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Abstract

In [I. Gelfand, V. Retakh, S. Serconek, R.L. Wilson, On a class of algebras associated to directed
graphs, Selecta Math. (N.S.) 11 (2005), math.QA/0506507] I. Gelfand and the authors of this paper
introduced a new class of algebras associated to directed graphs. In this paper we show that these
algebras are Koszul for a large class of layered graphs.
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0. Introduction

In [GRSW] I. Gelfand and the authors of this paper associated to any layered graph I”
an algebra A(I") and constructed a basis in A(I") when the graph is a layered graph with
a unique minimal vertex.
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The algebra A(I”) is a natural generalization of universal algebra Q, of pseudo-roots
of noncommutative polynomials introduced in [GRW]. In fact, A(I") is isomorphic to O
when I' is the hypercube of dimension 7, i.e. the graph of all subsets of a set with n
elements.

The algebras O, have a rich and interesting structure related to factorizations of poly-
nomials over noncommutative rings. On one hand, Q,, is a “big algebra” (in particular, it
contains free subalgebras on several generators and so has an exponential growth). On the
other hand, it is rather “tame”: it is a quadratic algebra, one can construct a linear basis in
0, [GRW], compute its Hilbert series [GGRSW], prove that Q, is Koszul [SW,Pi], and
construct interesting quotients of 9, [GGR].

Since the algebra A(I") is a natural generalization of Q, one would expect that for a
“natural” class of graphs the algebra A(I") is Koszul. In this paper we prove this assertion
when I' is a uniform layered graph; see Definition 3.3. The Hasse graph of ranked modular
lattices with a unique minimal element is an example of such a graph.

Compared to the proof given in [SW] for the algebra Q,,, our proof is much simpler,
and more geometric.

1. The algebra A(I') as a quotient of T (V™)

We begin by recalling (from [GRSW]) the definition of the algebra A(I"). Let I" =
(V, E) be a directed graph. That is, V is a set (of vertices), E is a set (of edges), and
t:E — Vand h: E — V are functions. (t(e) is the fail of e and h(e) is the head of e.)

We say that I" is layered if V = Ji_, Vi, E=J!_| Ei,t: E; > V;,h: E; — V;_;. Let
vit=UL Vi

We will assume throughout the remainder of the paper that I = (V, E) is a layered
graph with V = J7_, V;, that Vj = {%}, and that, for every v € VT, {ecE|tle) =v}#0.

If v, w € V, apath from v to w is a sequence of edges m = {e1, €2, ..., e} With t(e]) =
v, h(e;;) = w and t(e;+1) =h(e;) for 1 <i < m. We write v =t(), w = h(r). We also
write v > w if there is a path from v to w. Define

Pr(t) = (1 —te1)(1 = teg) -~ (1 — teg) € T(E)1]/ (")

and write

n

Pr()=) e(m. j)t'.

j=0

Recall (from [GRSW]) that R denotes the ideal of T (E), the tensor algebra on E over
the field F, generated by

{e(m1, k) — e(m2, k) | t(m1) = t(m2), h(m1) =h(m), 1 <k <I(m)}.
Also, by Lemma 2.5 of [GRSW], R is actually generated by the smaller set

{eGmr, k) — e(ma, k) | t(m1) = t(2), h(m1) =h(m) =, 1 <k <I(m1)}.
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Definition 1.1. A(I") =T (E)/R.

Note that e(r, k) € T(E)y. Thus R = Zjil R; is a graded ideal in T(E). We write
e(m, k) for the image of e(rr, k) in A(I").

In fact, A(I") may also be expressed as a quotient of 7'(V1). To verify this we need
a general result about quotients of the tensor algebra by graded ideals. Let W be a vector
space over F and let [ = Z;’i 1 I; be a graded ideal in the tensor algebra T(W). Let v
denote the canonical map from W to the quotient space W /I and let (/) denote the ideal
in T (W) generated by /;. Then v induces a surjective homomorphism of graded algebras

¢:T(W)—>TW/1)=TW)/{I).
Consequently, by the Third Isomorphism Theorem, we have:
Proposition 1.2.
TW)/T=TW/1)/¢),
where ¢ (1) = Z;"; ¢ (1}) is a graded ideal of T (W /11).

