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Oxidative stress promotes endothelial cell senescence and endothelial dysfunction, important early steps in ath-
erogenesis. To investigate potential antioxidant effects of IGF-1 we treated human aortic endothelial cells
(hAECs) with 0–100 ng/mL IGF-1 prior to exposure to native or oxidized low-density lipoprotein (oxLDL).
IGF-1 dose- and time- dependently reduced basal- and oxLDL-induced ROS generation. IGF-1 did not alter super-
oxide dismutase or catalase activity but markedly increased activity of glutathione peroxidase (GPX), a crucial
antioxidant enzyme, via a phosphoinositide-3 kinase dependent pathway. IGF-1 did not increase GPX1 mRNA
levels but increased GPX1 protein levels by 2.6-fold at 24 h, and altered selenocysteine-incorporation complex
formation on GPX1 mRNA. Furthermore, IGF-1 blocked hydrogen peroxide induced premature cell senescence
in hAECs. In conclusion, IGF-1 upregulates GPX1 expression in hAECs via a translational mechanism, which
may play an important role in the ability of IGF-1 to reduce endothelial cell oxidative stress and premature senes-
cence. Our findings have major implications for understanding vasculoprotective effects of IGF-1.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Cardiovascular disease is the leading cause of death in the developed
world, accounting for more than one third of all deaths in the United
States [1]. The underlying etiology responsible for most cardiovascular
disease is atherosclerosis, which has a complicated pathogenesis in
which increased inflammatory responses and oxidative stress play a
major role [2,3]. An initial early event in atherogenesis is the develop-
ment of endothelial senescence and endothelial dysfunction [4,5], both
of which have been linked to increased oxidative stress. We have previ-
ously shown that a systemic elevation of insulin-like growth factor-1
(IGF-1) by continuous infusion suppressed macrophage infiltration and
oxidative stress in the vascular wall, thereby attenuating atherosclerosis
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in apolipoprotein E deficient (Apoe−/−) mice [6]. However, smooth
muscle specific overexpression of IGF-1 did not alter atherosclerotic
burden or oxidative stress levels both in the normal vessel wall and in
atherosclerotic lesions [7], suggesting that the endothelium was the
major site of IGF-1's antioxidant and anti-atherogenic action. Here we
sought to determine potential antioxidant effects of IGF-1 in cultured
human aortic endothelial cells. We found that IGF-1 enhances endo-
thelial antioxidant activity, primarily via upregulation of glutathione
peroxidase-1 (GPX1) expression and activity. We further character-
ized mechanisms for IGF-1 upregulation of GPX1, and demonstrated
that IGF-1 prevents oxidant stress induced endothelial cell senes-
cence. These findings provide novel insights into mechanismswhereby
IGF-1 reduces oxidant-stress induced vascular complications.

2. Materials and methods

2.1. Materials

Reagents and antibodies were obtained as follows; LY294002,
SB202190, and PD98059 from EMD Millipore Chemicals (Billerica,
MA); rabbit anti-SBP2 antibody used for Western blot is a generous
gift from Dr. Khanna [8]. Mouse monoclonal anti-SBP2 antibody
used for immunoprecipitation and mouse monoclonal anti-human
GPX1 antibody are from Santa Cruz Biotechnology (Santa Cruz,
CA); rabbit anti-human GPX4 antibody from Cayman Chemical
(Ann Arbor, MI); 2′,7′-dichlorodihydrofluorescein diacetate
(H2DCFDA) and dihydroethidium from Invitrogen (Grand Island,
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NY); mouse monoclonal anti-β-actin antibody from Sigma-Aldrich (St.
Louis, MO); anti-acetylated lysine, anti-phospho-Tyrosine, and
anti-phospho-Ser/Thr (Akt, ATM, and ATR substrates) antibodies from
Cell Signaling Technology (Danvers, MA).

