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Abstract

Kazhdan’s property T has recently been imported to the C∗-world by Bekka. Our objective is to extend a
well-known fact to this realm; we show that a nuclear C∗-algebra with property T is finite-dimensional (for
all intents and purposes). Though the result is not surprising, the proof is a bit more complicated than the
group case.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Kazhdan’s revolutionary concept of property T has recently been translated into C∗-language
in [1]. One of the questions raised by Bekka’s paper is whether or not one can generalize to the
C∗-context the classical fact that a discrete group which is both amenable and has property T
must be finite (cf. [1, Proposition 11]). Unfortunately, the C∗-situation is not quite as simple, but
a satisfactory result can be obtained.

Theorem. Let A be a unital C∗-algebra which is both nuclear and has property T. Then A =
B ⊕ C where B is finite-dimensional and C has no tracial states.
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The irritating C-summand cannot be avoided; if B is any C∗-algebra with property T and C is
any algebra without tracial states then B ⊕ C also has property T. Hence any finite-dimensional
C∗-algebra plus a Cuntz algebra (for example) will have property T and be nuclear. On the
other hand, the theorem above does imply that if A is nuclear, has property T and has a faithful
trace then it must be finite-dimensional—this is an honest generalization of the discrete group
case since reduced group C∗-algebras always have a faithful trace. More generally, we have the
following corollary.

Corollary. Every unital stably finite nuclear C∗-algebra with property T is finite-dimensional.

This follows from the main result and the deep fact, due to Haagerup (cf. [5]), that unital
stably finite nuclear C∗-algebras have at least one tracial state. Indeed, if A = B ⊕ C is unital
stably finite and nuclear then C enjoys these properties too; hence it must have a trace, which
implies C = 0 (if A has property T ).

Perhaps the more interesting thing, however, is the proof. In the case of a discrete group it is
trivial: amenability implies the left regular representation has almost invariant vectors; rigidity
then provides a fixed vector; but, only finite groups have fixed vectors in the left regular repre-
sentation.

Unfortunately, we have been unable to find a simple argument for the general case, hence the
circuitous route taken here. Our approach requires generalizing Kazhdan projections, the theory
of amenable traces and even the deep fact that nuclearity passes to quotients.

2. Definitions and notation

We make the blanket assumption that all C∗-algebras are unital and separable unless oth-
erwise noted or obviously false (e.g., B(H), the bounded operators on a (separable) Hilbert
space H, will not be norm separable).

Inspired by the von Neumann version (see, for example, [3]), Bekka defines property T for
C∗-algebras in terms of bimodules. If A is a C∗-algebra and H is a Hilbert space equipped
with commuting actions of A and its opposite algebra Aop then we say H is an A–A bimodule.
(Another way of saying this is that there exists a ∗-representation π :A⊗max Aop → B(H).) As is
standard, we denote the action by ξ �→ aξb, ξ ∈ H, a ∈ A, b ∈ Aop. (That is, aξb = π(a ⊗ b)ξ .)

Definition 2.1. A C∗-algebra A has property T if every bimodule with almost central vectors
has a central vector; i.e., if H is a bimodule and there exist unit vectors ξn ∈ H such that
‖aξn − ξna‖ → 0 for all a ∈ A then there exists a unit vector ξ ∈ H such that aξ = ξa for
all a ∈ A.

An important example of a bimodule is gotten by starting with an embedding A ⊂ B(K) and
letting H = HS(K) be the Hilbert–Schmidt operators on K. The commuting actions of A and
Aop are given by multiplication on the left and right: T �→ aT b for all T ∈ HS(K), a ∈ A and
b ∈ Aop (canonically identified, as normed involutive linear spaces, with A).

Throughout this note we will use Tr to denote the canonical (unbounded) trace on B(H) and,
if H happens to be finite-dimensional, tr will be the unique tracial state on B(H).
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3. Kazhdan projections

It is known that if Γ is a discrete group with property T then all the Kazhdan projections—
the central covers in the double dual C∗(Γ )∗∗ coming from finite-dimensional irreducible
representations—actually live in C∗(Γ ). We extend this fact to the general C∗-context.

Recall that an intertwiner of two ∗-representations π :A → B(H) and σ :A → B(K) is a
bounded linear operator T :H → K such that T π(a) = σ(a)T for all a ∈ A. We will need
Schur’s lemma.

Lemma 3.1. If two representations π and σ have a nonzero intertwiner and π is irreducible then
π is unitarily equivalent to a subrepresentation of σ .

The proof is simple, well known and will be omitted—the main point is that irreducibility of
π forces an intertwiner to be a scalar multiple of an isometry.

Property T groups are often defined as follows: if a unitary representation weakly contains the
trivial representation then it must honestly contain it. Here is the generalization to our context.

