On a class of Koszul algebras associated to directed graphs

Vladimir Retakh ${ }^{\text {a, }, 1}$, Shirlei Serconek ${ }^{\text {b }}$, Robert Lee Wilson ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA
${ }^{\mathrm{b}}$ IME-UFG CX Postal 131 Goiania, GO CEP 74001-970, Brazil

Received 10 August 2005
Available online 19 December 2005
Communicated by Efim Zelmanov

Abstract

In [I. Gelfand, V. Retakh, S. Serconek, R.L. Wilson, On a class of algebras associated to directed graphs, Selecta Math. (N.S.) 11 (2005), math.QA/0506507] I. Gelfand and the authors of this paper introduced a new class of algebras associated to directed graphs. In this paper we show that these algebras are Koszul for a large class of layered graphs. © 2005 Elsevier Inc. All rights reserved.

Keywords: Koszul algebras; Directed graphs

0. Introduction

In [GRSW] I. Gelfand and the authors of this paper associated to any layered graph Γ an algebra $A(\Gamma)$ and constructed a basis in $A(\Gamma)$ when the graph is a layered graph with a unique minimal vertex.

[^0]The algebra $A(\Gamma)$ is a natural generalization of universal algebra Q_{n} of pseudo-roots of noncommutative polynomials introduced in [GRW]. In fact, $A(\Gamma)$ is isomorphic to Q_{n} when Γ is the hypercube of dimension n, i.e. the graph of all subsets of a set with n elements.

The algebras Q_{n} have a rich and interesting structure related to factorizations of polynomials over noncommutative rings. On one hand, Q_{n} is a "big algebra" (in particular, it contains free subalgebras on several generators and so has an exponential growth). On the other hand, it is rather "tame": it is a quadratic algebra, one can construct a linear basis in Q_{n} [GRW], compute its Hilbert series [GGRSW], prove that Q_{n} is Koszul [SW,Pi], and construct interesting quotients of Q_{n} [GGR].

Since the algebra $A(\Gamma)$ is a natural generalization of Q_{n} one would expect that for a "natural" class of graphs the algebra $A(\Gamma)$ is Koszul. In this paper we prove this assertion when Γ is a uniform layered graph; see Definition 3.3. The Hasse graph of ranked modular lattices with a unique minimal element is an example of such a graph.

Compared to the proof given in [SW] for the algebra Q_{n}, our proof is much simpler, and more geometric.

1. The algebra $A(\Gamma)$ as a quotient of $T\left(V^{+}\right)$

We begin by recalling (from [GRSW]) the definition of the algebra $A(\Gamma)$. Let $\Gamma=$ (V, E) be a directed graph. That is, V is a set (of vertices), E is a set (of edges), and $\mathbf{t}: E \rightarrow V$ and $\mathbf{h}: E \rightarrow V$ are functions. ($\mathbf{t}(e)$ is the tail of e and $\mathbf{h}(e)$ is the head of e.)

We say that Γ is layered if $V=\bigcup_{i=0}^{n} V_{i}, E=\bigcup_{i=1}^{n} E_{i}, \mathbf{t}: E_{i} \rightarrow V_{i}, \mathbf{h}: E_{i} \rightarrow V_{i-1}$. Let $V^{+}=\bigcup_{i=1}^{n} V_{i}$.

We will assume throughout the remainder of the paper that $\Gamma=(V, E)$ is a layered graph with $V=\bigcup_{i=0}^{n} V_{i}$, that $V_{0}=\{*\}$, and that, for every $v \in V^{+},\{e \in E \mid \mathbf{t}(e)=v\} \neq \emptyset$.

If $v, w \in V$, a path from v to w is a sequence of edges $\pi=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ with $\mathbf{t}\left(e_{1}\right)=$ $v, \mathbf{h}\left(e_{m}\right)=w$ and $\mathbf{t}\left(e_{i+1}\right)=\mathbf{h}\left(e_{i}\right)$ for $1 \leqslant i<m$. We write $v=\mathfrak{t}(\pi), w=\mathbf{h}(\pi)$. We also write $v>w$ if there is a path from v to w. Define

$$
P_{\pi}(t)=\left(1-t e_{1}\right)\left(1-t e_{2}\right) \cdots\left(1-t e_{m}\right) \in T(E)[t] /\left(t^{n+1}\right)
$$

and write

$$
P_{\pi}(t)=\sum_{j=0}^{n} e(\pi, j) t^{j}
$$

Recall (from [GRSW]) that R denotes the ideal of $T(E)$, the tensor algebra on E over the field F, generated by

$$
\left\{e\left(\pi_{1}, k\right)-e\left(\pi_{2}, k\right) \mid \mathbf{t}\left(\pi_{1}\right)=\mathbf{t}\left(\pi_{2}\right), \mathbf{h}\left(\pi_{1}\right)=\mathbf{h}\left(\pi_{2}\right), 1 \leqslant k \leqslant l\left(\pi_{1}\right)\right\} .
$$

