

Available online at www.sciencedirect.com

JOURNAL OF Algebra

Journal of Algebra 304 (2006) 1114-1129

www.elsevier.com/locate/jalgebra

On a class of Koszul algebras associated to directed graphs

Vladimir Retakh^{a,*,1}, Shirlei Serconek^b, Robert Lee Wilson^a

^a Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA ^b IME-UFG CX Postal 131 Goiania, GO CEP 74001-970, Brazil

Received 10 August 2005

Available online 19 December 2005

Communicated by Efim Zelmanov

Abstract

In [I. Gelfand, V. Retakh, S. Serconek, R.L. Wilson, On a class of algebras associated to directed graphs, Selecta Math. (N.S.) 11 (2005), math.QA/0506507] I. Gelfand and the authors of this paper introduced a new class of algebras associated to directed graphs. In this paper we show that these algebras are Koszul for a large class of layered graphs.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Koszul algebras; Directed graphs

0. Introduction

In [GRSW] I. Gelfand and the authors of this paper associated to any layered graph Γ an algebra $A(\Gamma)$ and constructed a basis in $A(\Gamma)$ when the graph is a layered graph with a unique minimal vertex.

0021-8693/\$ – see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2005.11.005

^{*} Corresponding author.

E-mail addresses: vretakh@math.rutgers.edu (V. Retakh), serconek@math.rutgers.edu (S. Serconek), rwilson@math.rutgers.edu (R.L. Wilson).

¹ Partially supported by NSA.

The algebra $A(\Gamma)$ is a natural generalization of universal algebra Q_n of pseudo-roots of noncommutative polynomials introduced in [GRW]. In fact, $A(\Gamma)$ is isomorphic to Q_n when Γ is the hypercube of dimension n, i.e. the graph of all subsets of a set with n elements.

The algebras Q_n have a rich and interesting structure related to factorizations of polynomials over noncommutative rings. On one hand, Q_n is a "big algebra" (in particular, it contains free subalgebras on several generators and so has an exponential growth). On the other hand, it is rather "tame": it is a quadratic algebra, one can construct a linear basis in Q_n [GRW], compute its Hilbert series [GGRSW], prove that Q_n is Koszul [SW,Pi], and construct interesting quotients of Q_n [GGR].

Since the algebra $A(\Gamma)$ is a natural generalization of Q_n one would expect that for a "natural" class of graphs the algebra $A(\Gamma)$ is Koszul. In this paper we prove this assertion when Γ is a *uniform layered graph*; see Definition 3.3. The Hasse graph of ranked modular lattices with a unique minimal element is an example of such a graph.

Compared to the proof given in [SW] for the algebra Q_n , our proof is much simpler, and more geometric.

1. The algebra $A(\Gamma)$ as a quotient of $T(V^+)$

We begin by recalling (from [GRSW]) the definition of the algebra $A(\Gamma)$. Let $\Gamma = (V, E)$ be a *directed graph*. That is, V is a set (of vertices), E is a set (of edges), and $\mathbf{t}: E \to V$ and $\mathbf{h}: E \to V$ are functions. ($\mathbf{t}(e)$ is the *tail* of e and $\mathbf{h}(e)$ is the *head* of e.)

We say that Γ is *layered* if $V = \bigcup_{i=0}^{n} V_i$, $E = \bigcup_{i=1}^{n} E_i$, $\mathbf{t} : E_i \to V_i$, $\mathbf{h} : E_i \to V_{i-1}$. Let $V^+ = \bigcup_{i=1}^{n} V_i$.

We will assume throughout the remainder of the paper that $\Gamma = (V, E)$ is a layered graph with $V = \bigcup_{i=0}^{n} V_i$, that $V_0 = \{*\}$, and that, for every $v \in V^+$, $\{e \in E \mid \mathbf{t}(e) = v\} \neq \emptyset$.

If $v, w \in V$, a *path* from v to w is a sequence of edges $\pi = \{e_1, e_2, \ldots, e_m\}$ with $\mathbf{t}(e_1) = v$, $\mathbf{h}(e_m) = w$ and $\mathbf{t}(e_{i+1}) = \mathbf{h}(e_i)$ for $1 \leq i < m$. We write $v = \mathbf{t}(\pi)$, $w = \mathbf{h}(\pi)$. We also write v > w if there is a path from v to w. Define

$$P_{\pi}(t) = (1 - te_1)(1 - te_2) \cdots (1 - te_m) \in T(E)[t]/(t^{n+1})$$

and write

$$P_{\pi}(t) = \sum_{j=0}^{n} e(\pi, j) t^j.$$

Recall (from [GRSW]) that R denotes the ideal of T(E), the tensor algebra on E over the field F, generated by

$$\{e(\pi_1, k) - e(\pi_2, k) \mid \mathbf{t}(\pi_1) = \mathbf{t}(\pi_2), \ \mathbf{h}(\pi_1) = \mathbf{h}(\pi_2), \ 1 \le k \le l(\pi_1)\}.$$

Also, by Lemma 2.5 of [GRSW], R is actually generated by the smaller set

$$\{e(\pi_1, k) - e(\pi_2, k) \mid \mathbf{t}(\pi_1) = \mathbf{t}(\pi_2), \ \mathbf{h}(\pi_1) = \mathbf{h}(\pi_2) = *, \ 1 \leq k \leq l(\pi_1)\}.$$

Definition 1.1. $A(\Gamma) = T(E)/R$.

Note that $e(\pi, k) \in T(E)_k$. Thus $R = \sum_{j=1}^{\infty} R_j$ is a graded ideal in T(E). We write $\tilde{e}(\pi, k)$ for the image of $e(\pi, k)$ in $A(\Gamma)$.

In fact, $A(\Gamma)$ may also be expressed as a quotient of $T(V^+)$. To verify this we need a general result about quotients of the tensor algebra by graded ideals. Let W be a vector space over F and let $I = \sum_{j=1}^{\infty} I_j$ be a graded ideal in the tensor algebra T(W). Let ψ denote the canonical map from W to the quotient space W/I_1 and let $\langle I_1 \rangle$ denote the ideal in T(W) generated by I_1 . Then ψ induces a surjective homomorphism of graded algebras

$$\phi: T(W) \to T(W/I_1) \cong T(W)/\langle I_1 \rangle.$$

Consequently, by the Third Isomorphism Theorem, we have:

Proposition 1.2.

$$T(W)/I \cong T(W/I_1)/\phi(I),$$

where $\phi(I) = \sum_{j=2}^{\infty} \phi(I_j)$ is a graded ideal of $T(W/I_1)$.

