . . , μis )

μis+1 − μil

.

In both cases, the two sides are equal. �

This concludes the inductive step and the proof of Theorem 6.1.
The two separate developments in Section 5 and Section 6 must be reconciled in their common

case. This is done by the following theorem proved in Appendix C.

Theorem 6.4. Suppose that X ∈ Sn has distinct eigenvalues, and the spectral function F is
separable and k-times differentiable at X. Then the two formulae for the kth derivative of F at
X, namely, the one given in Theorem 5.1 where the operators Ãσ are defined by the inductive
equations (28), and the one in Theorem 6.1 where the operators Aσ are defined by equations
(36), are the same. More precisely we have∑

σ∈P s

DiagσÃσ (x) =
∑
σ∈P s

DiagσAσ (x) for every s = 1, 2, . . . , k,

where x = λ(X).

It is worth presenting a particular case of Theorem 6.1. More specializations of Theorem 6.1,
when g is Ck , are given in Subsubsection 6.3.1.

Corollary 6.5. Let g be twice differentiable in I, let X ∈ Sn have all eigenvalues in I, and
suppose that X = V (Diag λ(X))V T for some orthogonal matrix V . Then

∇2F(X) = V (Diag(12)A(12)(λ(X)))V T, (44)

where A(12)(·) is defined by

A
ij

(12)(x) =
{

g′′(xi), if xi = xj ,
g′(xi )−g′(xj )

xi−xj
, if xi /= xj .

Using approximation techniques, it was shown in [2, Theorem V.3.3] that for any two symmetric
matrices H1 and H2
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∇2F(X)[H1, H2] = 〈V (A(12)(λ(X)) ◦ (V TH1V ))V T, H2〉, (45)

where ‘◦’ denotes the usual Hadamard product. We now show that (44) is the same as (45).

Proposition 6.6. For any n × n matrix A, any orthogonal V, and any symmetric H1 and H2,

(V (Diag(12)A)V T)[H1, H2] = 〈V (A ◦ (V TH1V ))V T, H2〉,
where ‘◦’ stands for the ordinary Hadamard product.

Proof. We develop the two sides of the stated equality and compare the results. By Theorem 2.6,
the left-hand side is equal to

V (Diag(12)A)V T[H1, H2] = 〈A, H̃1 ◦(12) H̃2〉.
On the other hand

〈V (A ◦ (V TH1V ))V T, H2〉 = 〈A ◦ H̃1, H̃2〉 = 〈A, H̃1 ◦ H̃2〉.
Finally one can check directly from the definitions that H̃1 ◦(12) H̃2 = H̃1 ◦ H̃T

2 = H̃1 ◦ H̃2, using
the symmetry of H̃2. �

6.3. Ck separable spectral functions

Theorem 6.1 holds for every k-times differentiable function g. In this section, we explain
why (37) can be significantly simplified if g is k-times continuously differentiable. In particular,
we show three properties of the functions g[σ ](x1, . . . , xs). First, we express g[σ ](x1, . . . , xs)

as a ratio of two determinants whenever x1,…,xs are distinct. Second, the determinant formula
ensures that g[σ ](x1, . . . , xs) is a symmetric function of its arguments. Finally, we show that
g[σ1](x1, . . . , xs) = g[σ2](x1, . . . , xs) for all σ1 and σ2 in P̃ s . Thus, all tensors {Aσ (x)|σ ∈ P̃ k}
in (37) are equal to each other, but are lifted onto different k-dimensional “diagonal planes” in
the 2k-dimensional tensor.

The Vandermonde determinant

V (x1, . . . , xs) :=

∣∣∣∣∣∣∣∣∣
xs−1

1 xs−1
2 · · · xs−1

s
...

...
. . .

...

x1 x2 · · · xs

1 1 · · · 1

∣∣∣∣∣∣∣∣∣ =
∏
j<i

(xj − xi),

has a variant

V

(
y1, . . . , ys

x1, . . . , xs

)
:=

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 · · · ys

xs−2
1 xs−2

2 · · · xs−2
s

...
...

. . .
...

x1 x2 · · · xs

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
for any y ∈ Rs ; when s = 1, we set V (x1) = 1 and V

(
y1
x1

)
= y1.
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Lemma 6.7. For any vector (x1, . . . , xs, xs+1) with distinct entries, any y ∈ Rs+1, and l ∈ Ns

V

(
y1, . . . , ys

x1, . . . , xs

)
V (x1, . . . , xs)

−
V

(
y1, . . . , yl−1, ys+1, yl+1, . . . , ys

x1, . . . , xl−1, xs+1, xl+1, . . . , xs

)
V (x1, . . . , xl−1, xs+1, xl+1, . . . , xs)

= (xl − xs+1)

V

(
y1, . . . , yl, ys+1, yl+1, . . . , ys

x1, . . . , xl, xs+1, xl+1, . . . , xs

)
V (x1, . . . , xl, xs+1, xl+1, . . . , xs)

. (46)

Proof. When s = 1 we have

V

(
y1
x1

)
V (x1)

−
V

(
y2
x2

)
V (x2)

= (x1 − x2)

V

(
y1, y2
x1, x2

)
V (x1, x2)

.

For the rest of the proof we assume s � 2. Consider both sides of (46) as a multivariate
polynomial (of degree one) in the variablesy1, . . . , ys, ys+1. We show thatyk has equal coefficients
on both sides for all k ∈ Ns+1. First observe that

V (x1, . . . , xl−1, xs+1, xl+1, . . . , xs) = (−1)s−lV (x1, . . . , xl−1, xl+1, . . . , xs, xs+1),

V

(
y1, . . . , yl−1, ys+1, yl+1, . . . , ys

x1, . . . , xl−1, xs+1, xl+1, . . . , xs

)
= (−1)s−lV

(
y1, . . . , yl−1, yl+1, . . . , ys, ys+1
x1, . . . , xl−1, xl+1, . . . , xs, xs+1

)
.

We consider four cases according to the position of the index k in the partition Ns+1 =
{1, . . . , l − 1} ∪ {l} ∪ {l + 1, . . . , s} ∪ {s + 1}. (In all of the following product formulae, we
assume that j < i. This condition is omitted for typographical reasons. Also a circumflex above
a factor in a product denotes that it is missing.) First, let k ∈ {1, . . . , l − 1}. The coefficient of yk

on the left-hand side of (46) is

(−1)k+1

∏
i,j∈Ns+1\{k,s+1}(xj − xi)∏
i,j∈Ns+1\{s+1}(xj − xi)

− (−1)k+1

∏
i,j∈Ns+1\{k,l}(xj − xi)∏
i,j∈Ns+1\{l}(xj − xi)

= (−1)k+1

(x1 − xk) · · · (xk−1 − xk)(xk − xk+1) · · · (xk − xs)

− (−1)k+1

(x1 − xk) · · · (xk−1 − xk)(xk − xk+1) · · · ̂(xk − xl) · · · (xk − xs+1)

= (−1)k+1(xl − xs+1)

(x1 − xk) · · · (xk−1 − xk)(xk − xk+1) · · · (xk − xs+1)

= (−1)k+1(xl − xs+1)

∏
i,j∈Ns+1\{k}(xj − xi)∏

i,j∈Ns+1
(xj − xi)

,

which is the coefficient of yk on the right-hand side of (46).
Now suppose k = l. Then the coefficient of yk on the left-hand side of (46) is

(−1)l+1

∏
i,j∈Ns+1\{l,s+1}(xj − xi)∏
i,j∈Ns+1\{s+1}(xj − xi)

0

= (−1)l+1

(x1 − xl) · · · (xl−1 − xl)(xl − xl+1) · · · (xl − xs)
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= (−1)l+1(xl − xs+1)

(x1 − xl) · · · (xl−1 − xl)(xl − xl+1) · · · (xl − xs+1)

= (−1)l+1(xl − xs+1)

∏
i,j∈Ns+1\{l}(xj − xi)∏

i,j∈Ns+1
(xj − xi)

,

which is the corresponding coefficient on the right-hand side of (46).
When k ∈ {l + 1, . . . , s}, the coefficient of yk on the left-hand side of (46) is