Also, by Lemma 2.5 of [GRSW], R is actually generated by the smaller set

$$
\left\{e\left(\pi_{1}, k\right)-e\left(\pi_{2}, k\right) \mid \mathbf{t}\left(\pi_{1}\right)=\mathbf{t}\left(\pi_{2}\right), \mathbf{h}\left(\pi_{1}\right)=\mathbf{h}\left(\pi_{2}\right)=*, 1 \leqslant k \leqslant l\left(\pi_{1}\right)\right\} .
$$

Definition 1.1. $A(\Gamma)=T(E) / R$.
Note that $e(\pi, k) \in T(E)_{k}$. Thus $R=\sum_{j=1}^{\infty} R_{j}$ is a graded ideal in $T(E)$. We write $\tilde{e}(\pi, k)$ for the image of $e(\pi, k)$ in $A(\Gamma)$.

In fact, $A(\Gamma)$ may also be expressed as a quotient of $T\left(V^{+}\right)$. To verify this we need a general result about quotients of the tensor algebra by graded ideals. Let W be a vector space over F and let $I=\sum_{j=1}^{\infty} I_{j}$ be a graded ideal in the tensor algebra $T(W)$. Let ψ denote the canonical map from W to the quotient space W / I_{1} and let $\left\langle I_{1}\right\rangle$ denote the ideal in $T(W)$ generated by I_{1}. Then ψ induces a surjective homomorphism of graded algebras

$$
\phi: T(W) \rightarrow T\left(W / I_{1}\right) \cong T(W) /\left\langle I_{1}\right\rangle
$$

Consequently, by the Third Isomorphism Theorem, we have:

Proposition 1.2.

$$
T(W) / I \cong T\left(W / I_{1}\right) / \phi(I)
$$

where $\phi(I)=\sum_{j=2}^{\infty} \phi\left(I_{j}\right)$ is a graded ideal of $T\left(W / I_{1}\right)$.
We now apply this to the presentation of the algebra $A(\Gamma)$. Recall that for each vertex $v \in V^{+}$there is a distinguished edge e_{v} with $\mathbf{t}\left(e_{v}\right)=v$. Recall further that for $v \in V^{+}$ we define $v^{(0)}=v$ and $v^{(i+1)}=\mathbf{h}\left(e_{v^{(i)}}\right)$ for $0 \leqslant i<|v|-1$ and that we set $e(v, 1)=$ $e_{v^{(0)}}+e_{v^{(1)}}+\cdots+e_{v^{(|v|-1)}}$. Thus

$$
e_{v}=e(v, 1)-e\left(v^{(1)}, 1\right)=e\left(\mathbf{t}\left(e_{v}\right), 1\right)-e\left(\mathbf{h}\left(e_{v}\right), 1\right)
$$

Let $E^{\prime}=\left\{e_{v} \mid v \in V^{+}\right\}$. Define $\tau: F E \rightarrow F E^{\prime}$ by

$$
\tau(f)=e(\mathbf{t}(f), 1)-e(\mathbf{h}(t), 1)
$$

Then τ is a projection of $F E$ onto $F E^{\prime}$ with kernel R_{1}.
Now define $\eta: F E^{\prime} \rightarrow F V^{+}$by

$$
\eta: e_{v} \mapsto v
$$

Then η is an isomorphism of vector spaces and $\eta \tau$ induces an isomorphism

$$
v: F E / R_{1} \rightarrow F V^{+}
$$

As above, ν induces a surjective homomorphism of graded algebras

$$
\theta: T(E) \rightarrow T\left(V^{+}\right)
$$

Thus Proposition 1.2 gives:

