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The aim of this work was to develop an analytical method to predict total anthocyanins content (TAC) and
total phenolic compounds (TPC) in intact wax jambu fruit [Syzygium malaccense (L.) Merryl et Perry] using
near-infrared spectroscopy (NIRS) and partial least squares (PLS). The estimation accuracy was based on
parameters such as root mean square error of prediction (RMSEP), correlation coefficients [calibration (rc)
and prediction (rp) set] and ratio of performance to deviation (RPD). TAC, rp = 0.98, RMSEP = 9.0 mg L�1

and RPD = 5.19 were attained using second derivative pre-treatment. TPC, rp = 0.94, RMSEP = 22.18 (mg
gallic acid equivalents (GAE)/100 g) and RPD = 3.27 (excellent accuracy) were also obtained using second
derivative pre-treatment. These findings suggest that the NIRS and PLS algorithms can be used to deter-
mine TCA and TPC in intact wax jambu fruit.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Syzygium malaccense (L.) Merr. and L.M. Perry, commonly
known as wax jambu or Malay rose apple, or simply Malay apple,
is an evergreen tree with origins in Asia (Malaysia, Indonesia,
Vietnam and Thailand). It has been introduced and grown through-
out the tropics and sub-tropical parts of the word, such as Panamá,
Costa Rica, Venezuela, Puerto Rico and Brazil. The tree can grow to
12–18 m in height with four fleshy calyx lobes and 1–4 seeds
(1–2 cm in diameter). The fruit is a pear-shaped bacca, juicy and
indehiscent. The epicarp is thin, smooth and red dish; the
mesocarp and the endocarp are whitish and succulent (Costa,
Oliveira, Môro, & Martins, 2006).

Previous research on wax jambu has reported quality attributes
of the intact or fresh-cut fruit such as total soluble solids (TSS),
total anthocyanin content (TAC), browning index, firmness, titrat-
able acidity (TA), sugar acid ratio (TSS/TA), total phenolic content
(TPC), and ascorbic acid content (Khandaker, Boyce, & Osman,
2012; Shü, Chu, Hwang, & Shieh, 2001; Supapvanich, Pimsaga, &
Srisujan, 2011). However, despite the reliability of quality attri-
butes for wax jambu fruit, the analytical methods are inherently
destructive, expensive, require specialized reagents and generate
chemical waste.
In recent years, research has aimed to develop non-destructive
techniques for measuring directly quality attributes of intact sam-
ples without any sample preparation. In this way, near-infrared
spectroscopy (NIRS) with diffuse reflectance is a prominent tech-
nique for non-destructive assessment of fruit quality. NIRS has
been used to determine quality attributes of a number of fruit
including açaí (Inácio, de Lima, Lopes, Pessoa, & de Almeida
Teixeira, 2013); plums (Costa & Lima, 2013); apples (Nicolaï,
Lötze, Peirs, Scheerlinck, & Theron, 2006); melons (Greensill,
Wolfs, Spiegelman, & Walsh, 2001); grapes (Janik, Cozzolino,
Dambergs, Cynkar, & Gishen, 2007); oranges (Cayuela, 2008); man-
gos (Saranwong & Sornsrivichai, 2003); strawberries (Sánchez
et al., 2012); kiwifruit (Clark et al., 2004); and pears (Nicolaï
et al., 2008).

Although NIRS is becoming an increasingly attractive analytical
technique for measuring quality parameters of fruits, several com-
plicating factors remain. The major difficulties in analyzing quality
attributes in fruits by NIRS are: (i) weakness of the NIRS signals
from fruit components compared with those from other compo-
nents; (ii) complexity of overlapping bands due to the chemical
composition of a typical fruit; and (iii) wavelength-dependent
scattering effects (tissue heterogeneities, instrumental noise,
ambient effects and other sources of variability). To overcome
these difficulties, sophisticated multivariate statistical techniques
are used to extract useful information from an NIR spectrum.
Essentially, these include regression techniques such as partial
least squares (PLS) (Dupuy, Galtier, Ollivier, Vanloot, & Artaud,
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2010), principal component regression (PCR) (Xie & Kalivas, 1997),
artificial neural networks (ANN) (Makino, Ichimura, Oshita,
Kawagoe, & Yamanaka, 2010) and least squares–vector support
machine (LS–SVM) (Shao, Zhao, Bao, & He, 2012), coupled with
spectral preprocessing such as averaging (Nicolaï et al., 2006),
smoothing (Næs, Isaksson, Fearn, & Davies, 2004), standardization
(Greensill et al., 2001), and transformation (Griffiths, 1995).