(−1)k+1

∏
i,j∈Ns+1\{k,s+1}(xj − xi)∏
i,j∈Ns+1\{s+1}(xj − xi)

− (−1)k

∏
i,j∈Ns+1\{k,l}(xj − xi)∏
i,j∈Ns+1\{l}(xj − xi)

= (−1)k+1

(x1 − xk) · · · (xk−1 − xk)(xk − xk+1) · · · (xk − xs)

− (−1)k

(x1 − xk) · · · ̂(xl − xk) · · · (xk−1 − xk)(xk − xk+1) · · · (xk − xs+1)

= (−1)k+1(xl − xs+1)

(x1 − xk) · · · (xk−1 − xk)(xk − xk+1) · · · (xk − xs+1)

= (−1)k+1(xl − xs+1)

∏
i,j∈Ns+1\{k}(xj − xi)∏

i,j∈Ns+1
(xj − xi)

,

which is the coefficient of yk on the right-hand side.
Finally, when k = s + 1 the coefficient of ys+1 on the left-hand side of (46) is

0 − (−1)l+1(−1)s−l

∏
i,j∈Ns+1\{l,s+1}(xj − xi)∏

i,j∈Ns+1\{l}(xj − xi)

= (−1)s+2

(x1 − xs+1) · · · ̂(xl − xs+1) · · · (xs − xs+1)

= (−1)s+2(xl − xs+1)

(x1 − xs+1) · · · (xs − xs+1)

= (−1)s+2(xl − xs+1)

∏
i,j∈Ns+1\{s+1}(xj − xi)∏

i,j∈Ns+1
(xj − xi)

,

which is again the coefficient of ys+1 on the right-hand side. �

Theorem 6.8. Suppose g ∈ Ck(I). Then for every permutation σ ∈ P̃ s , where 1 � s � k, and
every vector (x1, . . . , xs) with distinct entries

g[σ ](x1, . . . , xs) =
V

(
g′(x1), . . . , g

′(xs)

x1, . . . , xs

)
V (x1, . . . , xs)

. (47)

In particular, g[σ ](x1, . . . , xs) is a symmetric function.
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Proof. The proof is by induction on s. When s = 1, the definitions ensure that

g[(1)](x1) = g′(x1) =
V

(
g′(x1)

x1

)
V (x1)

.

Suppose (47) holds for s, where 1 � s < k. Let (x1, . . . , xs, xs+1) be a vector with distinct
entries and let y = (g′(x1), . . . , g

′(xs), g
′(xs+1)). Fix a permutation σ ∈ P̃ s and an index l ∈ Ns .

Using (35) together with Lemma 6.7 and the induction hypothesis we get

g[σ(1)](x1, . . . , xs, xs+1)

= g[σ ](x1, . . . , xs) − g[σ ](x1, . . . , xl−1, xs+1, xl+1, . . . , xs)

xl − xs+1

= 1

(xl − xs+1)

⎛⎜⎜⎝V

(
y1, . . . , ys

x1, . . . , xs

)
V (x1, . . . , xs)

−
V

(
y1, . . . , yl−1, ys+1, yl+1, . . . , ys

x1, . . . , xl−1, xs+1, xl+1, . . . , xs

)
V (x1, . . . , xl−1, xs+1, xl+1, . . . , xs)

⎞⎟⎟⎠

=
V

(
y1, . . . , yl, ys+1, yl+1, . . . , ys

x1, . . . , xl, xs+1, xl+1, . . . , xs

)
V (x1, . . . , xl, xs+1, xl+1, . . . , xs)

=
V

(
y1, . . . , ys+1
x1, . . . , xs+1

)
V (x1, . . . , xs+1)

.

Since P̃ s+1 = {σ(1)|σ ∈ P̃ s , l ∈ Ns} the induction step is completed. Finally, since
g[σ ](x1, . . . , xs) is continuous, (47) shows that it is symmetric everywhere on its domain. �

We can now significantly simplify Theorem 6.1. Define the k-tensor-valued map A : Rn →
T k,n by

(A(x))i1...ik :=
V

(
g′(xi1), . . . , g

′(xik )

xi1 , . . . , xik

)
V (xi1 , . . . , xik )

. (48)

Technically, this definition is good only when xi1 , . . . , xik are distinct, but Lemma 6.8 shows
that it can be extended continuously everywhere. If (i1, . . . , ik+1) ∼x (j1, . . . , jk+1), then
(A(x))i1...ik+1 = (A(x))j1...jk+1 , which shows that (48) defines a block-constant map. Moreover,
A(x) is a symmetric tensor that is continuous with respect to x.

Theorem 6.9. Let g be a Ck function defined on an interval I. Let X ∈ Sn have eigenvalues in
the interval I, and let V ∈ On be such that X = V (Diag λ(X))V T. Then the separable spectral
function F defined by (31) and (32) is k-times continuously differentiable at X, and its kth
derivative is

∇kF (X) = V

⎛⎝∑
σ∈P̃ k

DiagσA(λ(X))

⎞⎠V T, (49)

where A(x) is defined by (48). (P̃ k is the set of all permutations from P k with exactly one cycle
in their cycle decomposition.)
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For most practical applications of derivatives, it is important to know what the result is when
they are viewed as multi-linear maps and applied to vectors from the underlying space.

The last part of this subsection is devoted to representations of the formula for the kth derivative
at X of a Ck separable spectral function, applied at k symmetric matrices.

6.3.1. Derivatives as multi linear operators
The next corollary specializes Theorem 6.9 to the case k = 3. It should be compared

with [2, (V.22)] and [8, §6.6]. One should keep in mind that we are differentiating separable
spectral functions, whose gradients are the primary matrix functions considered in [2, Chapter
V].

Corollary 6.10. For g ∈ C3(I ) and any H1, H2, H3 in Sn we have

∇3F(X)[H1, H2, H3] = 2
n,n,n∑

p1,p2,p3=1

A(λ(X))p1p2p3H̃
p1p2
1 H̃

p2p3
2 H̃

p3p1
3 ,

where X = V (Diag λ(X))V T, and H̃i = V THiV for i = 1, 2, 3.

Proof. Without loss of generality suppose that X = Diag μ for some μ ∈ Rn↓. Then

∇3F(Diag μ)[H1, H2, H3]

=
⎛⎝∑

σ∈P̃ 3

DiagσA(μ)

⎞⎠ [H1, H2, H3]

=
∑

σ∈P̃ 3

〈A(μ), H1 ◦σ H2 ◦σ H3〉

= 〈A(μ), H1 ◦(123) H2 ◦(123) H3〉 + 〈A(μ), H1 ◦(132) H2 ◦(132) H3〉

=
n,n,n∑

q1,q2,q3=1

A(μ)q1q2q3H
q1q3
1 H

q2q1
2 H

q3q2
3 +

n,n,n∑
p1,p2,p3=1

A(μ)p1p2p3H
p1p2
1 H

p2p3
2 H

p3p1
3 .

After re-parametrization of the first sum (q1 = p2, q2 = p3, q3 = p1), using the symmetry of the
tensor A(μ) and the matrices H1, H2, H3, we continue

=
n,n,n∑

p1,p2,p3=1

(A(μ)p2p3p1 + A(μ)p1p2p3)H
p1p2
1 H

p2p3
2 H

p3p1
3

= 2
n,n,n∑

p1,p2,p3=1

A(μ)p1p2p3H
p1p2
1 H

p2p3
2 H

p3p1
3 ,

which is what we wanted to show. �

In the general case when H1,…,Hk are distinct symmetric matrices, we cannot simplify the
formula for ∇kF (X)[H1, . . . , Hk] much more than the example in Corollary 6.10.