Corollary 1.3. $A(\Gamma) \cong T\left(V^{+}\right) / \theta(R)$.
It is important to write generators for the ideal $\theta(R)$ explicitly. Since R is generated by R_{1} together with the elements of the form $e\left(\pi_{1}, k\right)-e\left(\pi_{2}, k\right)$ it will be sufficient to write $\theta(e(\pi, k))$ explicitly. Let $\pi=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be a path, let $\mathbf{t}\left(e_{i}\right)=v_{i-1}$ for $1 \leqslant i \leqslant m$ and let $\mathbf{h}\left(e_{m}\right)=v_{m}$. Then

$$
e(\pi, k)=(-1)^{k} \sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant m} e_{i_{1}} \cdots e_{i_{k}} .
$$

Now $\nu\left(e_{i}\right)=e_{v_{i-1}}-e_{v_{i}}$ and so $\eta \nu\left(e_{i}\right)=v_{i-1}-v_{i}$. Since θ is induced by $\eta \nu$ we have:

Lemma 1.4.

$$
\theta(e(\pi, k))=(-1)^{k} \sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant m}\left(v_{i_{1}-1}-v_{i_{1}}\right) \cdots\left(v_{i_{k}-1}-v_{i_{k}}\right) .
$$

2. A presentation of $\operatorname{gr} \boldsymbol{A}(\Gamma)$

Let $W=\sum_{k=0}^{\infty} W_{k}$ be a graded vector space. We begin by recalling some basic properties of $T(W)$.
$T(W)$ is bi-graded, that is, in addition to the usual grading (by degree in the tensor algebra), there is another grading induced by the grading of W. Thus

$$
T(W)=\sum_{i=0}^{\infty} T(W)_{[i]}
$$

where

$$
T(W)_{[i]}=\operatorname{span}\left\{w_{1} \cdots w_{r} \mid r \geqslant 0, w_{j} \in W_{\left[l_{j}\right]}, l_{1}+\cdots+l_{r}=i\right\}
$$

This grading induces a filtration on $T(W)$. Namely

$$
\begin{aligned}
T(W)_{i} & =T(W)_{[i]}+T(W)_{[i-1]}+\cdots+T(W)_{[0]} \\
& =\operatorname{span}\left\{w_{1} \cdots w_{r} \mid r \geqslant 0, w_{j} \in W_{\left[l_{j}\right]}, l_{1}+\cdots+l_{r} \leqslant i\right\} .
\end{aligned}
$$

Since $T(W)_{i} / T(W)_{i-1} \cong T(W)_{[i]}$ we may identify $T(W)$ with its associated graded algebra. Define a map

$$
\operatorname{gr}: T(W) \rightarrow T(W)=\operatorname{gr} T(W)
$$

by

$$
\operatorname{gr}: \lambda \mapsto \lambda
$$

for $\lambda \in F .1$ and

$$
\operatorname{gr}: u=\sum_{i=0}^{k} u_{k} \mapsto u_{k}
$$

where $k>0, u_{i} \in T(W)_{[i]}$ and $u_{k} \neq 0$.
Lemma 2.1. Let W be a graded vector space and I be an ideal in $T(W)$. Then

$$
\operatorname{gr}(T(W) / I) \cong T(W) /(\operatorname{gr} I)
$$

Proof. We have

$$
(\operatorname{gr} I)_{[k]}=T(W)_{[k]} \cap\left(T(W)_{k-1}+I\right)
$$

Therefore

$$
\begin{aligned}
\operatorname{gr}(T(W) / I)_{[k]} & =(T(W) / I)_{k} /(T(W) / I)_{k-1} \\
& =\left(\left(T(W)_{k}+I\right) / I\right) /\left(\left(T(W)_{k-1}+I\right) / I\right) \\
& \cong\left(T(W)_{k}+I\right) /\left(T(W)_{k-1}+I\right) \\
& =\left(T(W)_{[k]}+T(W)_{k-1}+I\right) /\left(T(W)_{k-1}+I\right) \\
& \cong T(W)_{[k]} /\left(T(W)_{[k]} \cap\left(T(W)_{k-1}+I\right)\right) \\
& =T(W)_{[k]} /(\operatorname{gr} I)_{[k]} .
\end{aligned}
$$

The decomposition of V into layers induces a grading of the vector space $F V^{+}$. Thus the tensor algebra $T\left(V^{+}\right)$is graded and filtered as above. The following lemma shows that this filtration on $T\left(V^{+}\right)$agrees with that induced by the filtration on $T(E)$.

