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Abstract

In [I. Gelfand, V. Retakh, S. Serconek, R.L. Wilson, On a class of algebras associated to directed
graphs, Selecta Math. (N.S.) 11 (2005), math.QA/0506507] I. Gelfand and the authors of this paper
introduced a new class of algebras associated to directed graphs. In this paper we show that these
algebras are Koszul for a large class of layered graphs.
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0. Introduction

In [GRSW] I. Gelfand and the authors of this paper associated to any layered graph Γ

an algebra A(Γ ) and constructed a basis in A(Γ ) when the graph is a layered graph with
a unique minimal vertex.
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The algebra A(Γ ) is a natural generalization of universal algebra Qn of pseudo-roots
of noncommutative polynomials introduced in [GRW]. In fact, A(Γ ) is isomorphic to Qn

when Γ is the hypercube of dimension n, i.e. the graph of all subsets of a set with n

elements.
The algebras Qn have a rich and interesting structure related to factorizations of poly-

nomials over noncommutative rings. On one hand, Qn is a “big algebra” (in particular, it
contains free subalgebras on several generators and so has an exponential growth). On the
other hand, it is rather “tame”: it is a quadratic algebra, one can construct a linear basis in
Qn [GRW], compute its Hilbert series [GGRSW], prove that Qn is Koszul [SW,Pi], and
construct interesting quotients of Qn [GGR].

Since the algebra A(Γ ) is a natural generalization of Qn one would expect that for a
“natural” class of graphs the algebra A(Γ ) is Koszul. In this paper we prove this assertion
when Γ is a uniform layered graph; see Definition 3.3. The Hasse graph of ranked modular
lattices with a unique minimal element is an example of such a graph.

Compared to the proof given in [SW] for the algebra Qn, our proof is much simpler,
and more geometric.

1. The algebra A(Γ ) as a quotient of T (V +)

We begin by recalling (from [GRSW]) the definition of the algebra A(Γ ). Let Γ =
(V ,E) be a directed graph. That is, V is a set (of vertices), E is a set (of edges), and
t :E → V and h :E → V are functions. (t(e) is the tail of e and h(e) is the head of e.)

We say that Γ is layered if V = ⋃n
i=0 Vi , E = ⋃n

i=1 Ei , t :Ei → Vi , h :Ei → Vi−1. Let
V + = ⋃n

i=1 Vi.

We will assume throughout the remainder of the paper that Γ = (V ,E) is a layered
graph with V = ⋃n

i=0 Vi , that V0 = {∗}, and that, for every v ∈ V +, {e ∈ E | t(e) = v} �= ∅.
If v,w ∈ V , a path from v to w is a sequence of edges π = {e1, e2, . . . , em} with t(e1) =

v, h(em) = w and t(ei+1) = h(ei) for 1 � i < m. We write v = t(π), w = h(π). We also
write v > w if there is a path from v to w. Define

Pπ(t) = (1 − te1)(1 − te2) · · · (1 − tem) ∈ T (E)[t]/(tn+1)
and write

Pπ(t) =
n∑

j=0

e(π, j)tj .

Recall (from [GRSW]) that R denotes the ideal of T (E), the tensor algebra on E over
the field F , generated by{

e(π1, k) − e(π2, k) | t(π1) = t(π2), h(π1) = h(π2), 1 � k � l(π1)
}
.

Also, by Lemma 2.5 of [GRSW], R is actually generated by the smaller set{
e(π1, k) − e(π2, k) | t(π1) = t(π2), h(π1) = h(π2) = ∗, 1 � k � l(π1)

}
.
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Definition 1.1. A(Γ ) = T (E)/R.

Note that e(π, k) ∈ T (E)k . Thus R = ∑∞
j=1 Rj is a graded ideal in T (E). We write

ẽ(π, k) for the image of e(π, k) in A(Γ ).
In fact, A(Γ ) may also be expressed as a quotient of T (V +). To verify this we need

a general result about quotients of the tensor algebra by graded ideals. Let W be a vector
space over F and let I = ∑∞

j=1 Ij be a graded ideal in the tensor algebra T (W). Let ψ

denote the canonical map from W to the quotient space W/I1 and let 〈I1〉 denote the ideal
in T (W) generated by I1. Then ψ induces a surjective homomorphism of graded algebras

φ :T (W) → T (W/I1) ∼= T (W)/〈I1〉.