To show that we can do at least that much, let σ and θ be in P̃ k , that is, permutations in
P k with one cycle in their cycle decomposition. Suppose that σ = θ−1, that A is a symmetric
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k-tensor on Rn, and that H1,…,Hk are distinct symmetric matrices. Then, re-parameterizing the
sum

n,...,n∑
q1,...,qk=1

Aq1...qkH
q1qσ−1(1)

1 · · · Hqkqσ−1(k)

k

according to the substitutions qi = pσ(i) for i = 1, 2, . . . , k we get the sum

n,...,n∑
p1,...,pk=1

Apσ(1)...pσ(k)H
pσ(1)p1
1 · · · Hpσ(k)pk

k

=
n,...,n∑

p1,...,pk=1

Ap1...pkH
pσ(1)p1
1 · · · Hpσ(k)pk

k

=
n,...,n∑

p1,...,pk=1

Ap1...pkH
p1pθ−1(1)

1 · · · Hpkpθ−1(k)

k .

In the first equality above we used the fact that A is a symmetric tensor, while in the second we
used that Hi is a symmetric matrix for i = 1, 2, . . . , k.

We summarize the preceding paragraph in the following theorem.

Theorem 6.11. Let P̃ k
0 be a subset of P̃ k, k � 3, such that if σ ∈ P̃ k

0 then σ−1 /∈ P̃ k
0 .

For g ∈ Ck(I) and any H1, . . . , Hk in Sn we have

∇kF (X)[H1, . . . , Hk] = 2
∑

σ∈P̃ k
0

n,...,n∑
p1,...,pk=1

A(λ(X))p1...pk H̃
p1pσ(1)

1 · · · H̃ pkpσ(k)

k , (50)

where X = V (Diag λ(X))V T, and H̃i = V THiV for i = 1, 2, . . . , k.

If, H1 = · · · = Hk then (50) can be simplified even more.

Theorem 6.12. For g ∈ Ck(I) and any H ∈ Sn

∇kF (X)[H, . . . , H ] = (k − 1)!
n,...,n∑

p1,...,pk=1

A(λ(X))p1...pk H̃ p1p2H̃ p2p3 · · · H̃ pkp1 , (51)

where X = V (Diag λ(X))V T, and H̃ = V THV.

Proof. Let H be in Sn. Using (49), (10), and (5) we find

∇kF (X)[H, . . . , H ] = V

⎛⎝∑
σ∈P̃ k

DiagσA(λ(X))

⎞⎠V T[H, . . . , H ]

=
∑

σ∈P̃ k

〈A(λ(X)), H̃ ◦σ H̃ ◦σ · · · ◦σ H̃ 〉

=
∑

σ∈P̃ k

n,...,n∑
p1,...,pk=1

A(λ(X))p1...pk H̃
p1pσ−1(1) · · · H̃ pkpσ−1(k) .
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Let σ ∈ P̃ k be any permutation with one cycle in its cycle decomposition. In order to prove
the result we show that

n,...,n∑
q1,...,qk=1

A(λ(X))q1...qk H̃
q1qσ−1(1) · · · H̃ qkqσ−1(k)

=
n,...,n∑

p1,...,pk=1

A(λ(X))p1...pk H̃ p1p2H̃ p2p3 · · · H̃ pkp1 . (52)

In order to do that we find a re-parametrization (that is, we change the order of summation) of
the right-hand side sum that gives the left-hand side sum. Since σ has one cycle in its cycle
decomposition, the map i ∈ Nk �→ σ−i (1) ∈ Nk is a permutation as well. Change the order of
summation in the right-hand side of (52) according to the rule

pi :=qσ−i (1) for all i = 1, 2, . . . , k.

Notice that pi+1 = qσ−(i+1)(1) = qσ−1(σ−i (1)). After the substitution H̃ p1p2H̃ p2p3 · · · H̃ pkp1

becomes the product

H̃
q
σ−1(1)

q
σ−2(1) H̃

q
σ−2(1)

q
σ−3(1) · · · H̃ q

σ−k(1)
q
σ−1(1)

= H̃
q
σ−1(1)

q
σ−1(σ−1(1)) H̃

q
σ−2(1)

q
σ−1(σ−2(1)) · · · H̃ q

σ−k(1)
q
σ−1(σ−k(1))

= H̃
q1qσ−1(1) H̃

q2qσ−1(2) · · · H̃ qkqσ−1(k) .

The final equality follows by a re-ordering of the product since the indices {σ−1(1), σ−2(1), . . . ,

σ−k(1)} are a permutation of the indices {1, 2, . . . , k}. Finally we have

A(λ(X))p1...pk = A(λ(X))
q
θ−1(1)

...q
θ−k(1) = A(λ(X))q1...qk ,

since A(λ(X)) is a symmetric tensor and the indices {σ−1(1), σ−2(1), . . . , σ−k(1)} are a per-
mutation of the indices {1, 2, . . . , k}. �

7. The Hessian of a general spectral function

In this section we calculate a formula for the Hessian of a general spectral functions at an
arbitrary symmetric matrix. That formula was first obtained in [17] but the insight for it came
from [18]. Our current approach is streamlined and shows clearly where the different pieces of
the Hessian come from.

7.1. Two matrix-valued maps

Let f : Rn → R be a symmetric twice (continuously) differentiable function. Let A(1)(2) :
Rn → Mn be defined by

A(1)(2)(x) = ∇2f (x),

and let A(12) : Rn → Mn be defined entry wise by
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A
i1i2
(12)(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if i1 = i2,

f ′′
i1i1

(x) − f ′′
i1i2

(x), if i1 ∼x i2 and i1 /= i2,

f ′
i2

(x)−f ′
i1

(x)

xi2 −xi1
, if i1 �x i2.

Several of the properties of A(12)(x) are easily seen from the following integral representation.

Lemma 7.1. If f is a C2 function, then for every i1, i2 ∈ Nn we have

A
i1i2
(12)(x) =

∫ 1

0
f ′′

i1i1
(. . . , xi1 + t (xi2 − xi1), . . . , xi2 + t (xi1 − xi2), . . .)

−f ′′
i1i2

(. . . , xi1 + t (xi2 − xi1), . . . , xi2 + t (xi1 − xi2), . . .) dt,

where the first displayed argument is in position i1 and the second is in position i2. The missing
arguments are the corresponding entries of x, unchanged.

Proof. The first case, when i1 = i2 is immediate. In the second, il ∼x i2 implies that xi1 = xi2

and the integrand does not depend on t . In the third case, i1 �x i2, the Fundamental Theorem of
Calculus, tell us that

1

xi2 − xi1

∫ 1

0

�
�t

f ′
i1
(. . . , xi1 + t (xi2 − xi1), . . . , xi2 + t (xi1 − xi2), . . .) dt

= f ′
i1
(. . . , xi2 , . . . , xi1 , . . .) − f ′

i1
(. . . , xi1 , . . . , xi2 , . . .)

xi2 − xi1

= f ′
i2
(. . . , xi1 , . . . , xi2 , . . .) − f ′

i1
(. . . , xi1 , . . . , xi2 , . . .)

xi2 − xi1

= A
i1i2
(12)(x).

In the second equality we used that x �→ ∇f (x) is a point-symmetric map. �

Lemma 7.2. If f (x) is twice (continuously) differentiable, then both maps x → A(1)(2)(x) and
x → A(12)(x) are point symmetric.

Proof. Lemma 2.5 shows that x �→ A(1)(2)(x) is point symmetric, so if i1 ∼x j1, then f ′′
i1i1

(x) =
f ′′

j1j1
(μ). Also, if i1 ∼x j1 and i2 ∼x j2 with i1 /= i2 and j1 /= j2, then f ′′

i1i2
(x) = f ′′

j1j2
(x). Point

symmetry of x �→ ∇f (x) implies that if i1 ∼x j1, then f ′
i1
(x) = f ′

j1
(x). �

Lemma 7.1 ensures that if f (x) is twice continuously differentiable then A(1)(2)(x) and
A(12)(x) are symmetric matrices and are continuous in x.