Lemma 2.2. For all $i \geqslant 0, T\left(V^{+}\right)_{i}=\theta\left(T(E)_{i}\right)$.
Proof. This holds for $i=0$ since $T\left(V^{+}\right)_{0}=T(E)_{0}=F$. Furthermore, $T(E)_{1}$ is spanned by 1 and $\left\{f \mid f \in E_{1}\right\}$. For $f \in E_{1}$ we have $\tau(f)=e(\mathbf{t}(f), 1)-e(\mathbf{h}(f), 1)$, but $\mathbf{h}(f)=*$ and $e(*, 1)=0$ so $\tau(f)=e(\mathbf{t}(f), 1)$. Hence $\eta \tau(f)=\mathbf{t}(f)$. Thus $T\left(V^{+}\right)_{1}=\theta\left(T(E)_{1}\right)$.

Now assume $T\left(V^{+}\right)_{i-1}=\theta\left(T(E)_{i-1}\right)$. Then $\theta\left(T(E)_{i}\right)$ is spanned by

$$
\begin{aligned}
& \theta\left(\left\{e_{1} \cdots e_{r}\left|r \geqslant 0,\left|e_{1}\right|+\cdots+\left|e_{r}\right| \leqslant i\right\}\right)\right. \\
& \quad=\left\{\left(\mathbf{t}\left(e_{1}\right)-\mathbf{h}\left(e_{1}\right)\right) \cdots\left(\mathbf{t}\left(e_{r}\right)-\mathbf{h}\left(e_{r}\right)\right)\left|r \geqslant 0,\left|e_{1}\right|+\cdots+\left|e_{r}\right| \leqslant i\right\}\right.
\end{aligned}
$$

Let $u=\left(\mathbf{t}\left(e_{1}\right)-\mathbf{h}\left(e_{1}\right)\right) \cdots\left(\mathbf{t}\left(e_{r}\right)-\mathbf{h}\left(e_{r}\right)\right)$. Then if $\left|e_{1}\right|+\cdots+\left|e_{r}\right| \leqslant i$ we have

$$
u \equiv \mathbf{t}\left(e_{1}\right) \cdots \mathbf{t}\left(e_{r}\right) \quad \bmod T\left(V^{+}\right)_{i-1}
$$

The lemma then follows by induction.

Corollary 2.3. $A(\Gamma) \cong T\left(V^{+}\right) / \theta(R)$ as filtered algebras.
If $u \in A(\Gamma)_{i}, u \notin A(\Gamma)_{i-1}$ we write $|u|=i$.
As before, let $\pi=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be a path and let $\mathbf{t}\left(e_{i}\right)=v_{i-1}$ for $1 \leqslant i \leqslant m$ and $\mathbf{h}\left(e_{m}\right)=v_{m}$. For $1 \leqslant k \leqslant m+1$ set

$$
v(\pi, k)=v_{0} \cdots v_{k-1}
$$

Lemma 2.4. Let π_{1}, π_{2} be paths with $\mathbf{t}\left(\pi_{1}\right)=\mathbf{t}\left(\pi_{2}\right)$ and let $1 \leqslant k \leqslant l\left(\pi_{1}\right)$. Then

$$
v\left(\pi_{1}, k\right)-v\left(\pi_{2}, k\right) \in \operatorname{gr} \theta(R)
$$

Proof. We may extend π_{1}, π_{2} to paths μ_{1}, μ_{2} such that $\mathbf{h}\left(\mu_{1}\right)=\mathbf{h}\left(\mu_{2}\right)=*$. Then $e\left(\mu_{1}, k\right)-e\left(\mu_{2}, k\right) \in R$. The result now follows from Lemma 1.4.