Consequently, by the Third Isomorphism Theorem, we have:

Proposition 1.2.

T (W)/I ∼= T (W/I1)/φ(I ),

where φ(I) = ∑∞
j=2 φ(Ij ) is a graded ideal of T (W/I1).

We now apply this to the presentation of the algebra A(Γ ). Recall that for each vertex
v ∈ V + there is a distinguished edge ev with t(ev) = v. Recall further that for v ∈ V +
we define v(0) = v and v(i+1) = h(ev(i) ) for 0 � i < |v| − 1 and that we set e(v,1) =
ev(0) + ev(1) + · · · + ev(|v|−1) . Thus

ev = e(v,1) − e
(
v(1),1

) = e
(
t(ev),1

) − e
(
h(ev),1

)
.

Let E′ = {ev | v ∈ V +}. Define τ :FE → FE′ by

τ(f ) = e
(
t(f ),1

) − e
(
h(t),1

)
.

Then τ is a projection of FE onto FE′ with kernel R1.
Now define η :FE′ → FV + by

η : ev �→ v.

Then η is an isomorphism of vector spaces and ητ induces an isomorphism

ν :FE/R1 → FV +.

As above, ν induces a surjective homomorphism of graded algebras

θ :T (E) → T
(
V +)

.

Thus Proposition 1.2 gives:
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Corollary 1.3. A(Γ ) ∼= T (V +)/θ(R).

It is important to write generators for the ideal θ(R) explicitly. Since R is generated by
R1 together with the elements of the form e(π1, k) − e(π2, k) it will be sufficient to write
θ(e(π, k)) explicitly. Let π = {e1, e2, . . . , em} be a path, let t(ei) = vi−1 for 1 � i � m and
let h(em) = vm. Then

e(π, k) = (−1)k
∑

1�i1<···<ik�m

ei1 · · · eik .

Now ν(ei) = evi−1 − evi
and so ην(ei) = vi−1 − vi . Since θ is induced by ην we have:

Lemma 1.4.

θ
(
e(π, k)

) = (−1)k
∑

1�i1<···<ik�m

(vi1−1 − vi1) · · · (vik−1 − vik ).

2. A presentation of grA(Γ )

Let W = ∑∞
k=0 Wk be a graded vector space. We begin by recalling some basic proper-

ties of T (W).
T (W) is bi-graded, that is, in addition to the usual grading (by degree in the tensor

algebra), there is another grading induced by the grading of W . Thus

T (W) =
∞∑
i=0

T (W)[i]

where

T (W)[i] = span{w1 · · ·wr | r � 0, wj ∈ W[lj ], l1 + · · · + lr = i}.
This grading induces a filtration on T (W). Namely

T (W)i = T (W)[i] + T (W)[i−1] + · · · + T (W)[0]
= span{w1 · · ·wr | r � 0, wj ∈ W[lj ], l1 + · · · + lr � i}.

Since T (W)i/T (W)i−1 ∼= T (W)[i] we may identify T (W) with its associated graded al-
gebra. Define a map

gr :T (W) → T (W) = grT (W)

by

gr :λ �→ λ
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for λ ∈ F.1 and

gr :u =
k∑

i=0

uk �→ uk,

where k > 0, ui ∈ T (W)[i] and uk �= 0.

Lemma 2.1. Let W be a graded vector space and I be an ideal in T (W). Then

gr
(
T (W)/I

) ∼= T (W)/(gr I ).

Proof. We have

(gr I )[k] = T (W)[k] ∩ (
T (W)k−1 + I

)
.

Therefore

gr
(
T (W)/I

)
[k] = (

T (W)/I
)
k
/
(
T (W)/I

)
k−1

= ((
T (W)k + I

)
/I

)
/
((

T (W)k−1 + I
)
/I

)
∼= (

T (W)k + I
)
/
(
T (W)k−1 + I

)
= (

T (W)[k] + T (W)k−1 + I
)
/
(
T (W)k−1 + I

)
∼= T (W)[k]/

(
T (W)[k] ∩ (

T (W)k−1 + I
))

= T (W)[k]/(gr I )[k]. �
The decomposition of V into layers induces a grading of the vector space FV +. Thus

the tensor algebra T (V +) is graded and filtered as above. The following lemma shows that
this filtration on T (V +) agrees with that induced by the filtration on T (E).