We now apply this to the presentation of the algebra $A(\Gamma)$. Recall that for each vertex $v \in V^+$ there is a distinguished edge e_v with $\mathbf{t}(e_v) = v$. Recall further that for $v \in V^+$ we define $v^{(0)} = v$ and $v^{(i+1)} = \mathbf{h}(e_{v^{(i)}})$ for $0 \leq i < |v| - 1$ and that we set $e(v, 1) = e_{v^{(0)}} + e_{v^{(1)}} + \cdots + e_{v^{(|v|-1)}}$. Thus

$$e_v = e(v, 1) - e(v^{(1)}, 1) = e(\mathbf{t}(e_v), 1) - e(\mathbf{h}(e_v), 1).$$

Let $E' = \{e_v \mid v \in V^+\}$. Define $\tau : FE \to FE'$ by

$$\tau(f) = e(\mathbf{t}(f), 1) - e(\mathbf{h}(t), 1).$$

Then τ is a projection of *FE* onto *FE'* with kernel R_1 .

Now define $\eta: FE' \to FV^+$ by

$$\eta: e_v \mapsto v.$$

Then η is an isomorphism of vector spaces and $\eta \tau$ induces an isomorphism

$$\nu: FE/R_1 \to FV^+$$
.

As above, ν induces a surjective homomorphism of graded algebras

$$\theta: T(E) \to T(V^+).$$

Thus Proposition 1.2 gives:

Corollary 1.3. $A(\Gamma) \cong T(V^+)/\theta(R)$.

It is important to write generators for the ideal $\theta(R)$ explicitly. Since *R* is generated by R_1 together with the elements of the form $e(\pi_1, k) - e(\pi_2, k)$ it will be sufficient to write $\theta(e(\pi, k))$ explicitly. Let $\pi = \{e_1, e_2, \dots, e_m\}$ be a path, let $\mathbf{t}(e_i) = v_{i-1}$ for $1 \le i \le m$ and let $\mathbf{h}(e_m) = v_m$. Then

$$e(\pi,k) = (-1)^k \sum_{1 \leq i_1 < \cdots < i_k \leq m} e_{i_1} \cdots e_{i_k}.$$

Now $v(e_i) = e_{v_{i-1}} - e_{v_i}$ and so $\eta v(e_i) = v_{i-1} - v_i$. Since θ is induced by ηv we have:

Lemma 1.4.

$$\theta(e(\pi,k)) = (-1)^k \sum_{1 \leq i_1 < \dots < i_k \leq m} (v_{i_1-1} - v_{i_1}) \cdots (v_{i_k-1} - v_{i_k}).$$

2. A presentation of gr $A(\Gamma)$

Let $W = \sum_{k=0}^{\infty} W_k$ be a graded vector space. We begin by recalling some basic properties of T(W).

T(W) is bi-graded, that is, in addition to the usual grading (by degree in the tensor algebra), there is another grading induced by the grading of W. Thus

$$T(W) = \sum_{i=0}^{\infty} T(W)_{[i]}$$

where

$$T(W)_{[i]} = \operatorname{span}\{w_1 \cdots w_r \mid r \ge 0, w_i \in W_{[l_i]}, l_1 + \cdots + l_r = i\}.$$

This grading induces a filtration on T(W). Namely

$$T(W)_{i} = T(W)_{[i]} + T(W)_{[i-1]} + \dots + T(W)_{[0]}$$

= span{ $w_{1} \dots w_{r} \mid r \ge 0, w_{j} \in W_{[l_{j}]}, l_{1} + \dots + l_{r} \le i$ }.

Since $T(W)_i/T(W)_{i-1} \cong T(W)_{[i]}$ we may identify T(W) with its associated graded algebra. Define a map

$$\operatorname{gr}: T(W) \to T(W) = \operatorname{gr} T(W)$$

by

 $gr\!:\!\lambda\mapsto\lambda$

for $\lambda \in F.1$ and

$$\operatorname{gr}: u = \sum_{i=0}^{k} u_k \mapsto u_k,$$

where k > 0, $u_i \in T(W)_{[i]}$ and $u_k \neq 0$.

Lemma 2.1. Let W be a graded vector space and I be an ideal in T(W). Then

 $\operatorname{gr}(T(W)/I) \cong T(W)/(\operatorname{gr} I).$

Proof. We have

$$(\operatorname{gr} I)_{[k]} = T(W)_{[k]} \cap (T(W)_{k-1} + I).$$

Therefore

$$gr(T(W)/I)_{[k]} = (T(W)/I)_k/(T(W)/I)_{k-1}$$

= $((T(W)_k + I)/I)/((T(W)_{k-1} + I)/I)$
 $\cong (T(W)_k + I)/(T(W)_{k-1} + I)$
= $(T(W)_{[k]} + T(W)_{k-1} + I)/(T(W)_{k-1} + I)$
 $\cong T(W)_{[k]}/(T(W)_{[k]} \cap (T(W)_{k-1} + I))$
= $T(W)_{[k]}/(grI)_{[k]}$.

The decomposition of V into layers induces a grading of the vector space FV^+ . Thus the tensor algebra $T(V^+)$ is graded and filtered as above. The following lemma shows that this filtration on $T(V^+)$ agrees with that induced by the filtration on T(E).

Lemma 2.2. For all $i \ge 0$, $T(V^+)_i = \theta(T(E)_i)$.

Proof. This holds for i = 0 since $T(V^+)_0 = T(E)_0 = F$. Furthermore, $T(E)_1$ is spanned by 1 and $\{f \mid f \in E_1\}$. For $f \in E_1$ we have $\tau(f) = e(\mathbf{t}(f), 1) - e(\mathbf{h}(f), 1)$, but $\mathbf{h}(f) = *$ and e(*, 1) = 0 so $\tau(f) = e(\mathbf{t}(f), 1)$. Hence $\eta \tau(f) = \mathbf{t}(f)$. Thus $T(V^+)_1 = \theta(T(E)_1)$.