Let R_{gr} denote the ideal generated by

$$
\left\{v\left(\pi_{1}, k\right)-v\left(\pi_{2}, k\right) \mid \mathbf{t}\left(\pi_{1}\right)=\mathbf{t}\left(\pi_{2}\right), 2 \leqslant k \leqslant l\left(\pi_{1}\right)\right\} .
$$

Proposition 2.5. $\operatorname{gr} A(\Gamma) \cong T\left(V^{+}\right) / R_{\mathrm{gr}}$.
Proof. We begin by recalling the description of a basis for $\operatorname{gr} A(\Gamma)$.
We say that a pair $(v, k), v \in V, 0 \leqslant k \leqslant|v|$ can be composed with the pair (u, l), $u \in V, 0 \leqslant l \leqslant|u|$, if $v>u$ and $|u|=|v|-k$. If (v, k) can be composed with (u, l) we write $(v, k) \vDash(u, l)$. Let $\mathbf{B}_{\mathbf{1}}(\Gamma)$ be the set of all sequences

$$
\mathbf{b}=\left(\left(b_{1}, m_{1}\right),\left(b_{2}, m_{2}\right), \ldots,\left(b_{k}, m_{k}\right)\right)
$$

where $k \geqslant 0, b_{1}, b_{2}, \ldots, b_{k} \in V, 0 \leqslant m_{i} \leqslant\left|b_{i}\right|$ for $1 \leqslant i \leqslant k$. Let

$$
\begin{aligned}
\mathbf{B}(\Gamma)= & \left\{\mathbf{b}=\left(\left(b_{1}, m_{1}\right),\left(b_{2}, m_{2}\right), \ldots,\left(b_{k}, m_{k}\right)\right) \in \mathbf{B}_{1}(\Gamma)\right. \\
& \left.\mid\left(b_{i}, m_{i}\right) \not \models\left(b_{i+1}, m_{i+1}\right), 1 \leqslant i<k\right\} .
\end{aligned}
$$

For

$$
\mathbf{b}=\left(\left(b_{1}, m_{1}\right),\left(b_{2}, m_{2}\right), \ldots,\left(b_{k}, m_{k}\right)\right) \in \mathbf{B}_{1}(\Gamma)
$$

set

$$
\tilde{e}(\mathbf{b})=\tilde{e}\left(b_{1}, m_{1}\right) \cdots \tilde{e}\left(b_{k}, m_{k}\right)
$$

Clearly $\left\{\tilde{e}(\mathbf{b}) \mid \mathbf{b} \in \mathbf{B}_{\mathbf{1}}(\Gamma)\right\}$ spans $A(\Gamma)$. Writing $\bar{e}(\mathbf{b})=\tilde{e}(\mathbf{b})+A(\Gamma)_{i-1} \in \operatorname{gr} A(\Gamma)$ where $|\tilde{e}(\mathbf{b})|=i$, Corollary 4.4 of [GRSW] shows that $\{\bar{e}(\mathbf{b}) \mid \mathbf{b} \in \mathbf{B}(\Gamma)\}$ is a basis for $\operatorname{gr} A(\Gamma)$.

Let

$$
\because T\left(V^{+}\right) \rightarrow T\left(V^{+}\right) / R_{\mathrm{gr}}
$$

denote the canonical mapping. Write $\check{e}(b, m)$ for the image of $e(b, m)$ and $\check{e}(\mathbf{b})$ for the image of $e(\mathbf{b})$.

By Lemma 2.1 and Corollary 1.3, we have $\operatorname{gr} A(\Gamma) \cong T\left(V^{+}\right) /(\operatorname{gr} \theta(R))$. Since $R_{\mathrm{gr}} \subseteq$ $\operatorname{gr} \theta(R)$ (by Lemma 2.4) the canonical map

$$
T\left(V^{+}\right) \rightarrow T\left(V^{+}\right) /(\operatorname{gr} \theta(R))
$$

induces a homomorphism

$$
\alpha: T\left(V^{+}\right) / R_{\mathrm{gr}} \rightarrow \operatorname{gr} A(\Gamma) .
$$

Clearly

$$
\alpha: \check{e}(\mathbf{b}) \mapsto \bar{e}(\mathbf{b}) .
$$

Also, since $\{\bar{e}(\mathbf{b}) \mid \mathbf{b} \in \mathbf{B}(\Gamma)\}$ is a basis for $\operatorname{gr} A(\Gamma)$, there is a linear map

$$
\beta: \operatorname{gr} A(\Gamma) \rightarrow T\left(V^{+}\right) / R_{\mathrm{gr}}
$$

defined by

$$
\beta: \bar{e}(\mathbf{b}) \mapsto \check{e}(\mathbf{b}) .
$$

As α and β are inverse mappings, the proof is complete.