Lemma 2.2. For all i � 0, T (V +)i = θ(T (E)i).

Proof. This holds for i = 0 since T (V +)0 = T (E)0 = F . Furthermore, T (E)1 is spanned
by 1 and {f | f ∈ E1}. For f ∈ E1 we have τ(f ) = e(t(f ),1) − e(h(f ),1), but h(f ) = ∗
and e(∗,1) = 0 so τ(f ) = e(t(f ),1). Hence ητ(f ) = t(f ). Thus T (V +)1 = θ(T (E)1).

Now assume T (V +)i−1 = θ(T (E)i−1). Then θ(T (E)i) is spanned by

θ
({

e1 · · · er | r � 0, |e1| + · · · + |er | � i
})

= {(
t(e1) − h(e1)

) · · · (t(er ) − h(er )
) | r � 0, |e1| + · · · + |er | � i

}
.

Let u = (t(e1) − h(e1)) · · · (t(er ) − h(er )). Then if |e1| + · · · + |er | � i we have

u ≡ t(e1) · · · t(er ) mod T
(
V +)

i−1.

The lemma then follows by induction. �
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Corollary 2.3. A(Γ ) ∼= T (V +)/θ(R) as filtered algebras.

If u ∈ A(Γ )i , u /∈ A(Γ )i−1 we write |u| = i.
As before, let π = {e1, e2, . . . , em} be a path and let t(ei) = vi−1 for 1 � i � m and

h(em) = vm. For 1 � k � m + 1 set

v(π, k) = v0 · · ·vk−1.

Lemma 2.4. Let π1,π2 be paths with t(π1) = t(π2) and let 1 � k � l(π1). Then

v(π1, k) − v(π2, k) ∈ gr θ(R).

Proof. We may extend π1,π2 to paths μ1,μ2 such that h(μ1) = h(μ2) = ∗. Then
e(μ1, k) − e(μ2, k) ∈ R. The result now follows from Lemma 1.4. �

Let Rgr denote the ideal generated by

{
v(π1, k) − v(π2, k) | t(π1) = t(π2), 2 � k � l(π1)

}
.

Proposition 2.5. grA(Γ ) ∼= T (V +)/Rgr.

Proof. We begin by recalling the description of a basis for grA(Γ ).
We say that a pair (v, k), v ∈ V , 0 � k � |v| can be composed with the pair (u, l),

u ∈ V , 0 � l � |u|, if v > u and |u| = |v| − k. If (v, k) can be composed with (u, l) we
write (v, k) |= (u, l). Let B1(Γ ) be the set of all sequences

b = (
(b1,m1), (b2,m2), . . . , (bk,mk)

)
,

where k � 0, b1, b2, . . . , bk ∈ V , 0 � mi � |bi | for 1 � i � k. Let

B(Γ ) = {
b = (

(b1,m1), (b2,m2), . . . , (bk,mk)
) ∈ B1(Γ )

| (bi,mi) �|= (bi+1,mi+1), 1 � i < k
}
.

For

b = (
(b1,m1), (b2,m2), . . . , (bk,mk)

) ∈ B1(Γ )

set

ẽ(b) = ẽ(b1,m1) · · · ẽ(bk,mk).

Clearly {ẽ(b) | b ∈ B1(Γ )} spans A(Γ ). Writing ē(b) = ẽ(b) + A(Γ )i−1 ∈ grA(Γ )

where |ẽ(b)| = i, Corollary 4.4 of [GRSW] shows that {ē(b) | b ∈ B(Γ )} is a basis for
grA(Γ ).
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Let

ˇ :T
(
V +) → T

(
V +)

/Rgr

denote the canonical mapping. Write ě(b,m) for the image of e(b,m) and ě(b) for the
image of e(b).