The quality attributes of wax jambu [S. malaccense (L.) Merryl et
Perry] fruit have never been calibrated using NIR spectroscopy or
any other rapid technique. Herein, we have attempted to evaluate
the feasibility of rapidly measuring intact wax fruit with a fiber
optic probe FT-NIR spectrometer. The specific objectives of our
research were to: (1) determine relationships between FT-NIR
measurements with total anthocyanins (TA) and total phenolic
compounds (TPC) of wax fruit based on PLS method; (2) calculate
prediction performance of calibration and prediction models using
PLS method and establish the best calibration models.
2. Experimental

2.1. Sampling

All the samples were harvested by hand (October, 2013 and
March, 2014) from a metropolitan area of Northeast Brazil
(Natal). Fruits were harvested from different trees, then pooled
and randomized. The wax jambu used for each experiment were
selected on the basis of uniform size and color, and being free from
any diseases and physical damage. The sorted wax jambu were
stored under ambient room conditions (26–30 �C, RH 60–80%)
before NIR diffuse reflectance spectral measurements were per-
formed. All measurements, including spectral collection and
parameter determination (TAC and TPC values), were carried out
on the same or following day. In the laboratory, we measured fruit
morphological characteristics including weight and diameter
(average values). The weight (24.87 g) was determined using an
electric analytical balance, while the diameter (3.28 cm) was deter-
mined using a tape measure. After weighing, we cut the fruit in half
with a sharp knife and each half was cut at the exposed edge into
four equal pieces. The cavity tissue and the bottom of the pieces
were removed. The number of samples (N), minimum (Min), max-
imum (Max), median and standard deviation (S.D.) for each param-
eter are presented in Table 1.
2.2. Reference methods

2.2.1. TAC
We used the pH differential method applicable for the determi-

nation of monomeric anthocyanins, such cyanidin-3-glucoside, in
fruit as a reference method (Lee, Durst, & Wrolstad, 2005). Total
anthocyanin extraction was carried out using fresh-cut wax jambu.
Two portions of macerated pulp (0.050 g each) were weighed out.
One was mixed with 0.025 mol L�1, pH 1.0, potassium chloride buf-
fer, and the other with 0.4 mol L�1, pH 4.5, sodium acetate buffer.
After two at room temperature (�25 �C), the samples were passed
through a Whatman No. 1 filter paper, and the absorbance of both
solutions recorded using a spectrophotometer (SP-22 UV–Vis,
Curitiba, Brazil) at 520 and 700 nm, respectively. All analyses were
performed in triplicate.
Table 1
Summary of the samples and reference (TAC/TPC) concentrations showing, number of
samples (N), minimum (Min), maximum (Max), mean and standard deviation (S.D.).

Parameter N Min Max Mean S.D.

TAC 50 9.07 218.7 66.0 47.0
TPC 50 31.24 374.6 135.6 72.6
2.2.2. TPC
TPC was measured using a colorimetric Folin–Ciocalteu method

(Li, Hydamaka, Lowry, & Beta, 2009). Wax jambu extract (1 mL) or
gallic acid (standard) were mixed with 0.5 mL of Folin–Ciocalteu
reagent (prediluted 10-fold with distilled water) and allowed to
stand at room temperature for 5 min before 1.0 mL of sodium
bicarbonate (7.5%) was added to the mixtures. After standing for
60 min at room temperature, the absorbance was measured at
765 nm. Results were expressed as mg gallic acid equivalents
(GAE)/100 g sample. All analyses were performed in triplicate.

2.3. NIRS

Spectral measurements were performed using an Antaris MX
FT-NIR spectrophotometer (Thermo Fisher Scientific Inc, USA)
equipped with a NIR fiberoptic probe, interferometer, cooled
InGaAs detector, and a wide-band quartz halogen light
source (50 W). The NIR spectra were obtained across the ranges
10,000–4166 cm�1 or 1000–2400 nm, and were recorded with a
spectral resolution of 32 cm�1 and an average of 32 scans. Each
spectrum (32 scans) took 26 s. For each wax jambu fruit, we
measured a diffuse reflectance spectrum on three evenly spaced
equatorial positions but only an averaged spectrum (three spectra
per fruit) was used for analysis, giving a total of 50 NIR spectra.
Absorbance spectra of wax jambu samples were obtained against
a spectrum for spectralon as the background. Spectral measure-
ments were obtained in a room acclimatized to 22 �C and 60%
relative air humidity.