3. The quadratic algebra $A(\Gamma)$

We will now see that, for certain graphs Γ, R is generated by $R_{1}+R_{2}$.
Definition 3.1. Let Γ be a layered graph and $v \in V_{j}, j \geqslant 2$. For $1 \leqslant i \leqslant j$ define $\mathcal{S}_{i}(v)=$ $\left\{w \in V_{j-i} \mid v>w\right\}$.

Definition 3.2. For $v \in V_{j}, j \geqslant 2$, let \sim_{v} denote the equivalence relation on $\mathcal{S}_{1}(v)$ generated by $u \sim_{v} w$ if $\mathcal{S}_{1}(u) \cap \mathcal{S}_{1}(w) \neq \emptyset$.

Definition 3.3. The layered graph V is said to be uniform if, for every $v \in V_{j}, j \geqslant 2$, all elements of $\mathcal{S}_{1}(v)$ are equivalent under \sim_{v}.

Lemma 3.4. Let Γ be a uniform layered graph. Then R is generated by $R_{1}+R_{2}$, in fact, R is generated by $R_{1} \cup\left\{e\left(\tau_{1}, 2\right)-e\left(\tau_{2}, 2\right)\left|\mathbf{t}\left(\tau_{1}\right)=\mathbf{t}\left(\tau_{2}\right), \mathbf{h}\left(\tau_{1}\right)=\mathbf{h}\left(\tau_{2}\right),\left|\tau_{1}\right|=2\right\}\right.$.

Proof. Let S denote the ideal of $T(E)$ generated by $R_{1} \cup\left\{e\left(\tau_{1}, 2\right)-e\left(\tau_{2}, 2\right) \mid \mathbf{t}\left(\tau_{1}\right)=\right.$ $\left.\mathbf{t}\left(\tau_{2}\right), \mathbf{h}\left(\tau_{1}\right)=\mathbf{h}\left(\tau_{2}\right),\left|\tau_{1}\right|=2\right\}$.

We must show that if π_{1}, π_{2} are paths in Γ with $\mathbf{t}\left(\pi_{1}\right)=\mathbf{t}\left(\pi_{2}\right)$, and $\mathbf{h}\left(\pi_{1}\right)=\mathbf{h}\left(\pi_{2}\right)=*$, then $P_{\pi_{1}}(t)-P_{\pi_{2}}(t) \in S[t]$, or, equivalently, $P_{\pi_{1}}(t) \in(1+S[t]) P_{\pi_{2}}(t)$. This is clear if $l\left(\pi_{1}\right) \leqslant 2$. We will proceed by induction on $l\left(\pi_{1}\right)$. Thus we will assume that $k \geqslant 3$, that $l\left(\pi_{1}\right)=k$, and that whenever μ_{1}, μ_{2} are paths in Γ with $\mathbf{t}\left(\mu_{1}\right)=\mathbf{t}\left(\mu_{2}\right)$, and $\mathbf{h}\left(\mu_{1}\right)=$ $\mathbf{h}\left(\mu_{2}\right)=*$, and $l\left(\mu_{1}\right)<k$, then $P_{\mu_{1}}(t)-P_{\mu_{2}}(t) \in S[t]$.

Write $\pi_{1}=\left(e_{1}, e_{2}, \ldots, e_{k}\right), \pi_{2}=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$. We first consider the special case in which $\mathbf{h}\left(e_{1}\right)>\mathbf{h}\left(f_{2}\right)$ (and so there is an edge, say g, with $\mathbf{t}(g)=\mathbf{h}\left(e_{1}\right), \mathbf{h}(g)=$ $\left.\mathbf{h}\left(f_{2}\right)\right)$. Consequently, $P_{\left(e_{1}, g\right)}(t) \in(1+S[t]) P_{\left(f_{1}, f_{2}\right)}(t)$. Write $\pi_{1}=\left(e_{1}, e_{2}\right) \nu_{1}$ and $\pi_{2}=$ $\left(f_{1}, f_{2}\right) \nu_{2}$. Then

$$
P_{\pi_{1}}(t)=\left(1-t e_{1}\right)\left(1-t e_{2}\right) P_{\nu_{1}}(t)
$$

and

$$
P_{\pi_{2}}(t)=\left(1-t f_{1}\right)\left(1-t f_{2}\right) P_{\nu_{2}}(t)
$$

so

$$
\begin{aligned}
P_{\pi_{2}}(t)= & \left(1-t f_{1}\right)\left(1-t f_{2}\right)\left((1-t g)^{-1}\left(1-t e_{1}\right)^{-1}\left(1-t e_{1}\right)(1-t g)\right) P_{\nu_{2}}(t) \\
& \times P_{\nu_{1}}(t)^{-1}\left(\left(1-t e_{2}\right)^{-1}\left(1-t e_{1}\right)^{-1} P_{\pi_{1}}(t)\right) .
\end{aligned}
$$