We now apply this to the presentation of the algebra A(I"). Recall that for each vertex
ve VT there is a distingujshed edge e, with t(e,) = v. Recall further that for v e V+
we define v@ = v and v0tD = h(e,i») for 0 <i < |v| — 1 and that we set e(v,1) =
e, +e,m + -+ e,qu-1n. Thus

ey =e(v, 1) —e(vW, 1) =e(tley), 1) — e(h(ey), 1).
Let E' ={e, |ve V*}. Define t: FE — FE' by
() = e(t(), 1) — e(h(@), 1).

Then 7 is a projection of FE onto FE’ with kernel R;.
Now define n: FE' — FV™ by

n:iey > v.
Then 7 is an isomorphism of vector spaces and 7t induces an isomorphism
v:FE/Ri — FV™,
As above, v induces a surjective homomorphism of graded algebras
0:T(E)—T(V?).

Thus Proposition 1.2 gives:
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Corollary 1.3. A(I") = T(VT)/6(R).

It is important to write generators for the ideal 6 (R) explicitly. Since R is generated by
R together with the elements of the form e (1, k) — e(m2, k) it will be sufficient to write
0 (e(m, k)) explicitly. Let m = {e1, e2, ..., ey} be a path, let t(e;) = v;_1 for 1 <i < m and
let h(e;;) = vy,. Then

emky=(=DF > e e

1<iy<<ig<m
Now v(e;) = ey, , — ey, and so nv(e;) = v;—1 — v;. Since 6 is induced by nv we have:
Lemma 1.4.

Ole(m. ) =(=D* > (i1 — i) W1 — Vi)

1<ij<<ig<m
2. A presentation of gr A(I')
Let W =) "7, Wy be a graded vector space. We begin by recalling some basic proper-
ties of T(W).

T (W) is bi-graded, that is, in addition to the usual grading (by degree in the tensor
algebra), there is another grading induced by the grading of W. Thus

o0
T(W)=Y T(W)
i=0
where
T(W)p=span{wy ---wy |r 20, wj € Wy, h +---+ 1, =i}.

This grading induces a filtration on 7 (W). Namely

TW);=TW)ij +TW)i—iy+---+T(W)g

=span{w; ---w, | r 20, wj € W1, h+---+1 <i}.

Since T(W);/ T (W);—1 = T (W)[;; we may identify 7 (W) with its associated graded al-
gebra. Define a map

gr:T(W) > T(W)=grT (W)
by

gril—= A
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for A € F.1 and

k

gr:u:Zuk = Ui,
i=0

where k > 0, u; € T(W)(;) and uy # 0.

Lemma 2.1. Let W be a graded vector space and I be an ideal in T(W). Then
gr(T(W)/I) =T (W)/(gr D).
Proof. We have
(gr Dy =T W) N (T (W)—1 + 1).

Therefore

gr(T(W)/I)[k] (Tw)/1),/(TW)/1),_,

(T W+ 1)/1)/ (T (W1 + 1) /1)
(TW)i+ 1)/ (T(W)p—1 + 1)

(TW) + T W1 + 1) /(T (W1 + 1)
=T W)y /(TW)pg 0 (T (W1 + 1))

=TW)/(gr Dy O

12

12

The decomposition of V into layers induces a grading of the vector space FV ™. Thus
the tensor algebra 7 (V™) is graded and filtered as above. The following lemma shows that
this filtration on T(V ) agrees with that induced by the filtration on T (E).

Lemma 2.2. Foralli >0, T(VT); =0(T(E);).