2.2. Cell culture

Human aortic endothelial cells (hAECs) were purchased from Lonza
(Basel, Switzerland) and maintained in Endothelial Growth Medium 2
with 2% fetal bovine serum and supplements provided by the manufac-
turer (Lonza). Actively dividing cells (passage 4 to 8) were used for ex-
periments. All the experiments were conducted using fully confluent
culture in serum-free/phenol red-free Endothelial Cell Basal Medium
(Lonza; Basel, Switzerland) supplemented with 0.5% bovine serum al-
bumin (fraction V; Sigma-Aldrich, St. Louis, MO).

2.3. Enzyme activity assay

Glutathione peroxidase activity, superoxide dismutase activity, and
catalase activity were determined in hAECs using commercially avail-
able kits as follows; Glutathione Peroxidase Assay kit and Catalase
Assay kit from Cayman Chemical (Ann Arbor, MI); and Superoxide
DismutaseAssay kit fromR&DSystems (Minneapolis,MN). Cellular glu-
tathione levels were determined using Glutathione Assay kit obtained
from Cayman Chemical (Ann Arbor, MI). All the assays were performed
accordingly to the instructions provided by the manufacturers.

2.4. Western blot analysis

Western blot analysis was performed as described previously [9]. In
brief, cells were washed with PBS and lysed in RIPA buffer, containing
150 mM NaCl, 20 mM Tris–Cl, pH 7.2, 1 mM EDTA, 1% Nonidet P-40,
0.5% deoxycholate, 0.1 mM phenylmethylsulfonyl fluoride, 1 mM sodi-
um orthovanadate, 0.1 M okadaic acid, 0.1 μM aprotinin, 10 μg/mL
leupeptin, and 10 mM NaF. Lysates were subjected to 10% SDS-PAGE
and western blotting analysis. Immunopositive bands were visualized
by enhanced chemiluminescence (ECL, Amersham). Blots were stripped
and reprobed with monoclonal anti-β-actin antibody as a control for
equal loading.

2.5. Lipoprotein preparation

Human plasma derived native LDL (nLDL) was purchased from
Kalen Biomedical (Montgomery Village, MD). OxLDL was prepared as
previously described. Briefly, an aliquot of the nLDL fraction was passed
through a 10DG desalting column (Bio-Rad) to remove EDTA, then the
nLDL fraction (0.2 mg/mL, diluted in PBS) was incubated with 5 μM
CuSO4 at 37 °C for 3 h. The reaction was stopped by adding EDTA
(final concentration 0.25 mM). The oxLDL prepared under these condi-
tions showed an increase in relativemobility on agarose gel electropho-
resis, and the value for thiobarbituric acid-reactive substances (TBARS)
in oxLDL was 37.2±1.2 nmol malondialdehyde per milligram protein.
TBARS were not detectable in nLDL.

2.6. Realtime PCR analysis of gene expression

After exposure to testing agents for 6–24 h, cells were lysed in
Tripure reagent (Roche). Total RNA was extracted and precipitated
by isopropanol, and was further purified using RNeasy kit (Qiagen).
The total RNA was subjected to a reverse-transcriptase reaction
using RT2 First Strand Kit (Qiagen), followed by the realtime PCR
analysis in RT2 SYBR Green Master Mix (Qiagen) using iCycler iQ
Realtime PCR Detection System (Bio-Rad). Specific primer sets for
following genes were purchased from Qiagen; GPX1 (catalog num-
ber, PPH00154F), GPX2 (PPH01710B), GPX3 (PPH05746F), GPX4
(PPH05586B), GPX5 (PPH00454A), GPX6 (PPH06081A), GPX7
(PPH09224F), and β-actin (used as an internal control, PPH00073G).