Now assume $T(V^+)_{i-1} = \theta(T(E)_{i-1})$. Then $\theta(T(E)_i)$ is spanned by

$$\theta\left(\left\{e_{1}\cdots e_{r} \mid r \geq 0, |e_{1}| + \cdots + |e_{r}| \leq i\right\}\right)$$

= $\left\{\left(\mathbf{t}(e_{1}) - \mathbf{h}(e_{1})\right) \cdots \left(\mathbf{t}(e_{r}) - \mathbf{h}(e_{r})\right) \mid r \geq 0, |e_{1}| + \cdots + |e_{r}| \leq i\right\}.$

Let $u = (\mathbf{t}(e_1) - \mathbf{h}(e_1)) \cdots (\mathbf{t}(e_r) - \mathbf{h}(e_r))$. Then if $|e_1| + \cdots + |e_r| \leq i$ we have

$$u \equiv \mathbf{t}(e_1) \cdots \mathbf{t}(e_r) \mod T(V^+)_{i-1}.$$

The lemma then follows by induction. \Box

Corollary 2.3. $A(\Gamma) \cong T(V^+)/\theta(R)$ as filtered algebras.

If $u \in A(\Gamma)_i$, $u \notin A(\Gamma)_{i-1}$ we write |u| = i.

As before, let $\pi = \{e_1, e_2, \dots, e_m\}$ be a path and let $\mathbf{t}(e_i) = v_{i-1}$ for $1 \le i \le m$ and $\mathbf{h}(e_m) = v_m$. For $1 \le k \le m+1$ set

$$v(\pi,k)=v_0\cdots v_{k-1}.$$

Lemma 2.4. Let π_1, π_2 be paths with $\mathbf{t}(\pi_1) = \mathbf{t}(\pi_2)$ and let $1 \le k \le l(\pi_1)$. Then

$$v(\pi_1, k) - v(\pi_2, k) \in \operatorname{gr} \theta(R).$$

Proof. We may extend π_1, π_2 to paths μ_1, μ_2 such that $\mathbf{h}(\mu_1) = \mathbf{h}(\mu_2) = *$. Then $e(\mu_1, k) - e(\mu_2, k) \in R$. The result now follows from Lemma 1.4. \Box

Let $R_{\rm gr}$ denote the ideal generated by

$$\{v(\pi_1, k) - v(\pi_2, k) \mid \mathbf{t}(\pi_1) = \mathbf{t}(\pi_2), 2 \leq k \leq l(\pi_1)\}.$$

Proposition 2.5. gr $A(\Gamma) \cong T(V^+)/R_{gr}$.

Proof. We begin by recalling the description of a basis for gr $A(\Gamma)$.

We say that a pair (v, k), $v \in V$, $0 \le k \le |v|$ can be *composed* with the pair (u, l), $u \in V$, $0 \le l \le |u|$, if v > u and |u| = |v| - k. If (v, k) can be composed with (u, l) we write $(v, k) \models (u, l)$. Let **B**₁(Γ) be the set of all sequences

$$\mathbf{b} = ((b_1, m_1), (b_2, m_2), \dots, (b_k, m_k)),$$

where $k \ge 0, b_1, b_2, \dots, b_k \in V, 0 \le m_i \le |b_i|$ for $1 \le i \le k$. Let

$$\mathbf{B}(\Gamma) = \{ \mathbf{b} = ((b_1, m_1), (b_2, m_2), \dots, (b_k, m_k)) \in \mathbf{B}_1(\Gamma) \\ | (b_i, m_i) \not\models (b_{i+1}, m_{i+1}), \ 1 \le i < k \}.$$

For

$$\mathbf{b} = ((b_1, m_1), (b_2, m_2), \dots, (b_k, m_k)) \in \mathbf{B}_1(\Gamma)$$

set

$$\tilde{e}(\mathbf{b}) = \tilde{e}(b_1, m_1) \cdots \tilde{e}(b_k, m_k).$$

Clearly $\{\tilde{e}(\mathbf{b}) | \mathbf{b} \in \mathbf{B}_1(\Gamma)\}$ spans $A(\Gamma)$. Writing $\bar{e}(\mathbf{b}) = \tilde{e}(\mathbf{b}) + A(\Gamma)_{i-1} \in \operatorname{gr} A(\Gamma)$ where $|\tilde{e}(\mathbf{b})| = i$, Corollary 4.4 of [GRSW] shows that $\{\bar{e}(\mathbf{b}) | \mathbf{b} \in \mathbf{B}(\Gamma)\}$ is a basis for $\operatorname{gr} A(\Gamma)$. Let

$$: T(V^+) \to T(V^+)/R_{\rm gr}$$

denote the canonical mapping. Write $\check{e}(b, m)$ for the image of e(b, m) and $\check{e}(\mathbf{b})$ for the image of $e(\mathbf{b})$.

By Lemma 2.1 and Corollary 1.3, we have $\operatorname{gr} A(\Gamma) \cong T(V^+)/(\operatorname{gr} \theta(R))$. Since $R_{\operatorname{gr}} \subseteq \operatorname{gr} \theta(R)$ (by Lemma 2.4) the canonical map

$$T(V^+) \to T(V^+)/(\operatorname{gr} \theta(R))$$

induces a homomorphism

$$\alpha: T(V^+)/R_{\rm gr} \to \operatorname{gr} A(\Gamma).$$

Clearly

$$\alpha : \check{e}(\mathbf{b}) \mapsto \bar{e}(\mathbf{b}).$$

Also, since $\{\bar{e}(\mathbf{b}) \mid \mathbf{b} \in \mathbf{B}(\Gamma)\}$ is a basis for gr $A(\Gamma)$, there is a linear map

 β : gr $A(\Gamma) \to T(V^+)/R_{\rm gr}$

defined by

$$\beta : \bar{e}(\mathbf{b}) \mapsto \check{e}(\mathbf{b}).$$

As α and β are inverse mappings, the proof is complete. \Box

3. The quadratic algebra $A(\Gamma)$

We will now see that, for certain graphs Γ , R is generated by $R_1 + R_2$.

Definition 3.1. Let Γ be a layered graph and $v \in V_j$, $j \ge 2$. For $1 \le i \le j$ define $S_i(v) = \{w \in V_{j-i} \mid v > w\}$.

Definition 3.2. For $v \in V_j$, $j \ge 2$, let \sim_v denote the equivalence relation on $S_1(v)$ generated by $u \sim_v w$ if $S_1(u) \cap S_1(w) \neq \emptyset$.

Definition 3.3. The layered graph V is said to be *uniform* if, for every $v \in V_j$, $j \ge 2$, all elements of $S_1(v)$ are equivalent under \sim_v .