Proof. This holds for i =0 since T(V™)g = T (E)o = F. Furthermore, T (E); is spanned
by land {f | f € E1}. For f € E1 we have t(f) =e(t(f), 1) —e(h(f), 1), but h(f) =%
and e(x, 1) =0 so t(f) = e(t(f), 1). Hence nt(f) = t(f). Thus T(V*); =0(T(E)).
Now assume T(VT); _y =0(T(E);_1). Then (T (E);) is spanned by
O({er---e |r =0, ler| +-- +e-| <i})

={(tte) —h(e1)) - (tle,) —h(e,)) [r =0, ler|+ -+ e, <i}.
Let u = (t(e;) — h(e1)) - - - (t(e,) — h(e,)). Thenif |e1] + - - - + |e,| < i we have
u=ter)---tle,) modT(VF), .

The lemma then follows by induction. O
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Corollary 2.3. A(I') = T(VT)/6(R) as filtered algebras.
IfueA(N)i,u¢ A(I");—1 we write |u| =1.
As before, let m = {e1, e2,..., ey} be a path and let t(e;) = v;—; for 1 <i < m and
h(ey) =vy,.For 1 <k<m+1 set
v(m, k) =vg---vr_1.
Lemma 2.4. Let 71, mp be paths with t(m1) = t(m2) and let 1 <k <I(mwy). Then

v(my, k) —v(m, k) € gr(R).

Proof. We may extend 7y, to paths pi, up such that h(ui) = h(up) = *. Then
e(i1,k) —e(ua, k) € R. The result now follows from Lemma 1.4. O

Let Ry, denote the ideal generated by
{v(1, k) — V(2. k) | t(r1) = t(m2), 2 <k <I(m)}.
Proposition 2.5. gr A(I") = T(V")/Rgr.
Proof. We begin by recalling the description of a basis for gr A(I").

We say that a pair (v,k), v € V, 0 < k < |v| can be composed with the pair (u, 1),
ueV,0<I<ul,if v>u and |u| = |v| — k. If (v, k) can be composed with (u,[) we
write (v, k) = (u,1). Let By (I") be the set of all sequences

b= ((b1,m1), (b2, m2), ..., (bx,my)),
where k >0, b1, by, ...,bp € V,0<m; <|bj| for 1 <i <k.Let
B(I') = {b=((b1,m1), (b2, m3), ..., (b, my)) € By(I")
| (binmy) = (big1, miz1), 1 <i <k}.
For
b= ((b1,m1), (b2, m2), ..., (bx,my)) € Bi(I')
set
e(b) =e(by,my)---e(bg, mg).
Clearly {e(b) | b € B1(I")} spans A(I"). Writing e(b) = e(b) + A([")i—1 € grA(I")

where |e(b)| = i, Corollary 4.4 of [GRSW] shows that {e(b) | b € B(I")} is a basis for
er A(I).
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Let
CT(VH) > T(VF)/Rye
denote the canonical mapping. Write ¢(b, m) for the image of e(b, m) and ¢(b) for the
image of e(b).
By Lemma 2.1 and Corollary 1.3, we have gr A(I") = T(V1)/(gr6(R)). Since Rgr C
gré(R) (by Lemma 2.4) the canonical map
T(VY)—T(V")/(gré(R))
induces a homomorphism
o: T(V+)/Rgr — grA(I).
Clearly
a:ée(b) — e(b).
Also, since {e(b) | b e B(I")} is a basis for gr A(I"), there is a linear map
B:grA(I') = T (V') /Ry
defined by
B :e(b) > é(b).

As o and B are inverse mappings, the proof is complete. O

3. The quadratic algebra A(I')
We will now see that, for certain graphs I', R is generated by R; + R».

Definition 3.1. Let I" be a layered graph and v € V;, j > 2. For 1 <i < j define Si(v) =
fweV_ilv>w}

Definition 3.2. For v € V;, j > 2, let ~, denote the equivalence relation on S (v) gener-
ated by u ~, w if S1(u) NS (w) # 0.

Definition 3.3. The layered graph V is said to be uniform if, for every v € V;, j > 2, all
elements of Sy (v) are equivalent under ~,.