2.7. Immunoprecipitation of SBP2-mRNA complex and mRNA quantification

Messenger RNA–protein complexes immunoprecipitation has been
performed as described [10,11]. Briefly, mRNA–protein complexes
were extracted from the cells using polysome lysis buffer (100 mM
KCl, 5 mM MgCl2, 10 mM HEPES pH 7.0, 0.5% IGEPAL CA-630 (Sigma-
Aldrich, St. Louis, MO), 1 mM dithiothreitol, 100 units/mL RNase OUT
(Invitrogen, Grand Island, NY), and 0.2% Ribonucleoside Vanadyl Com-
plex, protease inhibitor cocktail (Halt Protease Inhibitor Cocktails, Ther-
mo Scientific, Rockford, IL)). Protein contents in the extract were
determined using RC DC Protein Assay kit (Bio-Rad, Hercules, CA), and
the equal amount of protein for each samplewas subjected to an immu-
noprecipitation. Immunoprecipitation reaction was achieved bymixing
the extract with anti-SBP2 antibody (Santa Cruz Biotechnology, Santa
Cruz, CA) in 50 mM Tris pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.05%
IGEPAL CA-630, 15 mM EDTA, 1 mM dithiothreitol, 100 units/mL
RNase OUT (Invitrogen, Grand Island, NY), and 0.2% Ribonucleoside
Vanadyl Complex containing protease inhibitor cocktail for 18 hbat
4 °C. The antibody-SBP2-mRNA complexes were collected by Protein
A/G PLUS-Agarose (Santa Cruz Biotechnology) and extensively washed
using a buffer solution with the same composition of the immunopre-
cipitation mix. The resulted immunoprecipitates were extracted for
RNAs by using Tripure reagent (Roche) and further purified using
RNeasy kit (Qiagen). GPX1 and GPX4 mRNA levels were determined as
described above by quantitative realtime-PCR. Mouse non-immune
IgGwas used replacing the anti-SBP2 antibody in the immunoprecipita-
tion procedure to confirm specific precipitation of SBP2–mRNA com-
plexes, and produced no detection of GPX1 or GPX4 mRNA (data not
shown).

2.8. Senescence associated β-galactosidase expression

Semi-confluent hAEC culture was exposed to IGF-1 for 24 h,
followed by exposure to 100 μM hydrogen peroxide for 1 h. Subse-
quently, cells were trypsinized and counted to re-plate in an equal
cell number on a new culture dish. Cells were then maintained for
a week in the regular Endothelial Growth Medium 2 containing 2%
fetal bovine serum and supplements, and then stained for senes-
cence associated β-galactosidase expression using Senescence
β-Galactosidase Staining Kit (Cell Signaling Technology, Danvers,
MA). Positively stained cells were captured in images using a DP70
digital camera connected to a microscope (Olympus) and counted
using ImageJ software. Data are expressed as a % of positively stained
cells in a total cell count.

2.9. Statistical analysis

Data are presented as means±SEM. Statistical analysis was per-
formed using one-way ANOVA or Student's t-test, with Pb0.05 consid-
ered significant. All experiments were performed a minimum of three
times.

3. Results

3.1. IGF-1 reduces reactive oxygen species levels in cultured human aortic
endothelial cells

To assess potential IGF-1 effects on reactive oxygen species (ROS)
levels in endothelial cells, cultured human aortic endothelial cells
(hAECs) were exposed to native or oxidized LDL and intracellular ROS
levels were probed using 6-carboxy-2′,7′-dichlorodihydrofluorescein
diacetate (carboxy-H2DCFDA; Fig. 1A and C). Consistent with previous
reports [12,13] oxidized LDL enhanced ROS generation (Fig. 1A and
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C); and pre-exposure to IGF-1 dose-dependently suppressed ROS levels
in both basal and oxidized LDL-stimulated cells (Fig. 1A, C). IGF-1's
antioxidant effect was also time-dependent, since the ROS suppression
by IGF-1wasmore pronounced after 24 h exposure (Fig. 1C) than at 1 h
(Fig. 1A). Dihydroethidium preferably detects superoxide, whereas
carboxy-H2DCFDA detects a wider spectrum of different oxidant mole-
cules [14]. IGF-1 also decreased dihydroethidium-detectable ROS levels
in a dose-dependent manner, but the effect was more modest and only
detectable at 1 h (Fig. 1B), contrasting to the carboxy-H2DCFDA results,
a longer exposure time caused loss of the IGF-1 effect (Fig. 1B and D). Of
note, a nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl
ester (L-NAME) did not significantly inhibit IGF-1's antioxidant effect
(Fig. 1B and D, the control was D-NAME, an inactive enantiomer of
L-NAME). These results suggest that IGF-1 has NO synthase indepen-
dent antioxidant effects [15], which suppress both basal ROS (associat-
ed with general cellular activities such as mitochondrial respiratory
chain reactions [16]) and oxidized LDL induced ROS (generated via spe-
cific enzymatic sources such as NADPH-oxidase [17,18]). These findings
prompted us to investigate potential IGF-1 effects on enzymatic
antioxidant systems.