7.2. f ◦ λ is twice (continuously) differentiable if and only if f is

We now show that f ◦ λ is twice (continuously) differentiable at X if and only if f is same at
λ(X). The ‘only if’ direction can be seen by restricting f ◦ λ to the subspace of diagonal matrices.
To show the ‘if’ direction, without loss of generality assume that X = Diag μ, for some μ ∈ Rn↓,
that Mm/‖Mm‖ converges to M as m goes to infinity, and that (20) holds. Using (30) together
with (24) we compute:
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∇2(f ◦ λ)(Diag μ)[M]
= lim

m→∞
∇(f ◦ λ)(Diag μ + Mm) − ∇(f ◦ λ)(Diag μ)

‖Mm‖
= lim

m→∞
Um(Diag(1)∇f (λ(Diag μ + Mm)))UT

m − Diag(1)∇f (μ)

‖Mm‖
= lim

m→∞
Um(Diag(1)∇f (μ + hm + o(‖Mm‖)))UT

m − Diag(1)∇f (μ)

‖Mm‖
= lim

m→∞
Um(Diag(1)(∇f (μ) + ∇2f (μ)[hm] + o(‖Mm‖)))UT

m − Diag(1)∇f (μ)

‖Mm‖
= lim

m→∞
Um(Diag(1)(∇f (μ)))UT

m − Diag(1)∇f (μ)

‖Mm‖ + U(Diag(1)(∇2f (μ)[h]))UT.

(53)

For brevity let T = ∇f (μ), letA(1)(2) = A(1)(2)(μ), and letA(12) = A(12)(μ). Using Corollary
2.9

lim
m→∞

Um(Diag(1)T )UT
m − Diag(1)T

‖Mm‖ = (Diag(12)T
(1)
out )[M]. (54)

By Lemma 2.1 part (ii), there is a vector b that is block constant with respect to μ, such that
A(1)(2) − Diag b is also block constant with respect to μ. Then by Corollary 2.10, applied with
k = 1,

U(Diag(1)(∇2f (μ)[h]))UT

= U(Diag(1)((A(1)(2) − Diag b + Diag b)[h]))UT

= U(Diag(1)((A(1)(2) − Diag b)[h]))UT + U(Diag(1)((Diag b)[h]))UT

= (Diag(1)(2)(A(1)(2) − Diag b))[M] + (Diag(12)b
(1)
in )[M]. (55)

This shows that f ◦ λ is twice differentiable.
To prove that f ◦ λ is twice continuously differentiable we reorganize the pieces. Direct ver-

ification shows that the sum A(1)(2) + A(12) is block-constant. Then b can be chosen in such a
way that, in addition, A(12) + Diag b is a block-constant matrix and

A(12) + Diag b = T
(1)

out + b
(1)
in . (56)

Putting (53)–(56) together we obtain:

∇2(f ◦ λ)(Diag μ) = Diag(12)T
(1)

out + Diag(1)(2)(A(1)(2) − Diag b) + Diag(12)b
(1)
in

= Diag(1)(2)(A(1)(2) − Diag b) + Diag(12)(A(12) + Diag b)

= Diag(1)(2)A(1)(2) + Diag(12)A(12).

In the third equality we used the fact that Diag(1)(2)(Diag b) = Diag(12)(Diag b), which can
be verified directly. The formula for the Hessian of f ◦ λ at an arbitrary X is

∇2(f ◦ λ)(X) = V (Diag(1)(2)A(1)(2)(λ(X)) + Diag(12)A(12)(λ(X)))V T, (57)

where X = V (Diag λ(X))V T.
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Finally, when f is C2 both A(1)(2)(x) and A(12)(x) are continuous and by [22, Proposition
6.2] ∇2(f ◦ λ)(X) is continuous as well.

Appendix A. A refinement of a perturbation result for eigenvectors

The main tool in the derivation of the formula for the Hessian in [17] was Lemma 2.4.
The statement of that lemma was broken down into nine parts, which led to consideration of
a variety of cases when deriving the Hessian. For the higher-order derivatives such case studies
would quickly become unmanageable. That is why the goal of this appendix is to transform
Lemma 2.4 from [17] into a form more suitable for computations. Section 3 gives the relevant
notation.

Any vector μ ∈ Rn defines a partition of Nn into disjoint blocks, where integers i and j are in
the same block if and only if μi = μj . By r we denote the number of blocks in the partition. By
ιl we denote the largest integer in Il for all l = 1, . . . , r .

Theorem A.1. Let {Mm}∞m=1 be a sequence of symmetric matrices converging to 0, such that the
normalized sequence Mm/‖Mm‖ converges to M. Let μ be in Rn↓ and let Um → U ∈ On be a
sequence of orthogonal matrices such that

Diag μ + Mm = Um(Diag λ(Diag μ + Mm))UT
m, for all m = 1, 2, . . . .

Then

(i) The orthogonal matrix U has the form

U =

⎛⎜⎜⎜⎝
V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...

0 0 · · · Vr

⎞⎟⎟⎟⎠ ,

where Vl is an orthogonal matrix with dimensions |Il | × |Il | for all l.

(ii) The following identity holds:

UTMinU = Diag h, (A.1)

(iii) For any indices i ∈ Il, j ∈ Is, and t ∈ {1, . . . , r} we have the (strong) first-order expansion∑
p∈It

U
ip
m U

jp
m = δij δlt + δlt − δst

μi − μj

Mij‖Mm‖ + o(‖Mm‖), (A.2)

with the understanding that the fraction is zero whenever δlt = δst no matter what the
denominator is.

Proof. This lemma, with some modifications, is essentially Lemma 2.4 in [17]. Indeed, Part (i)
is [17, Lemma 2.4 Part (i)]. The equality in Part (ii) is an aggregate version of Parts (iv) and (vii)
from Lemma 2.4 in [17]. To prove Part (iii) we consider several cases.

Case 1. If i = j ∈ Il and t = l, then (A.2) becomes
∑

p∈Il
(U

ip
m )2 = 1 + o(‖Mm‖), which is

exactly Part (ii), Lemma 2.4 in [17].
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Case 2. If i = j ∈ Il and t /= l, then (A.2) becomes
∑

p∈It
(U

ip
m )2 = o(‖Mm‖), which is a con-

sequence of Part (iii), Lemma 2.4 in [17].
Case 3. If i /= j ∈ Il and t = l, then (A.2) becomes

∑
p∈Il

U
ip
m U

jp
m = o(‖Mm‖), which is exactly

Part (vi), Lemma 2.4 in [17].
Case 4. If i /= j ∈ Il and t /= l, then (A.2) becomes

∑
p∈It

U
ip
m U

jp
m = o(‖Mm‖), which is a con-

sequence of Part (v), Lemma 2.4 in [17].
Case 5. If i ∈ Il , j ∈ Is , with l /= s /= t /= l, then (A.2) becomes

∑
p∈It

U
ip
m U

jp
m = o(‖Mm‖),

which is a consequence of Part (viii), Lemma 2.4 in [17].
Case 6. If i ∈ Il , j ∈ Is , with l /= s and t = l, then (A.2) becomes∑

p∈It

U
ip
m U

jp
m = 1

μi − μj

Mij‖Mm‖ + o(‖Mm‖),

which we prove in Case 7.
Case 7. If i ∈ Il , j ∈ Is , with l /= s and t = s, then (A.2) becomes∑

p∈It

U
ip
m U

jp
m = − 1

μi − μj

Mij‖Mm‖ + o(‖Mm‖).

We now show that the expressions in both Case 6 and Case 7 are valid. Part (ix) from
Lemma 2.4 in [17] says that if i ∈ Il , j ∈ Is with l /= s, we have

lim
m→∞ g

(
μιl

∑
p∈Il

U
ip
m U

jp
m

‖Mm‖ + μιs

∑
p∈Is

U
ip
m U

jp
m

‖Mm‖ g

)
= Mij . (A.3)

Introduce the notation

βl
m :=

∑
p∈Il

U
ip
m U

jp
m

‖Mm‖ for all l = 1, 2, . . . , r,

and notice that
r∑

l=1

βl
m = 0 for all m,

because Um is orthogonal and the numerator of the last sum is the product of its ith and
j th row. Next, by Case 5 we have

lim
m→∞

∑
t /=l,s

βt
m = 0,

so

lim
m→∞(βl

m + βs
m) = 0.