Lemma 3.4. Let I be a uniform layered graph. Then R is generated by R| + R», in fact,
R is generated by Ry U {e(t1,2) — e(12,2) | t(11) = t(12), h(71) =h(r2), |71 =2}



V. Retakh et al. / Journal of Algebra 304 (2006) 1114—1129 1121

Proof. Let S denote the ideal of T (E) generated by R; U {e(t1,2) — e(12,2) | t(t1) =
t(r2), h(r1) =h(rp), 11| =2}.

‘We must show that if 71, 75 are paths in I" with t(;r1) = t(m2), and h(ry) = h(m)) = *,
then Py (1) — Pr,(t) € S[t], or, equivalently, Py, (¢) € (1 4 S[t]) Py, (¢). This is clear if
I(m1) < 2. We will proceed by induction on /(;r1). Thus we will assume that £ > 3, that
l(m1) = k, and that whenever w1, wy are paths in I with t(u;) = t(uz), and h(ug) =
h(u2) =*, and (1) <k, then Py, (t) — Py, (t) € S[t].

Write w1 = (e1, €2, ..., ex), 12 = (f1, f2,--., fr). We first consider the special case
in which h(e;) > h(f>2) (and so there is an edge, say g, with t(g) = h(ey), h(g) =
h(f2)). Consequently, P, ¢)(t) € (1 + S[tD) Pf, 1) (t). Write 1 = (eq, e2)v and 73 =
(f1, f2)v2. Then

Pr, (1) = (1 —te)(1 — te2) Py, (1)
and
Pry(t) = (1 — tf1)(1 — 1£2) P, (1)
s0
Pry ()= (1 —tf))A —1f2)((1 — 1)~ (A —te)) ™' (1 — ter)(1 — 18)) P, (¢)

x Py ()" (1= te) ™ (1 —tey) ™' Pry (1)).

Let ;1 = epv; and 1y = gva. Then, by the induction assumption,
(1 —1g) Py, (1) Py, (1) ' (1 —ter) ™ = Py () Py (1) € 14 S[1].

Consequently,

(1 —te))(1 —1g) Py, (1) Py ()™ (1 —te2) "' (1 — te) ™!

e (1 —te)(1+S[t1)(1 —te)™!
=1+ S[¢]

and so we have
Py, (1) € (14 S[t]) Pr, (0).

In the general case, let h(e;) = u and h(f;) = w. Then u, w € S;(v) so, since I" is
uniform, there exist ay, ..., a;+1 € S1(v) with a; =u,a;41 = w and by, ..., b; € V with
b; € S1(a;) N S1(aj41) for 1 <i < 1. For 1 <i <1, let 7; be a path from b; to *. For
2<i <l let g € E satisty t(g;) =t(r1),h(g;) =a;. For 1 <i < let r; € E satisfy
t(r;) = a; and h(r;) = b; and let s; € E satisfy t(s;) = a;+1, h(s;) = b;. Then the previously
considered case shows that
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P7T1 (t) € (1 + S[l])szsl‘L’l (t)a
Pgisi—lfi—l () e (1 + S[t])PgiJrlSiTi (1)
for2<i<<i—1;
Pg]S[_|‘L’[_1 (t) € (l + S[t])Pflsl‘L’[(t);
and
Pfin (1) € (14 S[t1) Pry (1),
proving the lemma. O
Now assume that I" is a uniform layered graph. Then R is generated by R + R», in fact,
R is generated by R} U R» where Ry = {e(t1,2) — e(12,2) | t(t1) = t(12), h(11) =h(n),
IT1] =2}. Set Ry = (#(R2)).

Proposition 3.5. Let I be a uniform layered graph. Then A(I') = T(V*Y)/Ry is a
quadratic algebra and Ry is generated by

veUVi, u,weS ), xeSiw)NSi(w) ;.
=2

v(u—w)—u2+w2+(u—w)x

Proof. By Lemma 3.4, Ry is generated by
0{e(t1,2) —e(12,2) | t(11) = t(r2), h(r1) =h(r2), 11| =2}.