Proposition 3.2. Assume A has property T, π :A → Mn(C) is an irreducible representation and
σ :A → B(K) is any representation which weakly contains π .2 Then π is unitarily equivalent to
a subrepresentation of σ .

Proof. Let HS(Cn,K) denote the Hilbert–Schmidt operators from C
n to K. We make this space

into an A–A bimodule by multiplication on the left and right—i.e., aT b = σ(a)T π(b) for all T ∈
HS(Cn,K), a ∈ A, b ∈ Aop. Since a nonzero central vector would evidently be an intertwiner of
π and σ , it suffices (by property T and Schur’s lemma) to show the existence of an asymptotically
central sequence in HS(Cn,K).

If Vk : Cn → K are isometries such that ‖σ(a)Vk − Vkπ(a)‖ → 0 then a routine calculation
shows that the unit vectors 1√

n
Vk ∈ HS(Cn,K) have the property that ‖a 1√

n
Vk − 1√

n
Vka‖HS → 0

for all a ∈ A. �
Recall that if π :A → B(H) is a representation then there is a central projection c(π) ∈

Z(A∗∗) in the double dual of A with the property that c(π)A∗∗ ∼= π(A)′′ (among other things—
see [8] for more).

Definition 3.3. If A has property T and π :A → Mn(C) is irreducible then the central cover c(π)

is also known as the Kazhdan projection associated to π .

One of the remarkable consequences of property T is that all Kazhdan projections actually
live in (the center of) A (not just A∗∗). (Compare with the fact that C∗(F2) has many finite-
dimensional representations, yet no nontrivial projections.)

2 The classical definition of weak containment states that π(A) is a quotient of σ(A). However, we take a stronger
definition: there exist isometries Vk : Cn → K such that ‖σ(a)Vk − Vkπ(a)‖ → 0 for all a ∈ A. The two definitions
agree, thanks to Voiculescu’s theorem (cf. [4]), in the case that σ(A) contains no nonzero compact operators (and this
can always be arranged by inflating).
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Theorem 3.4. Assume A has Kazhdan’s property T. Then for each finite-dimensional irreducible
representation π :A → Mn(C), the Kazhdan projection c(π) actually lives in A.

Proof. First, we must find a representation σ :A → B(H) with the following three properties:

(1) σ(A) contains no nonzero compact operators,
(2) π ⊕ σ :A → B(Cn ⊕H) is faithful, and
(3) σ contains no subrepresentation which is unitarily equivalent to π .

For example, one can start with a faithful representation of the algebra (1 − c(π))A ⊂ A∗∗ and
inflate, if necessary, to get σ satisfying (1). Standard theory of central covers shows that such a
σ has no subrepresentation unitarily equivalent to π , and evidently π ⊕ σ is faithful.

Notice that σ is not faithful. If it were then Voiculescu’s theorem would imply that σ is
approximately unitarily equivalent to σ ⊕ π (by condition (1)). Hence, σ weakly contains π

and thus, by Proposition 3.2, actually contains π . This contradicts condition (3), so σ cannot be
faithful.

Thus J = ker(σ ) is a nontrivial ideal in A. But assumption (2) implies that π |J must be
faithful; hence, J is finite-dimensional and has a unit p which is necessarily a central projection
in A. We will show p = c(π).

Since π is irreducible, π(p) = 1 and J ∼= Mn(C). Hence we may identify the representations
A → pA and π . Thus they have the same central covers—i.e., p = c(π) as desired. �

Here are a couple of consequences. The first generalizes a well-known result of Wang (cf. [9]).

Corollary 3.5. If A has property T then it has at most countably many nonequivalent finite-
dimensional representations.

Proof. A separable C∗-algebra has at most countably many orthogonal projections (since it can
be represented on a separable Hilbert space). �
Corollary 3.6. Assume A has property T and let J � A be the ideal generated by all of the
Kazhdan projections. Then A/J has no finite-dimensional representations.

Proof. Any nonzero, finite-dimensional representation of A/J would produce a Kazhdan pro-
jection in A which was not in the kernel of the quotient map A → A/J . �
4. Amenable traces

The notion of amenability for traces has a reasonably long history, with important contribu-
tions from several authors (see [2] for history and references). In this section we adapt one of
Kirchberg’s contributions (cf. [6]).

Definition 4.1. Let A ⊂ B(H) be a concretely represented unital C∗-algebra. A tracial state τ on
A is called amenable if there exists a state ϕ on B(H) such that (1) ϕ|A = τ and (2) ϕ(uT u∗) =
ϕ(T ) for every unitary u ∈ A and T ∈ B(H).
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It is a remarkable fact (due to Connes and Kirchberg) that this notion can be recast in terms of
approximation by finite-dimensional completely positive maps. See [2] or [6] for a proof of the
theorem and [7] for more on completely positive maps.