By Lemma 2.1 and Corollary 1.3, we have grA(Γ ) ∼= T (V +)/(gr θ(R)). Since Rgr ⊆
gr θ(R) (by Lemma 2.4) the canonical map

T
(
V +) → T

(
V +)

/
(
gr θ(R)

)
induces a homomorphism

α :T
(
V +)

/Rgr → grA(Γ ).

Clearly

α : ě(b) �→ ē(b).

Also, since {ē(b) | b ∈ B(Γ )} is a basis for grA(Γ ), there is a linear map

β : grA(Γ ) → T
(
V +)

/Rgr

defined by

β : ē(b) �→ ě(b).

As α and β are inverse mappings, the proof is complete. �

3. The quadratic algebra A(Γ )

We will now see that, for certain graphs Γ , R is generated by R1 + R2.

Definition 3.1. Let Γ be a layered graph and v ∈ Vj , j � 2. For 1 � i � j define Si (v) =
{w ∈ Vj−i | v > w}.

Definition 3.2. For v ∈ Vj , j � 2, let ∼v denote the equivalence relation on S1(v) gener-
ated by u ∼v w if S1(u) ∩ S1(w) �= ∅.

Definition 3.3. The layered graph V is said to be uniform if, for every v ∈ Vj , j � 2, all
elements of S1(v) are equivalent under ∼v .

Lemma 3.4. Let Γ be a uniform layered graph. Then R is generated by R1 + R2, in fact,
R is generated by R1 ∪ {e(τ1,2) − e(τ2,2) | t(τ1) = t(τ2), h(τ1) = h(τ2), |τ1| = 2}.



V. Retakh et al. / Journal of Algebra 304 (2006) 1114–1129 1121
Proof. Let S denote the ideal of T (E) generated by R1 ∪ {e(τ1,2) − e(τ2,2) | t(τ1) =
t(τ2), h(τ1) = h(τ2), |τ1| = 2}.

We must show that if π1,π2 are paths in Γ with t(π1) = t(π2), and h(π1) = h(π2) = ∗,
then Pπ1(t) − Pπ2(t) ∈ S[t], or, equivalently, Pπ1(t) ∈ (1 + S[t])Pπ2(t). This is clear if
l(π1) � 2. We will proceed by induction on l(π1). Thus we will assume that k � 3, that
l(π1) = k, and that whenever μ1,μ2 are paths in Γ with t(μ1) = t(μ2), and h(μ1) =
h(μ2) = ∗, and l(μ1) < k, then Pμ1(t) − Pμ2(t) ∈ S[t].

Write π1 = (e1, e2, . . . , ek),π2 = (f1, f2, . . . , fk). We first consider the special case
in which h(e1) > h(f2) (and so there is an edge, say g, with t(g) = h(e1), h(g) =
h(f2)). Consequently, P(e1,g)(t) ∈ (1 + S[t])P(f1,f2)(t). Write π1 = (e1, e2)ν1 and π2 =
(f1, f2)ν2. Then

Pπ1(t) = (1 − te1)(1 − te2)Pν1(t)

and

Pπ2(t) = (1 − tf1)(1 − tf2)Pν2(t)

so

Pπ2(t) = (1 − tf1)(1 − tf2)
(
(1 − tg)−1(1 − te1)

−1(1 − te1)(1 − tg)
)
Pν2(t)

× Pν1(t)
−1((1 − te2)

−1(1 − te1)
−1Pπ1(t)

)
.

Let μ1 = e2ν1 and μ2 = gν2. Then, by the induction assumption,

(1 − tg)Pν2(t)Pν1(t)
−1(1 − te2)

−1 = Pμ2(t)Pμ1(t)
−1 ∈ 1 + S[t].

Consequently,

(1 − te1)(1 − tg)Pν2(t)Pν1(t)
−1(1 − te2)

−1(1 − te1)
−1

∈ (1 − te1)
(
1 + S[t])(1 − te1)

−1

= 1 + S[t]

and so we have

Pπ2(t) ∈ (
1 + S[t])Pπ1(t).