3.2. IGF-1 upregulates GPX activity and GPX1 expression in hAEC

To determinemechanismswhereby IGF-1 exerted its antioxidant ef-
fects, we assessed activities of major antioxidant systems in hAECs after
exposure to IGF-1 (Fig. 2). An exposure to IGF-1 for 24 h caused amod-
est and non-significant trend of an increase in superoxide dismutase ac-
tivity and did not regulate catalase activity (Fig. 2A and B). Conversely,
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Fig. 1. IGF-1 reduced reactive oxygen species levels in hAECs. Human AECs were pre-exposed
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glutathione peroxidase (GPX) activity was upregulated in a dose-
dependent and time-dependent manner (~4.8-fold increase at 24 h
with 100 ng/mL IGF-1, Pb0.01, n=4; Fig. 2C). Glutathione is an essen-
tial substrate for GPX to express antioxidant activity, and it has been
reported that growth hormone and IGF-1 potentially regulate glutathi-
one levels in tissues such as kidney, brain and aorta [19,20]. However,
IGF-1 did not increase intracellular glutathione levels (Fig. 2D). In
order to further characterize IGF-1's effect on GPX activity we profiled
gene expression of seven GPX isozymes (GPX-1 to -7) that the assay
used in Fig. 2 does not discriminate. Reverse-transcription and realtime-
PCR analysis revealed that hAECs significantly express GPX1 and GPX4
(data not shown), thus we further assessed GPX1 and GPX4 expressions
by Western blot analysis (Fig. 3A). IGF-1 upregulated GPX1 (2.6-fold in-
crease, 100 ng/mL IGF-1 vs 0 ng/mL IGF-1, n=4, Pb0.01), whereas it
did not change GPX4 expression levels, suggesting that IGF-1 specifically
regulates GPX1 expression. Moreover, IGF-1 did not alter GPX1 protein
levels in cultured human aortic smooth muscle cells (Fig. 3B), thus the
IGF-1 effect is likely cell-type specific.