Lemma 3.4. Let Γ be a uniform layered graph. Then R is generated by $R_1 + R_2$, in fact, R is generated by $R_1 \cup \{e(\tau_1, 2) - e(\tau_2, 2) \mid \mathbf{t}(\tau_1) = \mathbf{t}(\tau_2), \ \mathbf{h}(\tau_1) = \mathbf{h}(\tau_2), \ |\tau_1| = 2\}.$

Proof. Let *S* denote the ideal of *T*(*E*) generated by $R_1 \cup \{e(\tau_1, 2) - e(\tau_2, 2) \mid \mathbf{t}(\tau_1) = \mathbf{t}(\tau_2), \ \mathbf{h}(\tau_1) = \mathbf{h}(\tau_2), \ |\tau_1| = 2\}.$

We must show that if π_1, π_2 are paths in Γ with $\mathbf{t}(\pi_1) = \mathbf{t}(\pi_2)$, and $\mathbf{h}(\pi_1) = \mathbf{h}(\pi_2) = *$, then $P_{\pi_1}(t) - P_{\pi_2}(t) \in S[t]$, or, equivalently, $P_{\pi_1}(t) \in (1 + S[t])P_{\pi_2}(t)$. This is clear if $l(\pi_1) \leq 2$. We will proceed by induction on $l(\pi_1)$. Thus we will assume that $k \geq 3$, that $l(\pi_1) = k$, and that whenever μ_1, μ_2 are paths in Γ with $\mathbf{t}(\mu_1) = \mathbf{t}(\mu_2)$, and $\mathbf{h}(\mu_1) = \mathbf{h}(\mu_2) = *$, and $l(\mu_1) < k$, then $P_{\mu_1}(t) - P_{\mu_2}(t) \in S[t]$.

Write $\pi_1 = (e_1, e_2, \dots, e_k)$, $\pi_2 = (f_1, f_2, \dots, f_k)$. We first consider the special case in which $\mathbf{h}(e_1) > \mathbf{h}(f_2)$ (and so there is an edge, say g, with $\mathbf{t}(g) = \mathbf{h}(e_1)$, $\mathbf{h}(g) = \mathbf{h}(f_2)$). Consequently, $P_{(e_1,g)}(t) \in (1 + S[t])P_{(f_1,f_2)}(t)$. Write $\pi_1 = (e_1, e_2)v_1$ and $\pi_2 = (f_1, f_2)v_2$. Then

$$P_{\pi_1}(t) = (1 - te_1)(1 - te_2)P_{\nu_1}(t)$$

and

$$P_{\pi_2}(t) = (1 - tf_1)(1 - tf_2)P_{\nu_2}(t)$$

so

$$P_{\pi_2}(t) = (1 - tf_1)(1 - tf_2) \left((1 - tg)^{-1}(1 - te_1)^{-1}(1 - te_1)(1 - tg) \right) P_{\nu_2}(t)$$

 $\times P_{\nu_1}(t)^{-1} \left((1 - te_2)^{-1}(1 - te_1)^{-1} P_{\pi_1}(t) \right).$

Let $\mu_1 = e_2 \nu_1$ and $\mu_2 = g \nu_2$. Then, by the induction assumption,

$$(1-tg)P_{\nu_2}(t)P_{\nu_1}(t)^{-1}(1-te_2)^{-1} = P_{\mu_2}(t)P_{\mu_1}(t)^{-1} \in 1+S[t].$$

Consequently,

$$(1 - te_1)(1 - tg)P_{\nu_2}(t)P_{\nu_1}(t)^{-1}(1 - te_2)^{-1}(1 - te_1)^{-1}$$

$$\in (1 - te_1)(1 + S[t])(1 - te_1)^{-1}$$

$$= 1 + S[t]$$

and so we have

$$P_{\pi_2}(t) \in (1 + S[t]) P_{\pi_1}(t).$$

In the general case, let $\mathbf{h}(e_1) = u$ and $\mathbf{h}(f_1) = w$. Then $u, w \in S_1(v)$ so, since Γ is uniform, there exist $a_1, \ldots, a_{l+1} \in S_1(v)$ with $a_1 = u, a_{l+1} = w$ and $b_1, \ldots, b_l \in V$ with $b_i \in S_1(a_i) \cap S_1(a_{i+1})$ for $1 \leq i \leq l$. For $1 \leq i \leq l$, let τ_i be a path from b_i to \ast . For $2 \leq i \leq l$ let $g_i \in E$ satisfy $\mathbf{t}(g_i) = \mathbf{t}(\pi_1), \mathbf{h}(g_i) = a_i$. For $1 \leq i \leq l$ let $r_i \in E$ satisfy $\mathbf{t}(r_i) = a_i$ and $\mathbf{h}(r_i) = b_i$ and let $s_i \in E$ satisfy $\mathbf{t}(s_i) = a_{i+1}, \mathbf{h}(s_i) = b_i$. Then the previously considered case shows that

$$P_{\pi_1}(t) \in (1 + S[t]) P_{g_2 s_1 \tau_1}(t);$$

$$P_{g_i s_{i-1} \tau_{i-1}}(t) \in (1 + S[t]) P_{g_{i+1} s_i \tau_i}(t)$$

for $2 \leq i \leq l - 1$;

$$P_{g_l s_{l-1} \tau_{l-1}}(t) \in \left(1 + S[t]\right) P_{f_1 s_l \tau_l}(t);$$

and

$$P_{f_1s_l\tau_l}(t) \in \left(1 + S[t]\right)P_{\pi_2}(t),$$

proving the lemma. \Box

Now assume that Γ is a uniform layered graph. Then R is generated by $R_1 + R_2$, in fact, R is generated by $R_1 \cup \mathcal{R}_2$ where $\mathcal{R}_2 = \{e(\tau_1, 2) - e(\tau_2, 2) \mid \mathbf{t}(\tau_1) = \mathbf{t}(\tau_2), \mathbf{h}(\tau_1) = \mathbf{h}(\tau_2), |\tau_1| = 2\}$. Set $R_V = \langle \theta(\mathcal{R}_2) \rangle$.