Theorem 4.2. Let τ be a tracial state on A. Then τ is amenable if and only if there exist unital
completely positive maps ϕn :A → Mk(n)(C) such that ‖ϕn(ab) − ϕn(a)ϕn(b)‖2,tr → 0, where
‖x‖2,tr = √

tr(x∗x), and τ(a) = limn→∞ tr ◦ ϕn(a), for all a, b ∈ A.

With this approximation property in hand, the following proposition is straightforward.

Proposition 4.3. Let A be a C∗-algebra with property T. Then A has an amenable trace if and
only if A has a nonzero finite-dimensional quotient.

Proof. Evidently a finite-dimensional quotient yields an amenable trace (since every trace on a
finite-dimensional C∗-algebra is amenable). Hence we assume A has property T and an amenable
trace τ .

Let ϕn :A → Mk(n)(C) be unital completely positive maps as in Theorem 4.2. Invoking
Stinespring’s theorem, we can find representations ρn :A → B(Hn) and finite rank projections
Pn ∈ B(Hn) such that ϕn can be identified with x �→ Pnρn(x)Pn. Let

ρ =
⊕
n∈N

ρn :A → B

(⊕
n∈N

Hn

)

and regard HS(
⊕

n∈N
Hn) as an A–A bimodule via T �→ ρ(a)Tρ(b).

Letting P ⊥
n = 1 − Pn, the orthogonal decomposition

Pnρn(a) − ρn(a)Pn = Pnρn(a)P ⊥
n − P ⊥

n ρn(a)Pn

implies

∥∥Pnρn(a) − ρn(a)Pn

∥∥2
2 = ∥∥Pnρn(a)P ⊥

n

∥∥2
2 + ∥∥P ⊥

n ρn(a)Pn

∥∥2
2

= Tr
(
Pnρn(a)P ⊥

n ρn

(
a∗)Pn

) + Tr
(
Pnρn

(
a∗)P ⊥

n ρn(a)Pn

)
= Tr

(
ϕn

(
aa∗) − ϕn(a)ϕn

(
a∗)) + Tr

(
ϕn

(
a∗a

) − ϕn

(
a∗)ϕ(a)

)
,

where ‖ · ‖2 denotes the Hilbert–Schmidt norm induced by 〈S,T 〉 = Tr(T ∗S). Hence,

‖Pnρn(a) − ρn(a)Pn‖2

‖Pn‖2
= (

tr
(
ϕn

(
aa∗) − ϕn(a)ϕn

(
a∗)) + tr

(
ϕn

(
a∗a

) − ϕn

(
a∗)ϕ(a)

))1/2
.

By the Cauchy–Schwarz inequality we have

tr
(
ϕn

(
aa∗) − ϕn(a)ϕn

(
a∗)) �

∥∥ϕn

(
aa∗) − ϕn(a)ϕn

(
a∗)∥∥

2,tr

and hence

‖Pnρn(a) − ρn(a)Pn‖2 → 0,
‖Pn‖2
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for every a ∈ A. That is, HS(
⊕

n∈N
Hn) has a sequence of asymptotically central unit vectors

(namely, 1
‖Pn‖2

Pn). Hence property T gives us a nonzero central vector T ∈ HS(
⊕

n∈N
Hn)—i.e.,

a nonzero compact operator in the commutant of ρ(A). Since T ’s spectral projections must also
live in ρ(A)′ we get a finite rank projection in the commutant. Thus ρ(A), and hence A, has a
finite-dimensional quotient. �

Since property T evidently passes to quotients, the following corollary is a consequence of the
previous result and Corollary 3.6.

Corollary 4.4. Assume A has property T and let J �A be the ideal generated by all the Kazhdan
projections. Then A/J has no amenable traces.

5. Nuclearity and property T

We now have the necessary ingredients.

Theorem 5.1. Assume A is nuclear and has property T. Then A = B ⊕ C where B is finite-
dimensional and C admits no tracial states.

Proof. Let J be the ideal generated by the Kazhdan projections in A. Note that A/J has
property T and is nuclear. Since every trace on a nuclear C∗-algebra is amenable (cf. [2,6]),
Corollary 4.4 implies that A/J is traceless. Thus it suffices to show B = J is finite-dimensional
(since it would then have to be a direct summand and C = A/J is traceless).

To prove J is finite-dimensional, we proceed by contradiction. If it were not then we could
find integers k(n) such that

J =
∞⊕

n=1

Mk(n)(C),

the c0-direct sum (sequences tending to zero in norm) and thus the multiplier algebra of J is
equal to the algebra of bounded sequences. Hence there is a unital ∗-homomorphism

A/J →
∏∞

n=1 Mk(n)(C)⊕∞
n=1 Mk(n)(C)

.

However, the Corona algebra on the right is easily seen to have lots of tracial states and so
we deduce that A/J has a tracial state. But this is impossible, as observed in the preceding
paragraph. �
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