For arbitrary reals a and b we compute

(aβl
m + bβs

m) − a − b

μιl − μιs

(μιl β
l
m + μιs β

s
m) = (βl

m + βs
m)

bμιl − aμιs

μιl − μιs

→ 0,

as m → ∞. Using (A.3), this shows that

lim
m→∞(aβl

m + bβs
m) = a − b

μιl − μιs

Mij .

When (a, b) = (1, 0) we obtain Case 6, and when (a, b) = (0, 1) we obtain
Case 7. �
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Appendix B. Tensor analysis

The aim of this appendix is to prove Theorems 2.9 and 2.10.
Recall that any vector μ ∈ Rn defines a partition of Nn into disjoint blocks, where integers i

and j are in the same block if and only if μi = μj . By r we denote the number of blocks in the
partition. By ιl we denote the largest integer in Il for all l = 1, . . . , r .

Theorem B.1. Let {Mm}∞m=1 be a sequence of symmetric matrices converging to 0, such that
the normalized sequence Mm/‖Mm‖ converges to M. Let μ be in Rn↓ and Um → U ∈ On be a
sequence of orthogonal matrices such that

Diag μ + Mm = Um(Diag λ(Diag μ + Mm))UT
m, for all m = 1, 2, . . . .

Then for every block-constant k-tensor T on Rn, any matrices H1, . . . , Hk , and any permutation
σ on Nk we have

lim
m→∞

(
Um(Diagσ T )UT

m − Diagσ T

‖Mm‖
)

[H1, . . . , Hk]

=
k∑

l=1

(Diagσ(1)T
(l)
out)[H1, . . . , Hk, Mout], (B.1)

where Mout is the symmetric matrix of off-diagonal blocks of M as defined by (4).

Proof. The idea of the proof is to evaluate separately the expressions on both sides of (B.1) and
compare the results. Both sides of (B.1) are linear in each argument Hs . That is why it is enough
to prove the result when Hs , for s = 1, . . . , k, is an arbitrary matrix, Hisjs , from the standard basis
on Mn. In that case

(Um(Diagσ T )UT
m − Diagσ T )[Hi1j1 , . . . , Hikjk

]
= (Um(Diagσ T )UT

m)
i1 ...ik
j1 ...jk − (Diagσ T )

i1 ...ik
j1 ...jk . (B.2)

Using the definition of the conjugate action and the fact that T is block constant, we develop
the first term on the right-hand side of the equality sign in (B.2):

(Um(Diagσ T )UT
m)

i1 ...ik
j1 ...jk =

n,...,n∑
pη,qη=1
η=1,...,k

(Diagσ T )
p1 ...pk
q1 ...qk

k∏
ν=1

U
iνpν
m U

jνqν
m

=
n,...,n∑
pη=1

η=1,...,k

T p1...pk

k∏
ν=1

U
iνpν
m U

jνp
σ−1(ν)

m

=
n,...,n∑
pη=1

η=1,...,k

T p1...pk

k∏
ν=1

U
iνpν
m U

jσ(ν)pν
m

=
r,...,r∑
tη=1

η=1,...,k

T ιt1 ...ιtk

k∏
ν=1

⎛⎝ ∑
pν∈Itν

U
iνpν
m U

jσ(ν)pν
m

⎞⎠ .
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Putting everything together, we see that to evaluate the limit on the left-hand side of (B.1) we
must compute

lim
m→∞

∑r,...,r
t1,...,tk=1T

ιt1 ...ιtk
∏k

ν=1

(∑
pν∈Itν

U
iνpν
m U

jσ(ν)pν
m

)
− (Diagσ T )

i1 ...ik
j1 ...jk

‖Mm‖ . (B.3)

Assume that il ∈ Ivl
and jσ(l) ∈ Isl for all l = 1, . . . , k. We investigate several possibilities.

Suppose first that among the pairs

(i1, jσ(1)), (i2, jσ(2)), . . . , (ik, jσ(k)) (B.4)

at least two have nonequal entries. Without loss of generality we may assume they are (i1, jσ(1))

and (i2, jσ(2)), that is, i1 /= jσ(1) and i2 /= jσ(2). Using (A.2), for any t1, t2 we observe that:

lim
m→∞

1

‖Mm‖

⎛⎝ ∑
p1∈It1

U
i1p1
m U

jσ(1)p1
m

⎞⎠⎛⎝ ∑
p2∈It2

U
i2p2
m U

jσ(2)p2
m

⎞⎠
= lim

m→∞
1

‖Mm‖

(
δi1jσ(1)

δv1t1 + δv1t1 − δs1t1

μi1 − μjσ(1)

Mi1jσ(1)‖Mm‖ + o(‖Mm‖)
)

×
(

δi2jσ(2)
δv2t2 + δv2t2 − δs2t2

μi2 − μjσ(2)

Mi2jσ(2)‖Mm‖ + o(‖Mm‖)
)

= lim
m→∞

1

‖Mm‖

(
δv1t1 − δs1t1

μi1 − μjσ(1)

Mi1jσ(1)‖Mm‖ + o(‖Mm‖)
)

×
(

δv2t2 − δs2t2

μi2 − μjσ(2)

Mi2jσ(2)‖Mm‖ + o(‖Mm‖)
)

= 0.

Since in this case by definition (Diagσ T )
i1 ...ik
j1 ...jk = 0, we see that (B.3) is zero.

Suppose now that exactly one pair has unequal entries and let it be (il, jσ(l)). We consider two
subcases depending on whether or not il and jσ(l) are in the same block.

If both il and jσ(l) are in one block, that is, vl = sl , then using (A.2), for arbitrary t we obtain:

lim
m→∞

1

‖Mm‖

⎛⎝∑
p∈It

U
ilp
m U

jσ(l)p
m

⎞⎠
= lim

m→∞
1

‖Mm‖

(
δiljσ(l)

δvl t + δvl t − δsl t

μil − μjσ(l)

Miljσ(l)‖Mm‖ + o(‖Mm‖)
)

= lim
m→∞

o(‖Mm‖)
‖Mm‖

= 0.

In this subcase we again have (Diagσ T )
i1 ...ik
j1 ...jk = 0; thus (B.3) is equal to zero.
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If il and jσ(l) are in different blocks, vl /= sl , then (Diagσ T )
i1 ...ik
j1 ...jk = 0 and by (A.2) we obtain:

lim
m→∞

1

‖Mm‖

⎛⎝ r,...,r∑
t1,...,tk=1

T
ιt1 ...ιtk

k∏
ν=1

⎛⎝ ∑
pν∈Itν

U
iνpν
m U

jσ(ν)pν
m

⎞⎠⎞⎠
= lim

m→∞

⎛⎝ r,...,r∑
t1,...,tk=1

T
ιt1 ...ιtk

‖Mm‖
k∏

ν=1

(
δiνjσ(ν)

δvν tν + δvν tν − δsν tν

μiν − μjσ(ν)

Miνjσ(ν)‖Mm‖ + o(‖Mm‖)
)⎞⎠ .

(B.5)

We show that the limit of at most two terms of the big sum in (B.5) may be non zero. Indeed, sum-
mands corresponding to k-tuples (t1, . . . , tk) with tl /∈ {vl, sl} converge to zero, because δiljσ(l)

=
0, δvl tl = δsl tl = 0, and therefore

δiljσ(l)
δvl tl + δvl tl − δsl tl

μil − μjσ(l)

Miljσ(l)‖Mm‖ + o(‖Mm‖) = o(‖Mm‖).