Proposition 3.5. Let Γ be a uniform layered graph. Then $A(\Gamma) \cong T(V^+)/R_V$ is a quadratic algebra and R_V is generated by

$$\left\{ v(u-w) - u^2 + w^2 + (u-w)x \ \middle| \ v \in \bigcup_{i=2}^n V_i, \ u, w \in S_1(v), \ x \in S_1(u) \cap S_1(w) \right\}.$$

Proof. By Lemma 3.4, R_V is generated by

$$\theta \{ e(\tau_1, 2) - e(\tau_2, 2) \mid \mathbf{t}(\tau_1) = \mathbf{t}(\tau_2), \ \mathbf{h}(\tau_1) = \mathbf{h}(\tau_2), \ |\tau_1| = 2 \}.$$

Let $\tau_1 = (e, f), \tau_2 = (e', f'), \mathbf{t}(e) = \mathbf{t}(e') = v, \mathbf{h}(e) = u, \mathbf{h}(e') = w, \mathbf{h}(f) = \mathbf{h}(f') = x$. Then

$$\theta(e(\tau_1, 2) - e(\tau_2, 2)) = (v - u)(u - x) - (v - w)(w - x)$$
$$= v(u - w) - u^2 + w^2 + (u - w)x. \quad \Box$$

Combining this proposition with the results of the previous section we obtain the following presentation for gr $A(\Gamma)$.

Proposition 3.6. Let Γ be a uniform layered graph. Then $\operatorname{gr} A(\Gamma) \cong T(V^+)/R_{\operatorname{gr}}$ is a quadratic algebra and R_{gr} is generated by

$$\left\{ v(u-w) \mid v \in \bigcup_{i=2}^{n} V_{i}, \ u, w \in \mathcal{S}_{1}(v), \ \mathcal{S}_{1}(u) \cap \mathcal{S}_{1}(w) \neq \emptyset \right\}.$$

4. gr $A(\Gamma)$ is a Koszul algebra

If W is a graded subspace of V^2 we write

$$W^{(k)} = \bigcap_{i=0}^{k-2} V^{i} W V^{k-i-2}$$

so that

$$(\operatorname{gr} W)^{(k)} = \bigcap_{i=0}^{k-2} V^i (\operatorname{gr} W) V^{k-i-2}.$$

Then, by Proposition 3.6,

$$(\operatorname{gr} R_{\operatorname{gr}})^{(k)} \subset \operatorname{span} \{ v(\pi, k) \mid \pi \text{ is a path, } l(\pi) \ge k \}$$

To simplify notation, we will write **V** for V^+ and **R** for R_{gr} . Note that if π is a path with $l(\pi) \ge k$ and $v(\pi, k) = v_0 v_1 \cdots v_{k-1}$ then $|v_{k-1}| = |v_k| + 1 \ge 1$. Thus $v(\pi, k) \in \mathbf{V}^k$.

Definition 4.1.

$$\operatorname{Path}_{k} = \operatorname{span}\left\{v(\pi, k) \mid \pi \text{ is a path, } l(\pi) \ge k\right\}$$

and

$$\operatorname{Path}_k(v) = v \mathbf{V}^{k-1} \cap \operatorname{Path}_k$$

Let $f: \mathbf{V} \to F$ be defined by f(v) = 1 for all $v \in \mathbf{V}$ and I^l denote $I \otimes \cdots \otimes I$, taken l times. Let $g_l: \mathbf{V}^l \to \mathbf{V}^{l-1}$ be defined by $g_l = f \otimes I^{l-1}$.

For any vertex $v \in \mathbf{V}$ and any $l \ge 0$ define

$$S_l(v) = \text{span}\{u \mid v > u, \ |u| = |v| - l\}$$

and

$$P_l(v) = \operatorname{span} \{ u - w \mid v > u, v > w, |u| = |w| = |v| - l \}.$$

Note that $P_l(v) = S_l(v) = (0)$ if l > |v|, that $S_0(v) = \text{span}\{v\}$, and that $P_0(v) = (0)$. Note also that $P_l(v) = \text{ker } f|_{S_l(v)}$ and therefore

$$P_l(v)\mathbf{V}^m = \ker g_{m+1}|_{S_l(v)\mathbf{V}^m}$$

for all $l, m \ge 0$. Combining this with Proposition 3.6, we have

$$\operatorname{gr} \mathbf{R}_2 = \operatorname{span} \left\{ v(u-w) \mid u, w \in \mathcal{S}_1(v), \ v \in \mathbf{V} \right\} = \sum_{v \in \mathbf{V}} v P_1(v).$$

Lemma 4.2. For $k \ge 2$,

$$\mathbf{R}^{(k)} = \operatorname{Path}_k \cap \bigcap_{i=0}^{k-2} \ker (I^{i+1} \otimes f \otimes I^{k-i-2}).$$

Proof. Since

$$\mathbf{R}^{(k)} = \bigcap_{i=0}^{k-2} \mathbf{V}^i \mathbf{R} \mathbf{V}^{k-i-2}$$

we have

$$\mathbf{R}^{(k)\perp} = \sum_{i=0}^{k-2} \mathbf{V}^{*i} \mathbf{R}^{\perp} \mathbf{V}^{*k-i-2}.$$

We also have that

$$\mathbf{R}^{\perp} = \operatorname{span}\left\{\left\{v^{*}u^{*} \mid |u| \neq |v| - 1 \text{ or } v \neq u\right\} \cup \left\{v^{*}f \mid v \in \mathbf{V}\right\}\right\}$$
$$= \operatorname{span}\left\{v^{*}u^{*} \mid |u| \neq |v| - 1 \text{ or } v \neq u\right\} + \mathbf{V}^{*}f.$$

Let

$$M = \operatorname{span} \{ v^* u^* \mid |u| \neq |v| - 1 \text{ or } v \neq u \}.$$

Then

$$\mathbf{R}^{(k)\perp} = \sum_{i=0}^{k-2} \left\{ \mathbf{V}^{*i} M \mathbf{V}^{*k-i-2} + \mathbf{V}^{*i+1} f \mathbf{V}^{*k-i-2} \right\}$$
$$= \sum_{i=0}^{k-2} \mathbf{V}^{*i} M \mathbf{V}^{*k-i-2} + \sum_{i=0}^{k-2} \mathbf{V}^{*i+1} f \mathbf{V}^{*k-i-2}$$
$$= \left(\left(\left(\sum_{i=0}^{k-2} \mathbf{V}^{*i} M \mathbf{V}^{*k-i-2} \right)^{\perp} \cap \left(\sum_{i=0}^{k-2} \mathbf{V}^{*i+1} f \mathbf{V}^{*k-i-2} \right)^{\perp} \right)^{\perp}.$$