Let $\mu_{1}=e_{2} \nu_{1}$ and $\mu_{2}=g \nu_{2}$. Then, by the induction assumption,

$$
(1-t g) P_{\nu_{2}}(t) P_{\nu_{1}}(t)^{-1}\left(1-t e_{2}\right)^{-1}=P_{\mu_{2}}(t) P_{\mu_{1}}(t)^{-1} \in 1+S[t] .
$$

Consequently,

$$
\begin{aligned}
& \left(1-t e_{1}\right)(1-t g) P_{\nu_{2}}(t) P_{\nu_{1}}(t)^{-1}\left(1-t e_{2}\right)^{-1}\left(1-t e_{1}\right)^{-1} \\
& \quad \in\left(1-t e_{1}\right)(1+S[t])\left(1-t e_{1}\right)^{-1} \\
& \quad=1+S[t]
\end{aligned}
$$

and so we have

$$
P_{\pi_{2}}(t) \in(1+S[t]) P_{\pi_{1}}(t)
$$

In the general case, let $\mathbf{h}\left(e_{1}\right)=u$ and $\mathbf{h}\left(f_{1}\right)=w$. Then $u, w \in \mathcal{S}_{1}(v)$ so, since Γ is uniform, there exist $a_{1}, \ldots, a_{l+1} \in \mathcal{S}_{1}(v)$ with $a_{1}=u, a_{l+1}=w$ and $b_{1}, \ldots, b_{l} \in V$ with $b_{i} \in \mathcal{S}_{1}\left(a_{i}\right) \cap \mathcal{S}_{1}\left(a_{i+1}\right)$ for $1 \leqslant i \leqslant l$. For $1 \leqslant i \leqslant l$, let τ_{i} be a path from b_{i} to $*$. For $2 \leqslant i \leqslant l$ let $g_{i} \in E$ satisfy $\mathbf{t}\left(g_{i}\right)=\mathbf{t}\left(\pi_{1}\right), \mathbf{h}\left(g_{i}\right)=a_{i}$. For $1 \leqslant i \leqslant l$ let $r_{i} \in E$ satisfy $\mathbf{t}\left(r_{i}\right)=a_{i}$ and $\mathbf{h}\left(r_{i}\right)=b_{i}$ and let $s_{i} \in E$ satisfy $\mathbf{t}\left(s_{i}\right)=a_{i+1}, \mathbf{h}\left(s_{i}\right)=b_{i}$. Then the previously considered case shows that

$$
\begin{gathered}
P_{\pi_{1}}(t) \in(1+S[t]) P_{g_{2} s_{1} \tau_{1}}(t) ; \\
P_{g_{i} s_{i-1} \tau_{i-1}}(t) \in(1+S[t]) P_{g_{i+1} s_{i} \tau_{i}}(t)
\end{gathered}
$$

for $2 \leqslant i \leqslant l-1$;

$$
P_{g_{l s_{l-1} \tau_{l-1}}}(t) \in(1+S[t]) P_{f_{1} s_{l} \tau_{l}}(t) ;
$$

and

$$
P_{f_{1} s_{l} \tau_{l}}(t) \in(1+S[t]) P_{\pi_{2}}(t)
$$

proving the lemma.
Now assume that Γ is a uniform layered graph. Then R is generated by $R_{1}+R_{2}$, in fact, R is generated by $R_{1} \cup \mathcal{R}_{2}$ where $\mathcal{R}_{2}=\left\{e\left(\tau_{1}, 2\right)-e\left(\tau_{2}, 2\right) \mid \mathbf{t}\left(\tau_{1}\right)=\mathbf{t}\left(\tau_{2}\right), \mathbf{h}\left(\tau_{1}\right)=\mathbf{h}\left(\tau_{2}\right)\right.$, $\left.\left|\tau_{1}\right|=2\right\}$. Set $R_{V}=\left\langle\theta\left(\mathcal{R}_{2}\right)\right\rangle$.