2.4. Chemometrics procedure and software

We performed data loading, pre-processing Savitzky-Golay
smoothing with different windows (3, 5 and 7) (Nicolaï et al.,
2007), multiplicative scattering correction (MSC) (Isaksson &
Naes, 1988), and derivatization – first and second derivatives
(Cen & He, 2007), chemometric regression model construction
(PLS) and validation in a MATLAB�version7.10 environment
(Math-Works, Natick, USA) with the PLS-toolbox (Eigenvector
Research, Inc., Wenatchee, WA, USA, version 7.8). The number of
calibration and validation samples selected were 50 and 35,
respectively, applying the classic Kennard-Stone (KS) selection
algorithm to the NIR spectra (Kennard & Stone, 1969).

We tested the predictability of the model by determining the
RMSECV (root mean square error of cross validation), RMSEP (root
mean square error of prediction) and correlation coefficients of
each model for calibration data set (rc) and prediction data set (rp).

The RMSECV, RMSEP and r were calculated as follows:

RMSECV ¼
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where ŷi is the predicted value of the ith observation, yi the mea-
sured value of ith observation and Ic is the number of observations
in the calibration set.
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where ~yi is the predicted value for predict set sample i, yi the mea-
sured value for predict sample i and Ip is the number of observations
in the prediction set.
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Table 2
Summary of statistics for calibrations and predictions for TAC (mg L�1) in wax jambu
fruit using FT–NIR spectra and PLS.

Spectral pre-treatments Calibration Prediction

rc RMSEC V rp RMSEP RPD VL

Raw 0.50 38.78 0.45 40.1 1.17 10
Smoothing 0.52 37.95 0.51 38.6 1.21 10
MSC 0.75 23.91 0.72 24.3 1.93 8
1st derivative 0.88 15.32 0.85 16.0 2.92 8
2nd derivative 0.99 7.56 0.98 9.0 5.19 8
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where ŷi, yi are the predicted and measured values of sample i in the
calibration and prediction sets, �y the mean of the reference mea-
surement results for all samples in the calibration and prediction
sets, and n is the number of observations in the calibration and pre-
diction sets.

The ratio of S.D. (standard deviation) to the RMSECV or the
RMSEP, called the ratio of prediction to deviation (RPD), is the fac-
tor by which the prediction accuracy increases compared with the
mean composition for all samples. Ideally, this ratio should be
greater than two for a good calibration.
3. Results and discussion

3.1. Spectrum description

Fig. 1A shows the raw wax jambu average spectra in the NIR
spectral region from 1000 to 2400 nm. The overtone and combina-
tion bands observed in the NIR spectra are due to the C–H, N–H and
O–H bonds. The spectra show five broad absorption peaks around
the 1190, 1450, 1790, 1940 and 2380 nm regions (see arrows in
Fig. 1). At 1190 nm, this could be attributed to the first overtone
bands of C–H groups present in sugars, and the prominent absorp-
tion bands around 1450 and 1940 nm were identified as water
absorption. The peak at 1790 nm overlaps with the first C–H over-
tone region, which is also sugar related. The small peak at 2380 nm
falls within the regions associated with the C–H and C–H
combination.

Initially, the PLS method was performed on the entire range of
the raw spectra to examine the NIR model for non-destructively
predicting TAC and TPC. As shown in Fig. 1A, raw spectral data
needed to undergo spectral preprocessing. There were undesirable
systematic variations in the data, such as baseline drift and random
noise. In this study, three spectral preprocessing methods were
applied comparatively, as follows: Savitzky-Golay smoothing with
different windows (3, 5 and 7), multiplicative scatter correction
(MSC), and derivatization – first and second derivatives. The result-
ing second-derivative spectra are shown in Fig. 1B.