So

$$\mathbf{R}^{(k)} = \left(\sum_{i=0}^{k-2} \mathbf{V}^{*i} M \mathbf{V}^{*k-i-2}\right)^{\perp} \cap \left(\sum_{i=0}^{k-2} \mathbf{V}^{*i+1} f \mathbf{V}^{*k-i-2}\right)^{\perp}.$$

Now

$$\left(\sum_{i=0}^{k-2} \mathbf{V}^{*i} M \mathbf{V}^{*k-i-2}\right)^{\perp} = \bigcap_{i=0}^{k-2} \mathbf{V}^{i} M^{\perp} \mathbf{V}^{k-i-2} = \operatorname{Path}_{k}$$

and

$$\left(\sum_{i=0}^{k-2} \mathbf{V}^{*i} f \mathbf{V}^{*k-i-2}\right)^{\perp} = \bigcap_{i=0}^{k-2} \mathbf{V}^{i+1} \langle f \rangle^{\perp} \mathbf{V}^{k-i-2} = \bigcap_{i=0}^{k-2} \mathbf{V}^{i+1} (\ker f) \mathbf{V}^{k-i-2}$$
$$= \bigcap_{i=0}^{k-2} \ker \left(I^{i+1} \otimes f \otimes I^{k-i-2}\right),$$

giving the result. \Box

We will need the following result, whose proof is straightforward.

Lemma 4.3. Let W_1 and W_2 be *F*-vector spaces, $h: W_1 \to W_2$ a linear transformation, $A \subseteq W_1$, $C \subseteq W_2$, subspaces, and $B = h^{-1}(C)$. Then

$$h(A) \cap h(B) = h(A \cap B).$$

Lemma 4.4. If $l \ge 0$, $j \ge 1$, and $v \in \bigcup_{j=2}^{n} V_j$, then

$$P_{j}(v)\mathbf{V}^{l+1} \cap \mathbf{R}^{(l+2)} = g_{l+3}(S_{j-1}(v)\mathbf{V}^{l+2} \cap \mathbf{R}^{(l+3)}).$$

Proof. Note that

$$(f \otimes I) (S_{j-1}(v) \mathbf{V} \cap \mathbf{R}) \subseteq P_j(v)$$

and

$$(f \otimes I^{l+2})(\mathbf{VR}^{(l+2)}) \subseteq \mathbf{R}^{(l+2)}.$$

Consequently,

$$g_{l+3}\left(S_{j-1}(v)\mathbf{V}^{l+2}\cap\mathbf{R}^{(l+3)}\right)\subseteq P_j(v)\mathbf{V}^{l+1}\cap\mathbf{R}^{(l+2)}.$$

To prove the reversed inclusion we note that by Lemma 4.2,

$$P_j(v)\mathbf{V}^{l+1} \cap \mathbf{R}^{(l+2)} = P_j(v)\mathbf{V}^{l+1} \cap \operatorname{Path}_{l+2} \cap \left(\bigcap_{i=0}^l \ker(I^{i+1} \otimes f \otimes I^{l-i})\right)$$

and

V. Retakh et al. / Journal of Algebra 304 (2006) 1114-1129

$$g_{l+3}(S_{j-1}(v)\mathbf{V}^{l+2} \cap \mathbf{R}^{(l+3)})$$

= $g_{l+3}\left(S_{j-1}(v)\mathbf{V}^{l+2} \cap \operatorname{Path}_{l+3} \cap \left(\bigcap_{i=0}^{l+1} \ker(I^{i+1} \otimes f \otimes I^{l+1-i})\right)\right).$

Let $g = g_{l+4} \cdots g_{l+j+2}$. Then for any subspace $W \subseteq \mathbf{V}^{l+2}$ we have

$$g^{-1}(W) = \mathbf{V}^{j-1}W$$

and

$$(g_{l+3}g)^{-1}(W) = \mathbf{V}^j W.$$

Then

$$P_{j}(v)\mathbf{V}^{l+1} \cap \operatorname{Path}_{l+2} \cap \left(\bigcap_{i=0}^{l} \ker(I^{i+1} \otimes f \otimes I^{l-i}) \right)$$

= $(g_{l+3}g)(\operatorname{Path}_{j+1}(v)\mathbf{V}^{l+1}) \cap (g_{l+3}g)(\mathbf{V}^{j}(\ker(f \otimes I^{l+1})))$
 $\cap (g_{l+3}g)(\mathbf{V}^{j}\operatorname{Path}_{l+2}) \cap \left(\bigcap_{i=0}^{l} \mathbf{V}^{j}(\ker(I^{i+1} \otimes f \otimes I^{l-i})) \right)$
= $(g_{l+3}g)\left(\operatorname{Path}_{j+1}(v)\mathbf{V}^{l+1} \cap \mathbf{V}^{j}\operatorname{Path}_{l+2} \cap \left(\bigcap_{i=0}^{l+1} \mathbf{V}^{j}(\ker(I^{i} \otimes f \otimes I^{l+1-i})) \right) \right)$
= $(g_{l+3}g)\left(\operatorname{Path}_{j+l+2}(v) \cap \left(\bigcap_{i=0}^{l+1} \mathbf{V}^{j}(\ker(I^{i} \otimes f \otimes I^{l+1-i})) \right) \right) \right).$

Similarly,

$$g_{l+3}\left(S_{j-1}(v)\mathbf{V}^{l+2} \cap \operatorname{Path}_{l+3} \cap \left(\bigcap_{i=0}^{l+1} \ker(I^{i+1} \otimes f \otimes I^{l+1-i})\right)\right)$$

$$= g_{l+3}\left(g\left(\operatorname{Path}_{j}(v)\mathbf{V}^{l+2}\right) \cap g\left(\mathbf{V}^{j-1}\operatorname{Path}_{l+3}\right)\right)$$

$$\cap \left(\bigcap_{i=0}^{l+1} g\left(\mathbf{V}^{j-1}\left(\ker(I^{i+1} \otimes f \otimes I^{l+1-i})\right)\right)\right)$$

$$= (g_{l+3}g)\left(\operatorname{Path}_{j}(v)\mathbf{V}^{l+2} \cap \mathbf{V}^{j-1}\operatorname{Path}_{l+3} \cap \left(\bigcap_{i=0}^{l+1} \mathbf{V}^{j-1}\left(\ker(I^{i+1} \otimes f \otimes I^{l+1-i})\right)\right)\right)$$

$$= (g_{l+3}g) \left(\operatorname{Path}_{j+l+2}(v) \cap \left(\bigcap_{i=0}^{l+1} \mathbf{V}^j \left(\ker \left(I^i \otimes f \otimes I^{l+1-i} \right) \right) \right) \right)$$

proving the lemma. \Box

Lemma 4.5. Suppose $\{P_1(v)\mathbf{V}^k\} \cup \{\mathbf{V}^i\mathbf{R}\mathbf{V}^{k-i-1} \mid 0 \leq i \leq k-1\}$ is distributive for any $v \in \mathbf{V}$. Then $\{\mathbf{V}^i\mathbf{R}\mathbf{V}^{k-i} \mid 0 \leq i \leq k\}$ is distributive.