3.3. IGF-1 potentially regulates selenocysteine-decoding complex on GPX1
mRNA, thereby regulating GPX1 translation

To determine if IGF-1 upregulation of GPX1 is transcriptionally
mediated, we assessed GPX1 mRNA levels after 6 h and 24 h of
IGF-1 exposure. IGF-1 did not alter GPX1 mRNA levels (Fig. 4A).
However, cycloheximide blocked the upregulation of GPX1 by
IGF-1 (Fig. 4B), suggesting that the IGF-1 effect is translational. It
is of note CHX upregulated basal GPX1 levels (Fig. 4B). IGF-1 has
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been shown to upregulate translation activity in general by promoting
5′-cap dependent translation [21]. In fact, in our experimental setting,
IGF-1 induced eukaryotic initiation factor 4E (eIF4E) binding protein 1
(4EBP1) phosphorylation [22], but not eIF4E phosphorylation [23,24],
(Supplemental Fig. 1) suggesting general upregulation of translation ac-
tivity. Our results (Figs. 3 and 4) suggest that IGF-1 regulates specifically
GPX1 but not GPX4. GPX1 is one of several proteins referred to as a
selenoprotein. Selenoproteins are characterized by a selenocysteine
residue(s) in their primary structure and thus require unique processes
to incorporate selenocysteine upon translation [25–27]. Since it has
been suggested that the selenocysteine incorporation step serves as a
major regulatory point for altering GPX1 expression levels [25–27],
we assessed selenocysteine insertion sequence (SECIS) -binding protein
2 (SBP2) binding to GPX1 mRNA. SBP2 has been shown to be essential
for selenocysteine incorporation by binding to the SECIS element,
which is a cis-acting element in the 3′-UTR of GPX1 mRNA [8,28,29].
IGF-1 did not alter SBP2 protein levels in hAECs (Fig. 5A). Immunopre-
cipitation using anti-SBP2 antibody yielded the same levels of SBP2
from polysome fractions of control and IGF-1 treated hAECs
(Fig. 5B); however, GPX1 mRNA levels associated with anti-
SBP2-immunoprecipitates were lowered by approximately 40%
by IGF-1 (Fig. 5C; Pb0.01, n=8), whereas GPX4 mRNA levels
were not altered (Fig. 5D). These data strongly suggest that IGF-1
modifies the SBP2–GPX1 mRNA complex formation. By performing
sequence motif analysis [30,31] for SBP2, we found numerous sites
for potential post-translational modifications, such as acetylation,
Ser/Thr-phosphorylation, and Tyr-phosphorylation. We tested
these potential modifications by using specific antibodies and
found that SBP2 is Tyr-phosphorylated (Supplemental Fig. 2) but
is not acetylated or Ser/Thr phosphorylated (data not shown).
However, IGF-1 did not change the Tyr-phosphorylation status of
SBP2 (Supplemental Fig. 2).
3.4. A PI3k-dependent signaling pathway is required for IGF-1 mediated
upregulation of GPX1 expression and activity

We tested inhibitors of the major IGF-1 signaling pathways to
gain insights into mechanisms whereby IGF-1 regulated GPX1 ex-
pression and activity (Fig. 6). Whereas ERK (PD98059) and p38
MAP kinase (SB202190) inhibitors did not alter IGF-1's effect, the
phosphatidylinositide 3-kinase (PI3k) inhibitor, LY294002, signifi-
cantly suppressed IGF-1 upregulation of GPX1 (Fig. 6A). IGF-1
upregulation of GPX activity was also significantly suppressed by
LY294002 but not by PD98059 or SB202190 (Fig. 6B), confirming
that IGF-1 regulation of GPX was PI3k dependent.
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3.5. IGF-1 attenuates hydrogen peroxide-induced premature cell senescence

One of the consequences of oxidative stress in vascular endothelium
is premature cell senescence [32]. To gain insights into the biological
significance of GPX upregulation by IGF-1, hAECs were exposed to
100 μM hydrogen peroxide for an hour and then replated and cultured
to sub-confluence, followedby in situ staining for senescence associated
β-galactosidase activity (Fig. 7). Incubation with 100 ng/mL IGF-1 for
24 h prior to hydrogen peroxide exposure significantly reduced expres-
sion ofβ-galactosidase activity (Fig. 7), indicating that the enhanced an-
tioxidant activity in response to IGF-1 counteracted oxidative stress
induced premature cell senescence.
4. Discussion

GPX1 is a major component of cellular antioxidant systems and is
ubiquitously expressed throughout a variety of tissues including the
vasculature. Systemic deficiency of GPX1 has been shown to acceler-
ate atherosclerosis and is associated with elevated oxidative stress in
the vascular wall [33,34], indicating that the antioxidant activity of
GPX1 is essential to protect the vasculature from oxidative stress
evoked complications. Based on our previous studies demonstrating
atheroprotective effects of IGF-1 in Apoe−/− mice [6,7], we tested
potential antioxidant effects of IGF-1 in endothelial cells. Our data
showed that IGF-1 reduces endothelial oxidative stress in a dose-
dependent and time-dependent manner (Fig. 1). Among the tested
antioxidant systems, IGF-1 did not upregulate superoxide dismutase
or catalase but upregulated glutathione peroxidase activity (Fig. 2C).
IGF-1 consistently upregulated endothelial GPX1 protein expression
levels (Fig. 3A), which should, at least in part, account for the antiox-
idant effect of IGF-1. Furthermore, IGF-1 markedly inhibited oxidant
stress induced endothelial cell senescence, providing a potential
important and novel mechanism whereby IGF-1 may exert anti-
atherosclerotic effects in vivo.