In the general case, let h(e1) = u and h(f1) = w. Then u,w ∈ S1(v) so, since Γ is
uniform, there exist a1, . . . , al+1 ∈ S1(v) with a1 = u,al+1 = w and b1, . . . , bl ∈ V with
bi ∈ S1(ai) ∩ S1(ai+1) for 1 � i � l. For 1 � i � l, let τi be a path from bi to ∗. For
2 � i � l let gi ∈ E satisfy t(gi) = t(π1),h(gi) = ai . For 1 � i � l let ri ∈ E satisfy
t(ri) = ai and h(ri) = bi and let si ∈ E satisfy t(si) = ai+1,h(si) = bi . Then the previously
considered case shows that
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Pπ1(t) ∈ (
1 + S[t])Pg2s1τ1(t);

Pgisi−1τi−1(t) ∈ (
1 + S[t])Pgi+1siτi

(t)

for 2 � i � l − 1;

Pglsl−1τl−1(t) ∈ (
1 + S[t])Pf1slτl

(t);

and

Pf1slτl
(t) ∈ (

1 + S[t])Pπ2(t),

proving the lemma. �
Now assume that Γ is a uniform layered graph. Then R is generated by R1 +R2, in fact,

R is generated by R1 ∪R2 where R2 = {e(τ1,2) − e(τ2,2) | t(τ1) = t(τ2), h(τ1) = h(τ2),
|τ1| = 2}. Set RV = 〈θ(R2)〉.

Proposition 3.5. Let Γ be a uniform layered graph. Then A(Γ ) ∼= T (V +)/RV is a
quadratic algebra and RV is generated by

{
v(u − w) − u2 + w2 + (u − w)x

∣∣∣∣ v ∈
n⋃

i=2

Vi, u,w ∈ S1(v), x ∈ S1(u) ∩ S1(w)

}
.

Proof. By Lemma 3.4, RV is generated by

θ
{
e(τ1,2) − e(τ2,2) | t(τ1) = t(τ2), h(τ1) = h(τ2), |τ1| = 2

}
.

Let τ1 = (e, f ), τ2 = (e′, f ′), t(e) = t(e′) = v, h(e) = u, h(e′) = w, h(f ) = h(f ′) = x.
Then

θ
(
e(τ1,2) − e(τ2,2)

) = (v − u)(u − x) − (v − w)(w − x)

= v(u − w) − u2 + w2 + (u − w)x. �
Combining this proposition with the results of the previous section we obtain the fol-

lowing presentation for grA(Γ ).

Proposition 3.6. Let Γ be a uniform layered graph. Then grA(Γ ) ∼= T (V +)/Rgr is a
quadratic algebra and Rgr is generated by

{
v(u − w)

∣∣∣∣ v ∈
n⋃

i=2

Vi, u,w ∈ S1(v), S1(u) ∩ S1(w) �= ∅
}

.
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4. grA(Γ ) is a Koszul algebra

If W is a graded subspace of V 2 we write

W(k) =
k−2⋂
i=0

V iWV k−i−2

so that

(grW)(k) =
k−2⋂
i=0

V i(grW)V k−i−2.

Then, by Proposition 3.6,

(grRgr)
(k) ⊂ span

{
v(π, k) | π is a path, l(π) � k

}
.

To simplify notation, we will write V for V + and R for Rgr. Note that if π is a path
with l(π) � k and v(π, k) = v0v1 · · ·vk−1 then |vk−1| = |vk| + 1 � 1. Thus v(π, k) ∈ Vk .

Definition 4.1.

Pathk = span
{
v(π, k) | π is a path, l(π) � k

}
and

Pathk(v) = vVk−1 ∩ Pathk.

Let f : V → F be defined by f (v) = 1 for all v ∈ V and I l denote I ⊗ · · · ⊗ I , taken l

times. Let gl : Vl → Vl−1 be defined by gl = f ⊗ I l−1.
For any vertex v ∈ V and any l � 0 define

Sl(v) = span
{
u | v > u, |u| = |v| − l

}
and

Pl(v) = span
{
u − w | v > u, v > w, |u| = |w| = |v| − l

}
.