Proof. By [SW, Lemma 1.1] it is sufficient to prove that

$$\left\{ v \mathbf{V}^{k+1} \cap \mathbf{V}^i \mathbf{R} \mathbf{V}^{k-i} \mid 0 \leqslant i \leqslant k \right\}$$

is distributive for all $v \in \mathbf{V}$. Now g_{k+2} restricts to an isomorphism of $v\mathbf{V}^{k+1}$ onto \mathbf{V}^{k+1} . Since $g_{k+2}(v\mathbf{V}^{k+1} \cap \mathbf{R}\mathbf{V}^k) = P_1(v)\mathbf{V}^k$ and $g_{k+2}(v\mathbf{V}^{k+1} \cap \mathbf{V}^{i+1}\mathbf{R}\mathbf{V}^{k-i-1}) = \mathbf{V}^i\mathbf{R}\mathbf{V}^{k-i-1}$ for $0 \leq i \leq k-1$, the result follows. \Box

Theorem 4.6. Let Γ be a uniform layered graph with a unique minimal element. Then $\{\mathbf{V}^i \mathbf{R} \mathbf{V}^{k-1} \mid 0 \leq i \leq k\}$ generates a distributive lattice in $T(\mathbf{V})$. Consequently, gr $A(\Gamma)$ is a Koszul algebra.

In view of Lemma 4.5, this will follow from:

Lemma 4.7. $\{P_l(v)\mathbf{V}^k\} \cup \{\mathbf{V}^i \mathbf{R} \mathbf{V}^{k-i-1} \mid 0 \leq i \leq k-1\}$ is distributive for all $k \geq 1$ and all l > 0.

Proof. The proof is by induction on k, the result being trivial for k = 1. We assume $\{P_l(v)\mathbf{V}^m\} \cup \{\mathbf{V}^i \mathbf{R} \mathbf{V}^{m-i-1} \mid 0 \le i \le m-1\}$ is distributive for all m < k and all l > 0.

First note that any proper subset of $\{P_l(v)\mathbf{V}^k\} \cup \{\mathbf{V}^i\mathbf{R}\mathbf{V}^{k-i-1} \mid 0 \le i \le k-1\}$ is distributive. Indeed, by Lemma 4.5, $\{\mathbf{V}^i\mathbf{R}\mathbf{V}^{k-i-1} \mid 0 \le i \le k-1\}$ is distributive. Hence it is sufficient to show that $\{P_l(v)\mathbf{V}^k\} \cup \{\mathbf{V}^i\mathbf{R}\mathbf{V}^{k-i-1} \mid 0 \le i < j\} \cup \{\mathbf{V}^i\mathbf{R}\mathbf{V}^{k-i-1} \mid j < i \le k-1\}$ is distributive for all $j, 0 \le j \le k-1\}$. Now let $\mathcal{K}_{j,1} = \{P_l(v)\mathbf{V}^j\} \cup \{\mathbf{V}^i\mathbf{R}\mathbf{V}^{j-i-1} \mid 0 \le i \le j-1\}$ and $\mathcal{K}_{j,2} = \{\mathbf{V}^i\mathbf{R}\mathbf{V}^{k-j-2-i} \mid 0 \le i \le k-j-2\}$. Then $\mathcal{K}_{j,1}$ and $\mathcal{K}_{j,2}$ are distributive by the induction assumption. Since $\{P_l(v)\mathbf{V}^k\} \cup \{\mathbf{V}^i\mathbf{R}\mathbf{V}^{k-i-1} \mid 0 \le i < j\} \cup \{\mathbf{V}^i\mathbf{R}\mathbf{V}^{k-i-1} \mid j < i \le k-1\} = \mathcal{K}_{j,1}\mathbf{V}^{k-j} \cup \mathbf{V}^{j+1}\mathcal{K}_{j,2}$, the assertion follows.

In view of [SW, Theorem 1.2], it is therefore sufficient to prove that

$$(P_l(v)\mathbf{V}^k \cap \mathbf{R}\mathbf{V}^{k-1} \cap \dots \cap \mathbf{V}^i\mathbf{R}\mathbf{V}^{k-i-1}) \cap (\mathbf{V}^{i+1}\mathbf{R}\mathbf{V}^{k-i-2} + \dots + \mathbf{V}^{k-1}\mathbf{R})$$

= $(P_l(v)\mathbf{V}^k \cap \mathbf{R}\mathbf{V}^{k-1} \cap \dots \cap \mathbf{V}^{i+1}\mathbf{R}\mathbf{V}^{k-i-2})$
+ $(P_l(v)\mathbf{V}^k \cap \mathbf{R}\mathbf{V}^{k-1} \cap \dots \cap \mathbf{V}^i\mathbf{R}\mathbf{V}^{k-i-1} \cap (\mathbf{V}^{i+2}\mathbf{R}\mathbf{V}^{k-i-3} + \dots + \mathbf{V}^{k-1}\mathbf{R}))$

Now write

$$X_i = S_l(v) \mathbf{V}^k \cap \mathbf{R} \mathbf{V}^{k-1} \cap \dots \cap \mathbf{V}^i \mathbf{R} \mathbf{V}^{k-i-1},$$

$$Y_i = \mathbf{V}^{i+1} \mathbf{R} \mathbf{V}^{k-i-2},$$

and

$$Z_i = \mathbf{V}^{i+2} \mathbf{R} \mathbf{V}^{k-i-3} + \dots + \mathbf{V}^{k-1} \mathbf{R}.$$

Then we need to show that

$$\ker g_{k+1}|_{X_i \cap (Y_i + Z_i)} = \ker g_{k+1}|_{X_i \cap Y_i} + \ker g_{k+1}|_{X_i \cap Z_i}.$$

The right-hand side is contained in the left-hand side, so it is enough to prove equality of dimensions.