Let 1 = (e, ), o = (¢/, /), t(e) = t(e') = v, h(e) = u, h(¢') = w, h(f) =h(f’") = x.
Then

9(6(‘[1,2) — e(tz,Z)) =w—u)u—x)—@w—w)(w—1x)
=v(u—w)—u2+w2+(u—w)x. O

Combining this proposition with the results of the previous section we obtain the fol-
lowing presentation for gr A(I").

Proposition 3.6. Let I' be a uniform layered graph. Then gr A(I') = T(V1)/ Ry is a
quadratic algebra and Ry, is generated by

vel Vi u.weSiw), SiuynSi(w)#01.
i=2

{v(u —w)
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4. gr A(I') is a Koszul algebra

If W is a graded subspace of V2 we write

k—2
W(k) — ﬂ Vika—i—?.
i=0

so that
k=2 '
@W)® = Vigw)vi2
i=0
Then, by Proposition 3.6,
(gr Rg)™® C spanf{v(mr, k) | 7 is a path, [(7) > k}.

To simplify notation, we will write V for V* and R for Rg. Note that if 7 is a path
with [(;r) > k and v(7r, k) = vovy - - - vg—1 then |vg_1| = |vr| + 1 > 1. Thus v(m, k) € Vk.

Definition 4.1.
Pathy = span{v(, k) | 7 is a path, () >k}
and
Pathy (v) = vV¥~! N Pathy.

Let f:V — F be defined by f(v) =1 forall veVand I’ denote I ® --- ® I, taken [
times. Let g;: V! — V/~! be defined by g; = f @ I' L.

For any vertex v € V and any / > 0 define

Si(v) = span{u |v>u, lul=|v|— l}
and
P (v) :span{u —wl|v>u, v>w, |ul=|w|l=|v| —l}.

Note that P;(v) = S;(v) = (0) if I > |v], that Sp(v) = span{v}, and that Py(v) = (0).
Note also that P;(v) =ker f|s, () and therefore

Pi(v)V" =Kker gmy1ls,(0)vm
for all [, m > 0. Combining this with Proposition 3.6, we have

grRy = span{v(u —w)|u,weS (), ve V} = ZvPl(v).
veV
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Lemma 4.2. For k > 2,

k—2
R® = Pathy N () ker(I'"' @ f @ 17172).
i=0
Proof. Since
k—2
R® — m VIRVA—i—2
i=0
we have
k=2
R(k)L — Z V*i Rlv*k7i72'
i=0

We also have that

R = span{{v*u* | |u| # [v] — Lorv #u} U {v*f|veV}}
= span{v*u™ | |u| # [v| — Lorv# u} + V*f.

Let
M = span{v*u™ | |u| # |v| — L or v # u}.
Then
k—2 ' ' ' '
R(k)J_ — Z {V*l Mv*k—l—2 + V*l+1fv*k—l—2}
i=0
k=2 k=2
— Zv*l MV*k7i72 + Zv*i+1 fv*kfifz
i=0 i=0
<<k—2 L k=2 1y L
— Zv*in*k—i—2> N (Zv*i+lfv*k—i—2> ) .
i=0 i=0
So

k=2 L ) 1l
R® — (Zv*iMV*ki2> n <Zv*i+1fv*ki2> )

i=0 i=0
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Now

k=2 )
(Z A&l MV*k—l—Z) — m A MLVk—t—Z = Pathy
i=0 i=0

and

k—2 1 k=2 k=2
(Zv*ifv*k—i—2> — ﬂ Vi+1<f>lvk—i—2 — m V'.H(kerf)Vk_"_z

i=0 i=0 i=0
k—2 .
— ﬂker([l+l ® f ® Ik—i—Z)’
i=0

giving the result. O
We will need the following result, whose proof is straightforward.