3.2. PLS models for predicting of TAC

The calibration models based on PLS were developed in the
1000–2400 nm region. The results obtained for the calibration
models in the NIR region for TAC for wax jambu fruit are shown in
Table 2. The PLS models for TAC determination shown in Table 2
had RMSECV and RMSEP values between 7.56–38.78 (mg L�1) and
9.04–40.15 (mg L�1) for calibration and prediction sets, respec-
tively. The correlation coefficients for the prediction set ranged from
0.45 to 0.98 for all the models. However, in analyzing the results
obtained from all the pre-treatment methods, the application of
the second derivative produced excellent results where the
RMSECV and RMSEP values decreased strongly in comparison with
1000 1350 1700 2050 2400
0

0.5

1

1.5

2

Wavelength (nm)

A
b

so
rb

an
ce

 (
a.

u
)

1000 1350 1700 2050 2400
-2

-1

0

1
x 10

-3

Wavelength (nm)

2n
d

 D
er

iv
at

iv
e (A) (B)

1190

1450
1790

1940
2380

Fig. 1. Set of original NIR average spectra (1000–2400 nm) containing samples of
wax jambu: (A) raw spectra; (B) second derivative pretreatment.
the direct regression model on raw spectra. RMSECV and RMSEP val-
ues for second derivative pre-treatment were 7.56 and 9.04, respec-
tively. The correlation coefficient for the prediction set was 0.98 and
was obtained using eight latent variables.

Furthermore, when the second derivative was performed, we
obtained a RPD of 5.19, which ensured the accuracy and robustness
of the model for the prediction of TAC in wax jambu. Fig. 2 shows the
goodness of fit using second derivative and PLS, presented by plot-
ting measured and predicted values for TAC in wax jambu. Lastly,
the PLS model (second derivative) was not significantly different
using prediction samples for TAC when compared with the
reference values according to a paired t-test (tcalculated = 0.58,
tcritical = 1.76, 95% confidence level).
3.3. PLS models for predicting of TPC

The results obtained in calibration and prediction models after
application of spectral pre-treatment are summarized in Table 3.
The RMSECV values for TPC were 51.93% and 19.01% (mg gallic acid
equivalents (GAE)/100 g), respectively, while the RMSEP values
ranged between 79.15% and 22.18% (mg gallic acid equivalents
(GAE)/100 g). The correlation coefficients for the prediction set
ranged from 0.43 to 0.98 for all the models. From the table, it
can be seen that the second derivative produced a significant
improvement in terms of both cross-validation and external pre-
diction (smaller RMSECV/RMSEP and larger rc/rp). Evidently, this
PLS model achieved the best prediction precision with
RMSEP = 22.18 and RPD = 3.27.

These results are corroborated by the graph of predicted versus
reference values obtained using the PLS model (second derivative)
with nine latent variables, and we also found a correlation coeffi-
cient of 0.98 for the prediction set, as shown in Fig. 3. The presence
of relevant bias was tested with prediction results for prediction
samples using the PLS model (second derivative) with the t-test.
The results showed the bias included in the model was not signif-
icant, since the t-value obtained (0.49 for TPC) was less than the
critical value of 1.76 with 95% confidence.
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Fig. 2. Correlation plot of calibration and prediction set for the determination of
TAC (mg L�1) in wax jambu using PLS model after second derivative pretreatment.
( ) calibration set; ( ) prediction set. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)



Table 3
Summary of statistics for calibrations and predictions for TPC (mg gallic acid
equivalents (GAE)/100 g) in wax jambu fruit using FT-NIR spectra and PLS.

Spectral pre-treatments Calibration Prediction

rc RMSEC V rp RMSEP RPD VL

Raw 0.45 51.93 0.43 79.15 0.96 10
Smoothing 0.48 50.69 0.47 77.12 0.98 10
MSC 0.71 35.87 0.68 39.58 1.92 9
1st derivative 0.90 25.98 0.86 27.56 2.76 9
2nd derivative 0.95 19.01 0.94 22.18 3.27 9
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Fig. 3. Correlation plot of calibration and prediction set for the determination of
TPC (expressed as mg kg�1 of gallic acid) in wax jambu using PLS model after
second derivative pretreatment. ( ) calibration set; ( ) prediction set. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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4. Conclusions

Results reported here demonstrate the capability of NIRS com-
bined with multivariate analysis (PLS) as a tool for the rapid and
non-destructive prediction of two properties (TAC and TPC) of
wax jambu fruit for the first time. The strength of the calibrations
for each parameter varied with the different mathematical treat-
ments, but the second derivative data produced the strongest
results for predictions. The strong RPD values (5.19 for TAC and
3.19 for TPC) suggest that NIR spectroscopy could be an effective
method for the measurement of important parameters in wax
jambu.
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