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A short proof is given of a recent theorem of M. Feinberg on representable 
matroids. The result is shown not to hold for nonrepresentable matroids of rank 3. 

Following Feinberg [ 11, we call a matroid M on a set S k-independent in 
degrees if there is an ordering x1,..., x, of the elements of S such that, for 
each i (i = I,..., m), there exist k not necessarily distinct hyperplanes of M 
whose union contains x1,..., xi-, but not xi. This implies that M has no 
loops or parallel elements (the effect of the hypothesis when i = 1 being 
solely to ensure that x, is not a loop). 

M is k-independent if the above statement is true for every ordering of the 
elements of S; that is, if, for each element x of S, there exist k not 
necessarily distinct hyperplanes of M whose union is exactly S\{x}. So “l- 
independent” and “l-independent in degrees” both mean exactly the same as 
“independent”; and, in general, “k-independent” implies “k-independent in 
degrees,” but not vice versa. 

The following theorem was proved by Feinberg in [ 11. 

THEOREM 1. Let M be a representable matroid of rank r on a set S. If 
M is k-independent in degrees (and hence, a fortiori, if M is k-independent), 
then (S/ < (r’t-‘). 

Proof. Choose a representation for M as a set of ] S ] distinct vectors in a 
vector space V of dimension r over some field K, so that independence in M 
corresponds to linear independence in V. Let V(‘) be a vector space of 
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dimension (““,-‘) over K, fix bases for V and vk), and define a map 
f: V-t P) as follows: if x = (x , ,..., XJ E V, then the coordinates of f(x) are 
all the distinct products of k not necessarily distinct xI)s arranged in 
lexicographic order of suffixes. (For example, if r = k = 3, then (r’“,-‘) = 10 
and 

To prove the theorem, it suffices to prove that, if a subset X of V is k- 
independent in degrees, then {f(x): x E X} is linearly independent in V”‘. 

To do this, let y E YE X and suppose that r\{y} is covered by k not 
necessarily distinct hyperplanes none of which contains y. Let the equations 

‘of these hyperplanes be h, = O,..., h, = 0, where each h, is a linear function of 
coordinates, h, = a,,~, + ... + a,,~,. Then h, ... h, = 0 is a homogeneous 
equation of degree k that is satisfied by all the points of r\{y} but not by y. 
It can thus be reinterpreted as a linear equation that is satisfied by all the 
points of {S(x): x E q{y}} but not by f(y). 

Now, if X is k-independent in degrees, then there is an ordering x, ,,.., x, 
of its elements such that, for each i (i = l,..., m), there are k hyperplanes of V 
whose union contains x, ,..., xi-i but not xi. It follows from the previous 
paragraph that, for each i (i = l,..., m), there is a hyperplane of Vtk) that 
contains f(x,),..., f(x,-,) but not f(x,). Thus {f(x):x E X} is linearly 
independent in Y’ ‘). This completes the p roof of Theorem 1. 1 

This result clearly holds for non-representable matroids of ranks 1 and 2, 
but not (as we shall see in Example 2) for those of rank 3. For arbitrary 
matroids we have the following rather trivial upper bound. 

THEOREM 2. Let M be a matroid of rank r on a set S. If M is k- 
independent in degrees (and hence, a fortiori, if M is k-independent), then 
ISI < (k’- l)/(k - 1). 

ProoJ The proof is performed by induction on r. The result is clearly 
true if r = 1 or 2; so suppose r > 3. Let x1,..., x, be the elements of S 
ordered in such a way that, for each i (i = I,..., m), there are k hyperplanes 
of M whose union contains xi ,..., xi-i but not xi. Let H, ,..., H, be these k 
hyperplanes in the case i = m. It is easy to see that, for each such hyperplane 
Hj, M 1 H, is a matroid of rank r - 1 that is k-independent in degrees. So, by 
the induction hypothesis, 1 HiI < (kr-’ - l)/(k - 1) for each j, whence 

k’-’ _ 1 
lSl<k. k-l +I==, 

as required. This completes the proof of Theorem 2. 1 

We now give two constructions, the first of which is used in the second 
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and also shows that Theorem 1 is best possible. (This example appears in 
L11.1 

EXAMPLE 1. Let V be a vector space of dimension r over any 
sufficiently large field. Choose r + k - 1 hyperplanes in “general position” in 
V (that is, such that only the zero vector belongs to r or more of them). Each 
subset of r - 1 of these hyperplanes then determines (intersects in) a one- 
dimensional subspace. If X is any set of (‘:!;I) = (“i-‘) non-zero vectors, 
one chosen from each of these one-dimensional subspaces, then it is clear 
that, for each x in X, x\{ } x can be covered by k hyperplanes that do not 
contain x. Thus X is k-independent (hence, k-independent in degrees). 

For use in Example 2, consider the configuration of Example 1 in the case 
r = 3, k = t (say). The analogous affine or projective configuration consists 
of the (‘:‘) points of intersection of t + 2 lines in “general position” in a 
plane (meaning that no three lines are concurrent). If IZ is a positive integer, 
let S(n) denote any matroid obtained from such a configuration by deleting 
any (‘:‘) - n points, where t is as small as possible subject to (‘: ‘) > n. 

EXAMPLE 2. Consider an afline plane IZ with n* points and n2 + n lines. 
Let the n lines in one particular parallel class be L, ,..., L,, and replace each 
of these by a conliguration of type S(n). Then the resulting configuration l7’ 
is (n + t)-independent. For, let P and Q be two points of L, (say). The n 
other lines of n through Q cover all the points of n’ not in L, (and do not 
cover P); and, from the definition of the S(n) that replaced L, , there are t 
lines in this S(n) whose union is L,\(P). Thus there are n + t lines in Z7’ 
whose union is II’\(P). This holds for each point P in n’, and so n’ is 
(n + t)-independent, as stated. 

To show that the result of Theorem 1 does not apply to non-representable 
matroids, we can take n = 19, t = 5 in Example 2, and we get a 24- 
independent matroid of rank 3 on 19’ = 361 points, whereas 
( ‘“,z’ ) = ( ‘,“) = 325. By combining the results of Example 2 and Theorem 2, 
one can show that the largest number of elements in a k-independent matroid 
of rank 3 is k2 + o(k2) as k+ co. It would be nice to reduce the error term 
in this expression. 

It would also be nice to generalize this construction to larger values of r. 
It is still possible that Theorem 1 holds without the word “representable” if 
r > 4. 
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