Lemma 4.3. Let Wy and Wy be F-vector spaces, h: Wi — W, a linear transformation,
A C Wy, C C W,, subspaces, and B = h’l(C). Then

h(A)Nh(B)=h(ANB).
Lemmadd4.If1 >0, j>1,andv € U?‘:z V;, then
Pj(U)VI+1 AR+ — g143(Sj1 )V+2 0 R(l+3)).
Proof. Note that
(f®D(Sj—1(v)VNR) C P;(v)
and
(f ® 11+2) (VR(1+2)) C R(l+2),
Consequently,
9143 (Sj—l (v)Vl+2 n R(l+3)) cp; (v)Vl+1 ARHD.
To prove the reversed inclusion we note that by Lemma 4.2,
!
PV AR = p;(v)V!*! N Pathy 5 m(ﬂ ker(I'' @ f® 1""))
i=0

and
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142 1+3
g+3(Sj—1 (V' NRT ))

1+1
= gi43 (s.,_l(v)v”2 N Path; 3 ﬂ(ﬂker(1i+1 Rf® 11+1—f)>>.

i=0
Let g = g/4+4- - g1+ j+2- Then for any subspace W C V*2 we have
¢g'wy=vi-lw
and
(81+38)" W) =V/W.
Then

l
P;j(v)V*! N Path;4o N ( (Nker(I''® f & Il—i))
i=0

— (gr+38) (Path 1 V1) 01 (g0 (VI (ker(f @ 1'41)))

!
N (g1+38)(V/ Path;15) N (ﬂVj (ker(It' ® f ® Il‘i)))
i=0

141
= (81+38) (P%lthjﬂ(v)VlJrl nv/ Path,+2ﬂ<ﬂVj (ker(I'® f ® IHH))))
i=0

1+1
= (g1438) (Path‘j+l+2(v) N (ﬂvf(ker(l" ®f® 1”“)))).

i=0
Similarly,
I+1 - ‘
8143 (Sj—l (U)Vl+2 N Path; 3 ﬂ(ﬂ ker(11+1 Rf® Il+1—z)>>
i=0
= 8i+3 <g (Pathj (U)Vl+2) N g(Vj*l Path/43 )

n (lﬁl g(V  (ker(I'' @ f ® 1’“‘")))))

i=0

+1
= (21438) <Pathj )VIT2 N Vi~ Path; 3N ( AV  ker(I' @ f® 1’+‘i)))>
i=0
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I+1
= (g1438) (Pathj+l+2(v) N (ﬂV./ (ker([i Qf® ]l+l—i)))>’

i=0
proving the lemma. O

Lemma 4.5. SL'tppose'{Pl ()VEY U (VIRVF==1 | 0 < i < k — 1} is distributive for any
v e V. Then {VIRV¥— | 0 <i <k} is distributive.

Proof. By [SW, Lemma 1.1] it is sufficient to prove that
[oVFH N VIRVET 10 <i <k}

is distributive for all v € V. Now g4 restricts to an isomorphism of IkaJrl onto kal.
Since gr2(VVEH NRVF) = Py (v)VF and giin (VAT N VIHIRVA=I-T) = yiIRYF—i-]
for 0 <i <k — 1, the result follows. O

Theorem 4.6. Let I' be a uniform layered graph with a unique minimal element. Then
(VIRV*! | 0 <i < k) generates a distributive lattice in T (V). Consequently, gr A(I") is
a Koszul algebra.

In view of Lemma 4.5, this will follow from:

Lemma 4.7. { P;(v)V¥} U {VIRV¥—I=1 | 0 <i <k — 1} is distributive for all k > 1 and all
[ >0.

Proof. The proof is by induction on k, the result being trivial for k = 1. We assume
{P(v)V™}Y U {VIRV"~=1 | 0 <i <m — 1} is distributive for all m < k and all [ > 0.