We observed GPX1 upregulation by IGF-1 with no change in GPX1
mRNA levels, suggesting post-transcriptional/translational regulation.
Transcriptional control of GPX1 gene has not been well characterized;
however its post-transcriptional regulation has been extensively studied.
GPX1 is one of the proteins referred to as a selenoprotein, which is char-
acterized by a selenocysteine residue(s) in the primary structure. There is
no corresponding mRNA codon to be translated to selenocysteine; in-
stead, an UGA codon, which regularly functions as a termination codon,
is decoded to selenocysteine. The UGA-codon decoding process requires
multiple trans-acting factors, including SBP2 and eukaryotic elongation
factor selenocysteine-tRNA specific, as well as a cis-acting element in
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the mRNA defined as SECIS [25–27]. The decoding process is still not
fully understood; however evidence suggests that the selenocysteine
biosynthesis and incorporation mechanisms represent a major regula-
tory point for GPX1 synthesis [25–27]. SBP2 is indispensable for the
selenocysteine decoding process by directly binding to the SECIS ele-
ment in mRNAs of selenoproteins, thereby recruiting other necessary
proteins to the selenocysteine-decoding complex [35]. IGF-1 did not
alter SBP2 expression levels (Fig. 5A); however assessment of SBP2
binding to GPX1 mRNA yielded the surprising result that IGF-1 de-
creased GPX1 mRNA levels associated with SBP2 (Fig. 5C). Of note, the
antibody used for immunoprecipitation was a monoclonal antibody
raised against a recombinant protein corresponding to a region near
the N-terminus of SBP2 of human origin; thus it is possible that the an-
tibody binding to the SBP2–GPX1mRNA complex is inhibited because of
potential modifications to the protein–mRNA complex as a conse-
quence of IGF-1 effects (e.g. recruitment of other proteins and binding
to the mRNA-SBP2 complex may interfere with antibody access to the
epitope). Intriguingly, there was no change in GPX4 mRNA levels in
the anti-SBP2 immunoprecipitates (Fig. 5D). This result is consistent
with our finding that GPX4 protein levels were not altered by IGF-1.
How IGF-1 signaling regulates the selenocysteine-decoding machinery
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specifically for GPX1, not for GPX4, would be an intriguing subject for
future study. It is important to point out that a hierarchy has been
reported for SBP2 binding to mRNAs of different selenoproteins, i.e.
SBP2 preferentially stimulates selenocysteine incorporation directed
byGPX4 SECIS elements over GPX1, especiallywhen availability of sele-
nium is limited [35,36].

The oxidation hypothesis of atherosclerosis, which has been updated
and thus evolved from its original premise, is currently the most widely
acceptedmechanism for the development and progression of atheroscle-
rotic vascular disease [37]. Elevated oxidative stress in the endothelium
has been linked to development of endothelial dysfunction [38–41].
Endothelial dysfunction leads to upregulation of adhesion molecules
[42,43], inflammatory cell recruitment [44,45], reduced NO bioavailabili-
ty, and reduced endothelial-dependent vasodilation [38,41]. Oxidative
stress has also been shown to alter endothelium function by inducing
premature senescence [32]. In fact, our data demonstrated that a brief
exposure to hydrogen peroxide (100 μM for 1 h) induced senescence-
associated β-galactosidase activity in hAECs; and notably, precondi-
tioning with IGF-1 significantly attenuated it (Fig. 7), strongly suggesting
that IGF-1's antioxidant effect can prevent premature senescence in the
endothelium. Since endothelial dysfunction is a hallmark of early stages
0 100
0

20

40

60

80

100

120

IGF-1 (ng/mL)

G
p

x4
 m

R
N

A
 (

%
)

IGF-1 (ng/mL) 

BP2 

0 100 0 100

IP; SBP2 

IB; SBP2 

IP; SBP2      RT-PCR; GPX4 

SBP2 expression in hAECs. Exposure to 0–100 ng/mL IGF-1 for 24 h did not alter SBP2
subjected to immunoprecipitation using anti-SBP2 monoclonal antibody. Precipitated
s. (C) Levels of GPX1 mRNA associated with SBP2 were determined by quantitative
Levels of GPX4 mRNA associated with SBP2 were determined by quantitative RT-PCR
tically significant. n=8.



