313-Pos
Role of Water in Mediating the Interaction Between Collagens
Krishnakumar Mayaram Ravikumar, Womunuk Hwang.
Texas A&M University, College Station, TX, USA.
Collagens are triple-helical molecules that self-assemble into higher order fibers forming the major component of extracellular matrix. We had previously reported the role of the first hydration layer in controlling the conformational behavior of the collagen triple helix. Here we perform explicit-water molecular dynamics simulations to elucidate the structural features of water in mediating the interaction between collagen triple helices (PDB ID: 1A3I, 2D3F). By dividing the simulation box into cells, we quantified local water density, diffusion coefficient, and water orientation at atomic resolution. Around a single collagen triple helix, the reduction in diffusion coefficient and density fluctuation extend up to 11 Angstroms from the collagen backbone, and the circumferential and radial orientation of water near hydrophobic and hydrophilic groups, respectively, were clearly distinguishable. When two triple helices were held at a radial separation that is a few Angstroms larger than their crystalline packing distance, water in between them had reduced diffusion coefficient and constrained angular orientation. This indicates that the experimentally observed attractive force between collagen at small distances may have an entropic origin. We also tested three-collagen systems where one collagen is radially translated from its original position in the crystal packing by 4 or 7 Angstroms, and found that it moves towards the other two within 3 ns of simulation, nearly reorienting the crystal packing. These results illustrate the microscopic origins of water mediated attraction between collagen molecules.

314-Pos
Electrostatic Interactions Control the Permeability of Mucin Hydrogels
Olivier Lieleg, Ioana Vladescu, Katharina Ribbeck.
Harvard University, Cambridge, MA, USA.
Biological functional entities surround themselves with selective barriers which control the passage of certain classes of macromolecules while rejecting others. A prominent example of such a selective permeability barrier is given by mucus. Mucus is a biopolymer based hydrogel which lines all epithelial surfaces of the human body. It regulates the uptake of nutrients from our gastrointestinal system, adjusts itself with the menstrual cycle to control the passage of sperm, and shields the underlying cells from pathogens such as bacteria and viruses. In the case of drug delivery, the mucus barrier needs to be overcome for successful medical treatment. Despite its importance for both physiology and medical applications, the underlying principles which regulate the permeability of mucus remain enigmatic. Here, we analyze the mobility of microporous particles in reconstituted mucin hydrogels. We show that electrostatic interactions between diffusing particles and mucin polymers set the permeability of reconstituted mucin hydrogels. As a consequence, various parameters such as particle surface charge, mucin density and buffer conditions such as pH and ionic strength can sensitively modulate the microscopic barrier function of the mucin hydrogel. Our findings demonstrate the wide range of permeability that operates in different compartments of our bodies, employing the very same biopolymer based hydrogel.

315-Pos
Fibrin Gel Ultrastructure
Massimiliano Papi1, Giuseppe Mauucci2, Giuseppe Arcovito2, Mauro Missori2, Andrea Bellelli3, Giovanna Bumis2, Marco De Spirito1.
1Universita' Cattolica del Sacro Cuore, Rome, Italy, 2Università La Sapienza, Rome, Italy.
Ischemic heart disease, which results from occlusion of one of the major coronary arteries as a consequence of thrombosis and atherothrombotic plaque, continues to be the leading cause of morbidity and mortality in Western society, while stroke is the second leading cause of death worldwide. Nowadays, in addition to prevention, it is possible to treat atherosclerotic plaque by means of invasive procedures. The system has been modeled and simulated using atomistically detailed force fields at small distances. The collagen backbone, and the circumferential and radial orientation of water near hydrophobic and hydrophilic groups, respectively, were clearly distinguishable. When two triple helices were held at a radial separation that is a few Angstroms larger than their crystalline packing distance, water in between them had reduced diffusion coefficient and constrained angular orientation. This indicates that the experimentally observed attractive force between collagen at small distances may have an entropic origin. We also tested three-collagen systems where one collagen is radially translated from its original position in the crystal packing by 4 or 7 Angstroms, and found that it moves towards the other two within 3 ns of simulation, nearly reorienting the crystal packing. These results illustrate the microscopic origins of water mediated attraction between collagen molecules.

316-Pos
Protein Domain Formation in Lipid Membranes
Andrea C. Hamill1, Paul Butler2, Lionel Porcar2, Sumit Garg1.
1NIST, Gaitherburg, MD, USA, 2ILL, Gernoble, France, 3ANL, Argonne, IL, USA.
Clustering of Gramicidin within a DMPC membrane has been studied with Small Angle Neutron Scattering (SANS). Hydrogen and Deuterium scatter neutrons very differently, thus deuterium allows protein scattering to be studied independent of lipid and solvent scattering (when the lipid and solvent are contrast matched). Different protein to lipid ratios were probed and a strict protocol was followed to ensure uniform vesicle size with limited polydispersity. The experiments were performed above the melting temperature of DMPC. A 100 nm deuterated lipid vesicle in deuterated solvent exhibits q-independent scattering showing that the two are truly contrast matched (see Figure 1). While the scattering obtained from lipid vesicles containing Gramicidin have significant q-dependent scattering. If the Gramicidin were uniformly distributed throughout the membranes, the data should be well represented by vesicle scattering. However the vesicle fit of the data (also shown in Figure 1) clearly does not agree with the experimental scattering. Thus it is concluded that the protein is forming clusters within the lipid bilayer. The present work is giving rise to the difference in scattering. The system has been modeled and a 3D contrast map (inset Figure 1) has been generated. The map shows protein clustering within the membrane.

317-Pos
Surfactant Sponge Phase Is a Versatile, Tunable and Biologically Relevant Medium To Study Membrane Protein Interactions
Martin Picard1, Gamal Rayan2, Nicolas Taulier2, Isabelle Brotin1, Arnaud Ducruix1, Wladimir Urbach1-3.
We present an original approach that combines Fluorescence Recovery After Fading Pattern Photobleaching (FRAPP) technique and the use of a versatile sponge phase that makes it possible to extract crucial informations about interactions between membrane proteins embedded in the bilayers of a sponge phase. The clear advantage lies in the ability to adjust at will the spacing between two adjacent bilayers. When the membranes are far apart, the only possible interactions occur laterally between proteins embedded within the same bilayer, whereas when membranes get closer to each other, interactions between proteins embedded in facing membranes may occur as well. The sponge phase is particularly well suited for the study of Gram negative bacteria possessing a double membrane such as P. aeruginosa. However, such studies are relevant only if the sponge phase does alter neither membrane lipid composition nor the activity of the membrane proteins. We have evaluated the conformation of the latter membrane proteins using circular dichroism (CD) spectroscopy and show that the overall structure of the protein is similar whether the protein is solubilized in micelles or inserted into the sponge phase. We have also investigated the activity of several model transmembrane proteins inside the sponge phase such as the ATPase SERCA1a (the sarcoplasmic reticulum Ca2+ ATPase).

318-Pos
Sorting and Clustering of Transmembrane Helices in Coexisting Fluid Domains in Model Membranes
Lars V. Schafer1, Djuorre H. de Jong1, Andrea Holt1, Andrzej J. Rzepiela1, Alex H. de Vries1, Antoinette Killian2, Siewert J. Marrink1.
1University of Groningen, Groningen, Netherlands, 2University of Utrecht, Utrecht, Netherlands.