Note that Pl(v) = Sl(v) = (0) if l > |v|, that S0(v) = span{v}, and that P0(v) = (0).
Note also that Pl(v) = kerf |Sl(v) and therefore

Pl(v)Vm = kergm+1|Sl(v)Vm

for all l,m � 0. Combining this with Proposition 3.6, we have

gr R2 = span
{
v(u − w) | u,w ∈ S1(v), v ∈ V

} =
∑
v∈V

vP1(v).
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Lemma 4.2. For k � 2,

R(k) = Pathk ∩
k−2⋂
i=0

ker
(
I i+1 ⊗ f ⊗ I k−i−2).

Proof. Since

R(k) =
k−2⋂
i=0

ViRVk−i−2

we have

R(k)⊥ =
k−2∑
i=0

V∗iR⊥V∗k−i−2.

We also have that

R⊥ = span
{{

v∗u∗ | |u| �= |v| − 1 or v �> u
} ∪ {

v∗f | v ∈ V
}}

= span
{
v∗u∗ | |u| �= |v| − 1 or v �> u

} + V∗f.

Let

M = span
{
v∗u∗ | |u| �= |v| − 1 or v �> u

}
.

Then

R(k)⊥ =
k−2∑
i=0

{
V∗iMV∗k−i−2 + V∗i+1f V∗k−i−2}

=
k−2∑
i=0

V∗iMV∗k−i−2 +
k−2∑
i=0

V∗i+1f V∗k−i−2

=
((

k−2∑
i=0

V∗iMV∗k−i−2

)⊥
∩

(
k−2∑
i=0

V∗i+1f V∗k−i−2

)⊥)⊥
.

So

R(k) =
(

k−2∑
V∗iMV∗k−i−2

)⊥
∩

(
k−2∑

V∗i+1f V∗k−i−2

)⊥
.

i=0 i=0
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Now (
k−2∑
i=0

V∗iMV∗k−i−2

)⊥
=

k−2⋂
i=0

ViM⊥Vk−i−2 = Pathk

and

(
k−2∑
i=0

V∗if V∗k−i−2

)⊥
=

k−2⋂
i=0

Vi+1〈f 〉⊥Vk−i−2 =
k−2⋂
i=0

Vi+1(kerf )Vk−i−2

=
k−2⋂
i=0

ker
(
I i+1 ⊗ f ⊗ I k−i−2),

giving the result. �
We will need the following result, whose proof is straightforward.

Lemma 4.3. Let W1 and W2 be F -vector spaces, h :W1 → W2 a linear transformation,
A ⊆ W1, C ⊆ W2, subspaces, and B = h−1(C). Then

h(A) ∩ h(B) = h(A ∩ B).

Lemma 4.4. If l � 0, j � 1, and v ∈ ⋃n
j=2 Vj , then

Pj (v)Vl+1 ∩ R(l+2) = gl+3
(
Sj−1(v)Vl+2 ∩ R(l+3)

)
.

Proof. Note that

(f ⊗ I )
(
Sj−1(v)V ∩ R

) ⊆ Pj (v)

and (
f ⊗ I l+2)(VR(l+2)

) ⊆ R(l+2).

Consequently,

gl+3
(
Sj−1(v)Vl+2 ∩ R(l+3)

) ⊆ Pj (v)Vl+1 ∩ R(l+2).

To prove the reversed inclusion we note that by Lemma 4.2,

Pj (v)Vl+1 ∩ R(l+2) = Pj (v)Vl+1 ∩ Pathl+2 ∩
(

l⋂
i=0

ker
(
I i+1 ⊗ f ⊗ I l−i

))

and
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gl+3
(
Sj−1(v)Vl+2 ∩ R(l+3)

)
= gl+3

(
Sj−1(v)Vl+2 ∩ Pathl+3 ∩

(
l+1⋂
i=0

ker
(
I i+1 ⊗ f ⊗ I l+1−i

)))
.

Let g = gl+4 · · ·gl+j+2. Then for any subspace W ⊆ Vl+2 we have

g−1(W) = Vj−1W

and

(gl+3g)−1(W) = VjW.