Similarly, summands corresponding to k-tuples (t1, . . . , tk) with tν /= vν for some ν /= l con-
verge to zero, since then δvν tν = δsν tν = 0 (vν = sν for all ν /= l). Thus, there are two summands
with possible non-zero limit, corresponding to the k-tuples (v1, . . . , vl−1, vl, vl+1, . . . , vk) and
(v1, . . . , vl−1, sl, vl+1, . . . , vk). Finally, if tν = vν(= sν) for some ν /= l, then

δiνjσ(ν)
δvν tν + δvν tν − δsν tν

μiν − μjσ(ν)

Miνjσ(ν)‖Mm‖ + o(‖Mm‖) = 1 + o(‖Mm‖),

since iν = jσ(ν) for ν /= l. Thus, the limit of the summand in (B.5) corresponding to the k-tuple
(v1, . . . , vl−1, vl, vl+1, . . . , vk) is

lim
m→∞

T
ιv1 ...ιvl−1 ιvl ιvl+1 ...ιvk

‖Mm‖

(
δiljσ(l)

δvlvl
+ δvlvl

− δslvl

μil − μjσ(l)

Miljσ(l)‖Mm‖ + o(‖Mm‖)
)

= T
ιv1 ...ιvl−1 ιvl ιvl+1 ...ιvk

μil − μjσ(l)

Miljσ(l) ,

while, analogously, the limit corresponding to the k-tuple (v1, . . . , vl−1, sl, vl+1, . . . , vk) is

−T
ιv1 ...ιvl−1 ιsl ιvl+1 ...ιvk

μil − μjσ(l)

Miljσ(l) .

Putting these two limits together we see that (B.5), and therefore (B.3) is

T
ιv1 ...ιvl−1 ιvl ιvl+1 ...ιvk − T

ιv1 ...ιvl−1 ιsl ιvl+1 ...ιvk

μil − μjσ(l)

Miljσ(l)

= T i1...il−1il il+1...ik − T i1...il−1jσ(l)il+1...ik

μil − μjσ(l)

Miljσ(l)

= T i1...il−1il il+1...ik − T i1...il−1jσ(l)il+1...ik

μil − μjσ(l)

M
iljσ(l)

out .

The first equality follows from the block-constant structure of T ; the second follows from the
premise in this case that il and jσ(l) are in different blocks.
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Consider now the final case: iν = jσ(ν) for all ν = 1, . . . , k. Using (A.2) one can see that
the only summand that may have a non-zero limit in the sum in the numerator of (B.3) is the
one corresponding to the multi-index (t1, . . . , tk) = (v1, . . . , vk). Thus, using the block-constant
structure of T (iν ∈ Ivν for all ν = 1, . . . , k), (B.3) is equal to

lim
m→∞

1

‖Mm‖ (T i1...ik (1 + o(‖Mm‖)) − T i1...ik ) = 0.

We now compute the right-hand side of (B.1) and compare with the preceding results. Suppose
that σ(l) = m. By the definition of σ(1) we have σ−1

(1) (m) = k + 1, σ−1
(1) (k + 1) = l, and for any

integer i ∈ Nk+1\{m, k + 1} we have σ−1
(1) (i) = σ−1(i). Analogously, we have σ(1)(l) = k + 1,

σ(1)(k + 1) = σ(l), and for any integer i ∈ Nk+1\{l, k + 1} we have σ(1)(i) = σ(i).
We again use the standard notation that a circumflex above a factor in a product means that

the factor is omitted. Since σ−1
(1) (k + 1) = l /= k + 1 we use the second part of Lemma 2.7 to

compute

k∑
l=1

(Diagσ(1)T
(l)
out)[Hi1j1 , . . . , Hikjk

, Mout]

=
k∑

l=1

〈T (l)
out, Hi1j1 ◦σ(1)

· · · ◦σ(1)
Hikjk

◦σ(1)
Mout〉

=
k∑

l=1

(T
(l)
out)

i1...ikjσ(1)
(k+1)

(δi1jσ(1)
(1) · · · ̂δiljσ(1)

(l) · · · δikjσ(1)
(k))M

jσ(1)
(k+1)iσ−1

(l)

(k+1)

out

=
k∑

l=1

(T
(l)
out)

i1...ikjσ(l) (δi1jσ(1)
(1) · · · ̂δiljσ(1)

(l) · · · δikjσ(1)
(k))M

jσ(l)il
out

=
k∑

l=1

(T
(l)
out)

i1...ikjσ(l) (δi1jσ(1)
· · · ̂δiljσ(l)

· · · δikjσ(k)
)M

jσ(l)il
out .

The final equality results from changing the circumflexed factor (for each fixed l) while keeping
the other factors the same. If at least two of the pairs

(i1, jσ(1)), (i2, jσ(2)), . . . , (ik, jσ(k))

have different entries, then the final sum is zero. Now suppose exactly one of the pairs has unequal
entries, say il /= jσ(l). Then the sum is equal to

(T
(l)
out)

i1...ikjσ(l) (δi1jσ(1)
· · · ̂δiljσ(l)

· · · δikjσ(k)
)M

jσ(l)il
out . (B.6)

If il and jσ(l) are in the same block, then (T
(l)
out)

i1...ikjσ(l) = 0 by the definition of T
(l)

out . If il and
jσ(l) are not in the same block, then (B.6) is equal to

(T
(l)
out)

i1...ikjσ(l)M
jσ(l)il
out = T i1...il−1il il+1...ik − T i1...il−1jσ(l)il+1...ik

μil − μjσ(l)

M
iljσ(l)

out ,

because M is symmetric. Finally, if iν = jσ(ν) for all ν = 1, . . . , k, then (T
(l)

out)
i1...ikjσ(l) = 0 for

all l. These outcomes are equal to the results in the corresponding cases in the first part of the
proof, so the theorem follows. �
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Proposition B.2. Let T be any k + 1-tensor on Rn, let x ∈ Rn, let V be in On, and let σ be in
P k. Then

V (Diagσ (T [x]))V T = (V (Diagσ(k+1)T )V T)[V (Diag x)V T].

Proof. Let Hi1j1 , . . . , Hikjk
be any k basic matrices. Since σ

(k+1)
(i) = σ(i) for all i ∈ Nk and

σ(k+1)(k + 1) = k + 1, we can use Theorem 2.6 twice to compute

(V (Diagσ (T [x]))V T)
i1 ...ik
j1 ...jk = (V (Diagσ (T [x]))V T)[Hi1j1 , . . . , Hikjk

]
= 〈T [x], H̃i1j1 ◦σ . . . ◦σ H̃ikjk

〉

=
n,...,n∑

p1,...,pk=1

(T [x])p1...pk H̃
p1pσ−1(1)

i1j1
· · · H̃ pkpσ−1(k)

ikjk

=
n,...,n∑

p1,...,pk,pk+1=1

T p1...pk+1xpk+1H̃
p1pσ−1(1)

i1j1
· · · H̃ pkpσ−1(k)

ikjk

=
n,...,n∑

p1,...,pk,pk+1=1

T p1...pk+1H̃

p1p
σ
−1
(k+1)

(1)

i1j1
· · · H̃

pkp
σ
−1
(k+1)

(k)

ikjk
(Diag x)

pk+1p
σ
−1
(k+1)

(k+1)

= 〈T , H̃i1j1 ◦σ(k+1)
. . . ◦σ(k+1)

H̃ikjk
◦σ(k+1)

Diag x〉
= (V (Diagσ(k+1)T )V T)[Hi1j1 , . . . , Hikjk

, V (Diag x)V T]
= ((V (Diagσ(k+1)T )V T)[V (Diag x)V T])

i1 ...ik
j1 ...jk .

Since the indices i1, . . . , ik and j1, . . . , jk are arbitrary we are done. �

The next lemma says that for any block-constant tensor T , Diagσ T is invariant under conju-
gation with a block-diagonal orthogonal matrix.

Lemma B.3. Let T be a block constant k-tensor on Rn and let U ∈ On be a block diagonal
matrix (both with respect to the same partitioning of Nn). Then for any permutation σ in Nk

U(Diagσ T )UT = Diagσ T .