Hence it is enough to prove

$$\dim X_i \cap (Y_i + Z_i) - \dim g_{k+1} (X_i \cap (Y_i + Z_i))$$

=
$$\dim X_i \cap Y_i - \dim g_{k+1} (X_i \cap Y_i) + \dim X_i \cap Z_i - \dim g_{k+1} (X_i \cap Z_i)$$

$$- \dim X_i \cap Y_i \cap Z_i + \dim g_{k+1} (X_i \cap Y_i \cap Z_i).$$

Now, by the induction assumption and Lemma 4.5, $\{X_i, Y_i, Z_i\}$ is distributive. Therefore, the desired equality is equivalent to

$$\dim g_{k+1}(X_i \cap (Y_i + Z_i)) = \dim g_{k+1}(X_i \cap Y_i) + \dim g_{k+1}(X_i \cap Z_i)$$
$$- \dim g_{k+1}(X_i \cap Y_i \cap Z_i).$$

But, since $\{X_i, Y_i, Z_i\}$ is distributive,

$$g_{k+1}(X_i \cap (Y_i + Z_i)) = g_{k+1}(X_i \cap Y_i + X_i \cap Z_i) = g_{k+1}(X_i \cap Y_i) + g_{k+1}(X_i \cap Z_i).$$

Hence we need only show that

$$\dim g_{k+1}(X_i \cap Y_i) \cap g_{k+1}(X_i \cap Z_i) = \dim g_{k+1}(X_i \cap Y_i \cap Z_i).$$

Since

$$g_{k+1}(X_i \cap Y_i \cap Z_i) \subseteq g_{k+1}(X_i \cap Y_i) \cap g_{k+1}(X_i \cap Z_i)$$

this is equivalent to

$$g_{k+1}(X_i \cap Y_i) \cap g_{k+1}(X_i \cap Z_i) = g_{k+1}(X_i \cap Y_i \cap Z_i)$$

Now by Lemma 4.4, the left-hand side of this expression is equal to

$$P_{l+1}(v)\mathbf{V}^{k-1}\cap\mathbf{R}\mathbf{V}^{k-2}\cap\cdots\cap\mathbf{V}^{i}\mathbf{R}\mathbf{V}^{k-i-2}\cap\left(\mathbf{V}^{i+1}\mathbf{R}\mathbf{V}^{k-i-3}+\cdots+\mathbf{V}^{k-2}\mathbf{R}\right).$$

In view of the distributivity of $\{S_l(v)\mathbf{V}^k\} \cup \{\mathbf{V}^t \mathbf{R} \mathbf{V}^{k-t-1} \mid 0 \leq t \leq k-1\}$, which follows from [SW, Lemma 1.1] and the induction assumption, the right-hand side of the expression may be written as

$$g_{k+1}(S_l(v)\mathbf{V}^k \cap \mathbf{R}\mathbf{V}^{k-1} \cap \dots \cap \mathbf{V}^{i+2}\mathbf{R}\mathbf{V}^{k-i-3}) + g_{k+1}(S_l(v)\mathbf{V}^k \cap \mathbf{R}\mathbf{V}^{k-1} \cap \dots \cap \mathbf{V}^{i+1}\mathbf{R}\mathbf{V}^{k-i-2} \cap (\mathbf{V}^{i+3}\mathbf{R}\mathbf{V}^{k-i-4} + \dots + \mathbf{V}^{k-1}\mathbf{R})).$$

By Lemma 4.4, this is equal to

$$P_{l+1}(v)\mathbf{V}^{k-1} \cap \mathbf{R}\mathbf{V}^{k-2} \cap \cdots \cap \mathbf{V}^{i+1}\mathbf{R}\mathbf{V}^{k-i-3} + P_{l+1}(v)\mathbf{V}^{k-1} \cap \mathbf{R}\mathbf{V}^{k-2} \cap \cdots \cap \mathbf{V}^{i}\mathbf{R}\mathbf{V}^{k-i-2} \cap \left(\mathbf{V}^{i+2}\mathbf{R}\mathbf{V}^{k-i-4} + \cdots + \mathbf{V}^{k-2}\mathbf{R}\right).$$

By the induction assumption, these expressions for the left- and right-hand sides are equal, so the proof is complete. \Box

5. Koszulity of $A(\Gamma)$

We will need the following lemma which is a special case of a more general result [PP, Proposition 3.7.1].

Lemma 5.1. Let A be a filtered quadratic algebra. If gr A is quadratic and Koszul then A is Koszul.

Theorem 5.2. Let Γ be a uniform layered graph with a unique minimal element. Then $A(\Gamma)$ is a Koszul algebra.

Proof. This follows from Theorem 4.6 and Lemma 5.1. \Box

References

- [GGR] I. Gelfand, S. Gelfand, V. Retakh, Noncommutative algebras associated to complexes and graphs, Selecta Math. (N.S.) 7 (2001) 525–531.
- [GGRSW] I. Gelfand, S. Gelfand, V. Retakh, S. Serconek, R.L. Wilson, Hilbert series of quadratic algebras associated with decompositions of noncommutative polynomials, J. Algebra 254 (2002) 279–299.
- [GRSW] I. Gelfand, V. Retakh, S. Serconek, R.L. Wilson, On a class of algebras associated to directed graphs, Selecta Math. (N.S.) 11 (2005), math.QA/0506507.
- [GRW] I. Gelfand, V. Retakh, R.L. Wilson, Quadratic-linear algebras associated with decompositions of noncommutative polynomials and differential polynomials, Selecta Math. (N.S.) 7 (2001) 493–523.
- [Pi] D. Piontkovski, Algebras associated to pseudo-roots of noncommutative polynomials are Koszul, Internat. J. Algebra Comput. 15 (2005) 643–648.
- [PP] A. Polishchuk, L. Positselski, Quadratic Algebras, Amer. Math. Soc., Providence, RI, 2005.
- [SW] S. Serconek, R.L. Wilson, Quadratic algebras associated with decompositions of noncommutative polynomials are Koszul algebras, J. Algebra 278 (2004) 473–493.