Then

Pj (v)Vl+1 ∩ Pathl+2 ∩
(

l⋂
i=0

ker
(
I i+1 ⊗ f ⊗ I l−i

))

= (gl+3g)
(
Pathj+1(v)Vl+1) ∩ (gl+3g)

(
Vj

(
ker

(
f ⊗ I l+1)))

∩ (gl+3g)
(
Vj Pathl+2

) ∩
(

l⋂
i=0

Vj
(
ker

(
I i+1 ⊗ f ⊗ I l−i

)))

= (gl+3g)

(
Pathj+1(v)Vl+1 ∩ Vj Pathl+2 ∩

(
l+1⋂
i=0

Vj
(
ker

(
I i ⊗ f ⊗ I l+1−i

))))

= (gl+3g)

(
Pathj+l+2(v) ∩

(
l+1⋂
i=0

Vj
(
ker

(
I i ⊗ f ⊗ I l+1−i

))))
.

Similarly,

gl+3

(
Sj−1(v)Vl+2 ∩ Pathl+3 ∩

(
l+1⋂
i=0

ker
(
I i+1 ⊗ f ⊗ I l+1−i

)))

= gl+3

(
g
(
Pathj (v)Vl+2) ∩ g

(
Vj−1 Pathl+3

)

∩
(

l+1⋂
i=0

g
(
Vj−1(ker

(
I i+1 ⊗ f ⊗ I l+1−i

)))))

= (gl+3g)

(
Pathj (v)Vl+2 ∩ Vj−1 Pathl+3 ∩

(
l+1⋂

Vj−1(ker
(
I i+1 ⊗ f ⊗ I l+1−i

))))

i=0
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= (gl+3g)

(
Pathj+l+2(v) ∩

(
l+1⋂
i=0

Vj
(
ker

(
I i ⊗ f ⊗ I l+1−i

))))
,

proving the lemma. �
Lemma 4.5. Suppose {P1(v)Vk} ∪ {ViRVk−i−1 | 0 � i � k − 1} is distributive for any
v ∈ V. Then {ViRVk−i | 0 � i � k} is distributive.

Proof. By [SW, Lemma 1.1] it is sufficient to prove that{
vVk+1 ∩ ViRVk−i | 0 � i � k

}
is distributive for all v ∈ V. Now gk+2 restricts to an isomorphism of vVk+1 onto Vk+1.
Since gk+2(vVk+1 ∩ RVk) = P1(v)Vk and gk+2(vVk+1 ∩ Vi+1RVk−i−1) = ViRVk−i−1

for 0 � i � k − 1, the result follows. �
Theorem 4.6. Let Γ be a uniform layered graph with a unique minimal element. Then
{ViRVk−1 | 0 � i � k} generates a distributive lattice in T (V). Consequently, grA(Γ ) is
a Koszul algebra.

In view of Lemma 4.5, this will follow from:

Lemma 4.7. {Pl(v)Vk} ∪ {ViRVk−i−1 | 0 � i � k − 1} is distributive for all k � 1 and all
l > 0.

Proof. The proof is by induction on k, the result being trivial for k = 1. We assume
{Pl(v)Vm} ∪ {ViRVm−i−1 | 0 � i � m − 1} is distributive for all m < k and all l > 0.

First note that any proper subset of {Pl(v)Vk} ∪ {ViRVk−i−1 | 0 � i � k − 1} is dis-
tributive. Indeed, by Lemma 4.5, {ViRVk−i−1 | 0 � i � k − 1} is distributive. Hence it is
sufficient to show that {Pl(v)Vk}∪{ViRVk−i−1 | 0 � i < j}∪{ViRVk−i−1 | j < i � k−1}
is distributive for all j,0 � j � k − 1}. Now let Kj,1 = {Pl(v)Vj } ∪ {ViRVj−i−1 | 0 � i �
j − 1} and Kj,2 = {ViRVk−j−2−i | 0 � i � k − j − 2}. Then Kj,1 and Kj,2 are distributive
by the induction assumption. Since {Pl(v)Vk} ∪ {ViRVk−i−1 | 0 � i < j} ∪ {ViRVk−i−1 |
j < i � k − 1} = Kj,1Vk−j ∪ Vj+1Kj,2, the assertion follows.