Proof. Let {I1, . . . , Ir}be the partitioning of the integers Nn that determines the block structure, so
UipUjp = 0 whenever i � j or i � p, and

∑
p∈Is

U ipUjp = δij whenever i ∈ Is . Let (i1, . . . , ik)
be an arbitrary multi index and suppose that il ∈ Ivl

for l = 1, . . . , k. We expand the left-hand
side of the identity:

(U(Diagσ T )UT)
i1 ...ik
j1 ...jk =

n,...,n∑
ps ,qs=1
s=1,...,k

(Diagσ T )
p1 ...pk
q1 ...qk U i1p1Uj1q1 · · · UikpkUjkqk

=
n,...,n∑

p1,...,pk=1

T p1...pkUi1p1U
j1pσ−1(1) · · · UikpkU

jkpσ−1(k)

=
n,...,n∑

p1,...,pk=1

T p1...pkUi1p1Ujσ(1)p1 · · · UikpkUjσ(k)pk
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=
r,...,r∑

t1,...,tk=1

T ιt1 ...ιtk
∑
pl∈Itl

l=1,...,k

U i1p1Ujσ(1)p1 · · · UikpkUjσ(k)pk

= T ιv1 ...ιvk
∑

pl∈Ivl
l=1,...,k

U i1p1Ujσ(1)p1 · · · UikpkUjσ(k)pk

= T ιv1 ...ιvk δi1jσ(1)
· · · δikjσ(k)

= T i1...ik δi1jσ(1)
· · · δikjσ(k)

= (Diagσ T )
i1 ...ik
j1 ...jk .

The penultimate equality follows from the fact that T is block constant. �

Given a block structure on Nn and any matrix M , by Min we denote the matrix with the same
diagonal blocks as M and the rest of the entries set to zero, as in (3).

Theorem B.4. Let U ∈ On be a block diagonal orthogonal matrix. Let M ∈ Sn be given and let
h ∈ Rn be such that

UTMinU = Diag h. (B.7)

Let H1, . . . , Hk be arbitrary matrices and let σ be a permutation on Nk. Then

(i) for any block-constant (k + 1)-tensor T on Rn,

〈T [h], H̃1 ◦σ · · · ◦σ H̃k〉 = 〈T , H1 ◦σ(k+1)
· · · ◦σ(k+1)

Hk ◦σ(k+1)
Min〉.

(ii) for any block-constant k-tensor T on Rn,

〈T τl [h], H̃1 ◦σ · · · ◦σ H̃k〉 = 〈T (l)
in , H1 ◦σ(1)

· · · ◦σ(1)
Hk ◦σ(1)

Min〉 for all l = 1, . . . , k,

where the permutations σ(1) for l = 1, . . . , k, k + 1 are defined by (13), H̃i = UTHiU for
i = 1, . . . , k, and the lifting T τl is defined by (17).

Proof. To see that the first identity holds we use Theorem 2.6, Proposition B.2, (B.7), and Lemma
B.3 in that order, as follows:

〈T [h], H̃1 ◦σ · · · ◦σ H̃k〉 = (U(Diagσ T [h])UT)[H1, . . . , Hk]
= (U(Diagσ

(k+1) T )UT)[H1, . . . , Hk, U(Diag h)UT]
= (U(Diagσ

(k+1)T )UT)[H1, . . . , Hk, Min]
= (Diagσ

(k+1) T )[H1, . . . , Hk, Min]
= 〈T , H1 ◦σ(k+1)

· · · ◦σ
(k+1)

Hk ◦σ
(k+1)

Min〉.
The final equality follows from Theorem 2.6.

To show the second identity, it suffices to prove it for arbitrary basic matrices Hisjs s = 1, . . . , k.
Fix k basic matrices Hi1j1 , . . . , Hikjk

and suppose that il ∈ Ivl
for l = 1, . . . , k. Then

〈T τl [h], H̃i1j1 ◦σ · · · ◦σ H̃ikjk
〉

= (U(Diagσ T τl [h])UT)[Hi1j1 , . . . , Hikjk
]



276 H.S. Sendov / Linear Algebra and its Applications 424 (2007) 240–281

= (U(Diagσ T τl [h])UT)
i1 ...ik
j1 ...jk

=
n,...,n∑

p1,...,pk=1
q1,...,qk=1

(Diagσ T τl [h]) p1 ...pk
q1 ...qk U i1p1Uj1q1 · · · UikpkUjkqk

=
n,...,n∑

p1,...,pk=1

(T τl [h])p1...pkUi1p1U
j1pσ−1(1) · · · UikpkU

jkpσ−1(k)

=
n,...,n∑

p1,...,pk=1

(T τl [h])p1...pkUi1p1Ujσ(1)p1 · · · UikpkUjσ(k)pk

=
n,...,n∑

p1,...,pk=1

n∑
pk+1=1

(T τl )p1...pkpk+1hpk+1Ui1p1Ujσ(1)p1 · · · UikpkUjσ(k)pk

=
n,...,n∑

p1,...,pk=1

T p1...pkhplUi1p1Ujσ(1)p1 · · · UikpkUjσ(k)pk

=
r,...,r∑

t1,...,tk=1

T ιt1 ...ιtk
∑

pη∈Itη
η=1,...,k

hplUi1p1Ujσ(1)p1 · · · UikpkUjσ(k)pk

= T ιv1 ...ιvk
∑

pl∈Ivl
l=1,...,k

hplUi1p1Ujσ(1)p1 · · · UikpkUjσ(k)pk

= T ιv1 ...ιvk δi1jσ(1)
· · · ̂δiljσ(l)

· · · δikjσ(k)

∑
pl∈Ivl

hplUilplUjσ(l)pl

= T i1...ik δi1jσ(1)
· · · ̂δiljσ(l)

· · · δikjσ(k)

∑
pl∈Ivl

hplUilplUjσ(l)pl

= T i1...ik δi1jσ(1)
· · · ̂δiljσ(l)

· · · δikjσ(k)
M

iljσ(l)

in .

To evaluate the right-hand side of the identity, we use the second part of Lemma 2.7 since
σ−1

(l)
(k + 1) = l /= k + 1. Since σ

(l)
(s) = σ(s) for s ∈ Nk+1\{l, k + 1} and σ

(l)
(k + 1) = σ(l)

for all l = 1, . . . , k, we can calculate

〈T (l)
in , Hi1j1 ◦σ

(l)
· · · ◦σ

(l)
Hikjk

◦σ
(l)

Min〉

= (T
(l)
in )

i1...ikjσ
(l)

(k+1)
δi1jσ

(l)
(1)

· · · ̂δiljσ
(l)

(l)
· · · δikjσ

(l)
(k)

M

jσ
(l)

(k+1)iσ−1
(l)

(k+1)

in

= (T
(l)
in )i1...ikjσ(l) δi1jσ(1)

· · · ̂δiljk+1 · · · δikjσ(k)
M

jσ(l)il
in

= T i1...ik δi1jσ(1)
· · · ̂δiljk+1 · · · δikjσ(k)

M
jσ(l)il
in

= T i1...ik δi1jσ(1)
· · · ̂δiljk+1 · · · δikjσ(k)

M
iljσ(l)

in

= T i1...ik δi1jσ(1)
· · · ̂δiljσ(l)

· · · δikjσ(k)
M

iljσ(l)

in .
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In the third equality we used the fact that T is block constant, as well as the fact that M
jσ(l)il
in = 0

if jσ(l) � il . In the fourth equality we used the fact that M is symmetric. The final equality holds
because we changed the missing factor, while keeping the other factors the same. �

Proposition B.5. Let U ∈ On be block diagonal, let H be an n × n matrix, and let σ be any
permutation on Nk.

(i) If T is a (k + 1)-tensor such that for some fixed l ∈ Nk we have T p1...pl ...pk+1 = 0 whenever
pl ∼ pk+1, then

(U(Diagσ
(l) T )UT)[Hin] = 0.

(ii) If T is a (k + 1)-tensor such that for some fixed l ∈ Nk we have T p1...pl ...pk+1 = 0 whenever
pl � pk+1, then

(U(Diagσ
(l) T )UT)[Hout] = 0.

(iii) If T is any (k + 1)-tensor, then

(U(Diagσ
(k+1) T )UT)[Hout] = 0.