First note that any proper subset of {P;(v)V¥} U {VIRVE=I—1 | 0 <i <k — 1} is dis-
tributive. Indeed, by Lemma 4.5, {Vi RVF—i-1 | 0 <i <k — 1} is distributive. Hence it is
sufficient to show that { P;(v) VA U{VIRV*~I—1 | 0 <i < jJU{VIRVF 1| j <i <k—1)
is distributive forall j,0< j <k —1}. Nowlet ;1 = {P,()VIJU{VIRV/==1 |0 <i <
j—1}and K;, ={VIRVF=/=271 |0 <i <k — j—2}. Then K; ; and K, > are distributive
by the induction assumption. Since (P (0)VFYU{VIRVF=i—1 |0 <i < jJU{VIRVF—i—1|
j<i<k—1}= Iijle_/ U V/“IC]-,z, the assertion follows.

In view of [SW, Theorem 1.2], it is therefore sufficient to prove that

(PVENRVF I A VIRV ) A (VIFIRVAT=2 4 VETIR)
= (P ()V*NRVF I n... A VITIRVA72)
+ (PVENRVE AL A VIRVAT ) (VITR2RVE 3 4 4 VETIRY).
Now write
Xi =S )VFNRVF I n...nVIRVE L
Y; = ViTIRV¥—i—2,
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and
Z; = VIRV L vEEIR,
Then we need to show that
ker git11x,n(vi+2) = ker gk lxiny, +Ker get1lx;nz; -

The right-hand side is contained in the left-hand side, so it is enough to prove equality

of dimensions.
Hence it is enough to prove

dim X; N (Y; + Z;) — dim g1 (X; N (Y; + Z)))
=dimX; NY; —dimgr1(X; NY;) +dim X; N Z; —dim gx1(X; N Z;)
—dimX; NY;NZ; +dimgr1(X; NY; N Z;).

Now, by the induction assumption and Lemma 4.5, {X;, ¥;, Z;} is distributive. There-
fore, the desired equality is equivalent to

dim gr41(Xi N (Y; + Z;)) = dim g1 (X; NY;) + dim g1 (X N Z;)
—dimgg 1 (X; NY; N Zy).

But, since {X;, Y;, Z;} is distributive,
8k+1(Xi N (Y + Z) = g1 (Xi N Y + Xi N Z3) = grey 1 (Xi N Y) + gea1 (X N Z)).
Hence we need only show that
dim g1 (X; NY) N gr1(X; NZy) =dim g1 (X; NY; N Z;).
Since
8k+1(Xi NYi N Zi) € g 1(Xi NYi) N g1 (Xi N Zy)
this is equivalent to
8k+1(Xi NY) N g1 (Xi N Z;) = gr1(Xi NYi N Z;)
Now by Lemma 4.4, the left-hand side of this expression is equal to
P VE I ARVE2 0L A VIRVET 2 0 (VIFIRVATI3 4o VAT2R),

In view of the distributivity of {Sl(v)Vk} U {V’RV"—’_1 | 0 <t <k — 1}, which follows
from [SW, Lemma 1.1] and the induction assumption, the right-hand side of the expression
may be written as
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8k+1 (Sz(v)V" ARV In...n Vi+2RVk7i73)
+ g1 (SI@VENRVETT N VIHIRVAI=2 0 (VIF3RVA—i=4 | VE-IR)),

By Lemma 4.4, this is equal to

P VE I ARVF 2 ... A VitIRYF—-3
+ P ()VE I ARVE2 0L A VIRVE 220 (VIF2RVE4 L L VE2R),

By the induction assumption, these expressions for the left- and right-hand sides are
equal, so the proof is complete. O

5. Koszulity of A(I")

We will need the following lemma which is a special case of a more general result [PP,
Proposition 3.7.1].

Lemma 5.1. Let A be a filtered quadratic algebra. If gr A is quadratic and Koszul then A
is Koszul.

Theorem 5.2. Let I' be a uniform layered graph with a unique minimal element. Then
A(I') is a Koszul algebra.

Proof. This follows from Theorem 4.6 and Lemma 5.1. O
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