In view of [SW, Theorem 1.2], it is therefore sufficient to prove that

(
Pl(v)Vk ∩ RVk−1 ∩ · · · ∩ ViRVk−i−1) ∩ (

Vi+1RVk−i−2 + · · · + Vk−1R
)

= (
Pl(v)Vk ∩ RVk−1 ∩ · · · ∩ Vi+1RVk−i−2)

+ (
Pl(v)Vk ∩ RVk−1 ∩ · · · ∩ ViRVk−i−1 ∩ (

Vi+2RVk−i−3 + · · · + Vk−1R
))

.

Now write

Xi = Sl(v)Vk ∩ RVk−1 ∩ · · · ∩ ViRVk−i−1,

Yi = Vi+1RVk−i−2,
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and

Zi = Vi+2RVk−i−3 + · · · + Vk−1R.

Then we need to show that

kergk+1|Xi∩(Yi+Zi) = kergk+1|Xi∩Yi
+ kergk+1|Xi∩Zi

.

The right-hand side is contained in the left-hand side, so it is enough to prove equality
of dimensions.

Hence it is enough to prove

dimXi ∩ (Yi + Zi) − dimgk+1
(
Xi ∩ (Yi + Zi)

)
= dimXi ∩ Yi − dimgk+1(Xi ∩ Yi) + dimXi ∩ Zi − dimgk+1(Xi ∩ Zi)

− dimXi ∩ Yi ∩ Zi + dimgk+1(Xi ∩ Yi ∩ Zi).

Now, by the induction assumption and Lemma 4.5, {Xi,Yi,Zi} is distributive. There-
fore, the desired equality is equivalent to

dimgk+1
(
Xi ∩ (Yi + Zi)

) = dimgk+1(Xi ∩ Yi) + dimgk+1(Xi ∩ Zi)

− dimgk+1(Xi ∩ Yi ∩ Zi).

But, since {Xi,Yi,Zi} is distributive,

gk+1
(
Xi ∩ (Yi + Zi)

) = gk+1(Xi ∩ Yi + Xi ∩ Zi) = gk+1(Xi ∩ Yi) + gk+1(Xi ∩ Zi).

Hence we need only show that

dimgk+1(Xi ∩ Yi) ∩ gk+1(Xi ∩ Zi) = dimgk+1(Xi ∩ Yi ∩ Zi).

Since

gk+1(Xi ∩ Yi ∩ Zi) ⊆ gk+1(Xi ∩ Yi) ∩ gk+1(Xi ∩ Zi)

this is equivalent to

gk+1(Xi ∩ Yi) ∩ gk+1(Xi ∩ Zi) = gk+1(Xi ∩ Yi ∩ Zi)

Now by Lemma 4.4, the left-hand side of this expression is equal to

Pl+1(v)Vk−1 ∩ RVk−2 ∩ · · · ∩ ViRVk−i−2 ∩ (
Vi+1RVk−i−3 + · · · + Vk−2R

)
.

In view of the distributivity of {Sl(v)Vk} ∪ {VtRVk−t−1 | 0 � t � k − 1}, which follows
from [SW, Lemma 1.1] and the induction assumption, the right-hand side of the expression
may be written as
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gk+1
(
Sl(v)Vk ∩ RVk−1 ∩ · · · ∩ Vi+2RVk−i−3)

+ gk+1
(
Sl(v)Vk ∩ RVk−1 ∩ · · · ∩ Vi+1RVk−i−2 ∩ (

Vi+3RVk−i−4 + · · · + Vk−1R
))

.

By Lemma 4.4, this is equal to

Pl+1(v)Vk−1 ∩ RVk−2 ∩ · · · ∩ Vi+1RVk−i−3

+ Pl+1(v)Vk−1 ∩ RVk−2 ∩ · · · ∩ ViRVk−i−2 ∩ (
Vi+2RVk−i−4 + · · · + Vk−2R

)
.

By the induction assumption, these expressions for the left- and right-hand sides are
equal, so the proof is complete. �

5. Koszulity of A(Γ )

We will need the following lemma which is a special case of a more general result [PP,
Proposition 3.7.1].

Lemma 5.1. Let A be a filtered quadratic algebra. If grA is quadratic and Koszul then A

is Koszul.

Theorem 5.2. Let Γ be a uniform layered graph with a unique minimal element. Then
A(Γ ) is a Koszul algebra.

Proof. This follows from Theorem 4.6 and Lemma 5.1. �
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