Proof. Fix an index l in Nk . Let Hi1j1 , . . . , Hikjk
be arbitrary basic matrices, and let H be an

arbitrary matrix. Using the definitions we compute

(U(Diagσ
(l) T )UT)[Hi1j1 , . . . , Hikjk

, H ]

=
n,n∑

ik+1,jk+1=1

(U(Diagσ
(l) T )UT)

i1 ...ik+1
j1 ...jk+1 Hik+1jk+1

=
n,n∑

ik+1,jk+1=1

n,...,n∑
ps ,qs=1

s=1,...,k+1

(Diagσ
(l) T )

p1 ...pk+1
q1 ...qk+1 Ui1p1Uj1q1 · · · Uik+1pk+1Ujk+1qk+1Hik+1jk+1

=
n,n∑

ik+1,jk+1=1

n,...,n∑
ps=1

s=1,...,k+1

T p1...pk+1Ui1p1U
j1p

σ
−1
(l)

(1) · · · Uik+1pk+1U
jk+1p

σ
−1
(l)

(k+1)
H ik+1jk+1

=
n,n∑

ik+1,jk+1=1

n,...,n∑
ps=1

s=1,...,k+1

(
T p1...pk+1Ui1p1U

j
σ
(l)

(1)
p1 · · · UilplU

j
σ
(l)

(l)
pl

· · · Uik+1pk+1U
j
σ
(l)

(k+1)
pk+1

Hik+1jk+1
)

=
n,n∑

ik+1,jk+1=1

n,...,n∑
ps=1

s=1,...,k+1

(T p1...pk+1Ui1p1Ujσ(1)p1 · · · UilplUjk+1pl

· · · Uik+1pk+1Ujσ(l)pk+1Hik+1jk+1).

Now suppose that T is a (k + 1)-tensor with T p1...pl ...pk+1 = 0 whenever pl ∼ pk+1 and that
H = Hin. Then Hik+1jk+1 /= 0 implies that ik+1 ∼ jk+1. In that case, by the fact that U is block
diagonal, Ujk+1plUik+1pk+1 /= 0 implies that pl ∼ pk+1, which implies that T p1...pl ...pk+1 = 0.
Thus every summand in the final double sum is zero.
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In the second case, suppose T is a (k + 1)-tensor with T p1...pl ...pk+1 = 0 whenever pl � pk+1
and H = Hout. Then Hik+1jk+1 /= 0 implies that ik+1 � jk+1. In that case, by the fact that U is block
diagonal, Ujk+1plUik+1pk+1 /= 0 implies that pl � pk+1, which implies that T p1...pl ...pk+1 = 0. The
sum is zero.

In the third case, suppose that T is any (k + 1)-tensor and H = Hout. A calculation almost
identical to the one at the beginning of the proof (it differs only in the last step) shows that

(U(Diagσ
(k+1) T )UT)[Hi1j1 , . . . , Hikjk

, H ]

=
n,n∑

ik+1,jk+1=1

n,...,n∑
ps=1

s=1,...,k+1

T p1...pk+1Ui1p1Ujσ(1)p1

· · · UikpkUjσ(k)pkUik+1pk+1Ujk+1pk+1Hik+1jk+1 .

Then Hik+1jk+1 /= 0 implies that ik+1 � jk+1. In that case, by the fact that U is block diagonal,
Ujk+1pk+1Uik+1pk+1 = 0. Again the sum is zero. �

We are finally ready to conclude the proofs of our two main analytical tools.

Proof of Theorem 9. A consequence of Theorem B.1 and Proposition B.5. �

Proof of Theorem 10. A consequence of Theorem 2.6, Theorem B.4, Proposition B.5, and the
fact that M = Min + Mout. �

If vector μ defining the equivalence relation on Nn has distinct entries, then every tensor from
T k,n is block constant and the block-diagonal orthogonal matrices are precisely the signed identity
matrices (those with plus or minus one on the main diagonal and zeros everywhere else). In this
case we also have i ∼ j if and only if i = j and thus T

(l)
in = T τl . Moreover, since Proposition B.5

holds for arbitrary matrices (symmetric or not), Theorem 2.10 implies the next corollary, valid
for an arbitrary matrix H .

Corollary B.6. Let σ be a permutation on Nk and let H be an arbitrary matrix. Then

(i) for any (k + 1)-tensor T on Rn,

Diagσ (T [diag H ]) = (Diagσ
(k+1) T )[H ];

(ii) for any k-tensor T on Rn

Diagσ (T τl [diag H ]) = (Diagσ
(l) T τl )[H ] for all l = 1, . . . , k,

where the permutations σ
(l)

, for l ∈ Nk, are defined by (13).

Appendix C. Proof of Theorem 6.4

Let X ∈ Sn have distinct eigenvalues, and let x = λ(X). The proof of Theorem 6.4 is by induc-
tion on s. When s = 1 there is nothing to show since by definition Ã

(1)
(x) = ∇f (x) = A

(1)
(x)

for every x ∈ Rn. Suppose that for some integer s in [1, k) we have
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σ∈P s

DiagσÃσ (x) =
∑
σ∈P s

DiagσAσ (x),

for every x ∈ Rn with distinct entries.
By definition, the tensor Aσ (x) is equal to zero if the permutation σ has more than one cycle

in its cycle decomposition. Then using Lemma 6.3 gives∑
σ∈P s+1

DiagσAσ (x) =
∑
σ∈Ps

l∈Ns+1

Diagσ(1)Aσ(1)
(x)

=
∑
σ∈Ps

l∈Ns

Diagσ(1)Aσ(1)
(x)

=
∑
σ∈Ps

l∈Ns

Diagσ(1) ((Aσ (x))
(l)
out + (T l

σ (x))
(l)
in ).

Let M ∈ §n and suppose ‖M‖ = 1. Let {Mm}∞m=1 be a sequence of symmetric matrices converging
to zero and such that Mm/‖Mm‖ converges to M . Finally, let {Um}∞m=1 be a sequence of orthogonal
matrices such that

Diag x + Mm = Um(Diag λ(Diag x + Mm))UT
m.

By taking a subsequence if necessary, we may assume that Um converges to U ∈ On when m

goes to infinity. Since the partition of the integers Nn into blocks is determined by the repeated
eigenvalues of the matrix X, and the latter are all distinct, we have Min = Diag (diag M). (More-
over, every tensor is block constant.) Thus, defining h ∈ Rn as in (23) we see that h = diag M

and by (25) we have UTMinU = Diag (diag M). on the one hand, the induction hypothesis and
the first part of Theorem 2.10 give⎛⎜⎝∑

σ∈Ps

l∈Ns

Diagσ(1) (T l
σ (x))

(l)
in

⎞⎟⎠ [M]

= U

(∑
σ∈P s

Diagσ (∇Aσ (x)[h])
)

UT

= lim
t→0

U

(∑
σ∈P s

Diagσ (Aσ (x + th) − Aσ (x))

)
UT

= lim
t→0

U

(∑
σ∈P s

Diagσ (Ãσ (x + th) − Ãσ (x))

)
UT

= U

(∑
σ∈P s

Diagσ (∇Ãσ (x)[h])
)

UT

=
(∑

σ∈P s

Diagσ(s+1)∇Ãσ (x)

)
[M]

=
(∑

σ∈P s

Diagσ(s+1)Ãσ(s+1)
(x)

)
[M].
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In the final equality we used the second line from (28). On the other hand, using (15), the induction
hypothesis, and again (15) we have⎛⎜⎝∑

σ∈Ps

l∈Ns

Diagσ(1) (Aσ (x))
(l)
out

⎞⎟⎠ [M]

= lim
m→∞

Um(
∑

σ∈P s DiagσAσ (x))UT
m −∑

σ∈P s DiagσAσ (x)

‖Mm‖
= lim

m→∞
Um(

∑
σ∈P s DiagσÃσ (x))UT

m −∑
σ∈P s DiagσÃσ (x)

‖Mm‖

=
⎛⎜⎝∑

σ∈Ps

l∈Ns

Diagσ(1) (Ãσ (x))
(l)
out

⎞⎟⎠ [M]

=
⎛⎜⎝∑

σ∈Ps

l∈Ns

Diagσ(1)Ãσ(1)
(x)

⎞⎟⎠ [M].

In the final equality we used the first line in (28). Thus we see that⎛⎝ ∑
σ∈P s+1

DiagσAσ (x)

⎞⎠ [M] =
⎛⎝ ∑

σ∈P s+1

DiagσÃσ (x)

⎞⎠ [M],

and since M was arbitrary, we are done.
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