GPX1

β -actin 

0

1

2

3

100100

PD98059

SB202190

LY294002

+

+

+

*

**G
P

X
1/

β-
ac

ti
n

BA

0

1

2

IGF-1 (ng/mL) 0 100 100 IGF-1 (ng/mL) 0 100 100100100

PD98059

SB202190

LY294002

+

+

+

*

**

R
el

at
iv

e 
G

P
X

 a
ct

iv
ity

Fig. 6. LY294002, PI3k inhibitor, attenuates IGF-1 upregulation of GPX1 and GPX activity. Human AECs were exposed to PD98059 (MEK1 inhibitor, 10 μM), SB202190 (p38 MAP
kinase inhibitor, 10 μM), and LY294002 (PI3k inhibitor, 50 μM) for 30 min prior to IGF-1 exposure, and were also included in the subsequent 24 h exposure with IGF-1. (A)Western
blot analysis for GPX1 protein levels and (B) GPX activity assay were performed. *Pb0.01 vs. 0 ng/mL IGF-1, n=4. **Pb0.01 vs. 100 ng/mL IGF-1 with no inhibitor, n=4.

397Y. Higashi et al. / Biochimica et Biophysica Acta 1832 (2013) 391–399
of vascular complications including atherosclerosis, our findings that
IGF-1 exerts an antioxidant effect on the endotheliumsuggests a potential
mechanism for the anti-atherogenic effect of IGF-1.

Recently it has been shown that the acceleration of atherosclerosis
occurs with aging, which correlates with failure to upregulate antiox-
idant genes [46]. It is well known that levels of circulating IGF-1
decline with aging [47–50], and intriguingly our previous study
performed using Apoe−/− mice showed that an about 20% reduction
in circulating IGF-1 levels was accompanied by a significant increase
in aortic atherosclerotic lesion size [51]. In animal models of growth
hormone (GH) deficiency (Ames dwarf mice and Lewis dwarf rats),
GH and IGF-1 deficiencies were accompanied by high oxidative stress
in the vasculature, potentially leading to endothelial dysfunction
[52,53]. GH and IGF-1 availabilities have been associated with expres-
sion and activity of nuclear factor erythroid 2-like 2 (NRF2) [20], a
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transcription factor known to regulate expression of genes important
for regulation of redox homeostasis [54]. Thus a failure of NRF2-
dependent gene regulation due to the loss of GH/IGF-1 signaling poten-
tially accounts for diminished antioxidant activity in GH-deficient ani-
mals [20,53]. Our data showed that IGF-1 regulates GPX1 expression
by post-transcriptional mechanisms, providing another potentially im-
portant mechanism regulating antioxidant activity in the endothelium.
One can speculate that the decline in circulating IGF-1 levels with aging
leads to decreased GPX expression and antioxidant activity in the endo-
thelium, resulting in an elevated risk for atherogenesis. Future studies
will be required to test this hypothesis.

In summary, we found that IGF-1 has potent antioxidant effects in
vascular endothelial cells, which is at least in part mediated by
upregulation of GPX activity. IGF-1 upregulated GPX1 protein levels
by post-transcriptional mechanisms, potentially by modulating the
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selenocysteine decoding complex formation on Gpx1 mRNA. The ob-
served antioxidant effect of IGF-1 may contribute to maintaining
vascular integrity by counteracting oxidative stress, thereby limiting
atherosclerosis development.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.bbadis.2012.12.005.
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