Proposition 3.5. Let Γ be a uniform layered graph. Then $A(\Gamma) \cong T\left(V^{+}\right) / R_{V}$ is a quadratic algebra and R_{V} is generated by

$$
\left\{v(u-w)-u^{2}+w^{2}+(u-w) x \mid v \in \bigcup_{i=2}^{n} V_{i}, u, w \in \mathcal{S}_{1}(v), x \in \mathcal{S}_{1}(u) \cap \mathcal{S}_{1}(w)\right\} .
$$

Proof. By Lemma 3.4, R_{V} is generated by

$$
\theta\left\{e\left(\tau_{1}, 2\right)-e\left(\tau_{2}, 2\right)\left|\mathbf{t}\left(\tau_{1}\right)=\mathbf{t}\left(\tau_{2}\right), \mathbf{h}\left(\tau_{1}\right)=\mathbf{h}\left(\tau_{2}\right),\left|\tau_{1}\right|=2\right\}\right.
$$

Let $\tau_{1}=(e, f), \tau_{2}=\left(e^{\prime}, f^{\prime}\right), \mathbf{t}(e)=\mathbf{t}\left(e^{\prime}\right)=v, \mathbf{h}(e)=u, \mathbf{h}\left(e^{\prime}\right)=w, \mathbf{h}(f)=\mathbf{h}\left(f^{\prime}\right)=x$. Then

$$
\begin{aligned}
\theta\left(e\left(\tau_{1}, 2\right)-e\left(\tau_{2}, 2\right)\right) & =(v-u)(u-x)-(v-w)(w-x) \\
& =v(u-w)-u^{2}+w^{2}+(u-w) x
\end{aligned}
$$

Combining this proposition with the results of the previous section we obtain the following presentation for $\operatorname{gr} A(\Gamma)$.

Proposition 3.6. Let Γ be a uniform layered graph. Then $\operatorname{gr} A(\Gamma) \cong T\left(V^{+}\right) / R_{\mathrm{gr}}$ is a quadratic algebra and R_{gr} is generated by

$$
\left\{v(u-w) \mid v \in \bigcup_{i=2}^{n} V_{i}, u, w \in \mathcal{S}_{1}(v), \mathcal{S}_{1}(u) \cap \mathcal{S}_{1}(w) \neq \emptyset\right\} .
$$

4. $\operatorname{gr} \boldsymbol{A}(\Gamma)$ is a Koszul algebra

If W is a graded subspace of V^{2} we write

$$
W^{(k)}=\bigcap_{i=0}^{k-2} V^{i} W V^{k-i-2}
$$

so that

$$
(\operatorname{gr} W)^{(k)}=\bigcap_{i=0}^{k-2} V^{i}(\operatorname{gr} W) V^{k-i-2}
$$

Then, by Proposition 3.6,

$$
\left(\operatorname{gr} R_{\mathrm{gr}}\right)^{(k)} \subset \operatorname{span}\{v(\pi, k) \mid \pi \text { is a path, } l(\pi) \geqslant k\} .
$$

To simplify notation, we will write \mathbf{V} for V^{+}and \mathbf{R} for R_{gr}. Note that if π is a path with $l(\pi) \geqslant k$ and $v(\pi, k)=v_{0} v_{1} \cdots v_{k-1}$ then $\left|v_{k-1}\right|=\left|v_{k}\right|+1 \geqslant 1$. Thus $v(\pi, k) \in \mathbf{V}^{k}$.

Definition 4.1.

$$
\operatorname{Path}_{k}=\operatorname{span}\{v(\pi, k) \mid \pi \text { is a path, } l(\pi) \geqslant k\}
$$

and

$$
\operatorname{Path}_{k}(v)=v \mathbf{V}^{k-1} \cap \operatorname{Path}_{k} .
$$

Let $f: \mathbf{V} \rightarrow F$ be defined by $f(v)=1$ for all $v \in \mathbf{V}$ and I^{l} denote $I \otimes \cdots \otimes I$, taken l times. Let $g_{l}: \mathbf{V}^{l} \rightarrow \mathbf{V}^{l-1}$ be defined by $g_{l}=f \otimes I^{l-1}$.

For any vertex $v \in \mathbf{V}$ and any $l \geqslant 0$ define

$$
S_{l}(v)=\operatorname{span}\{u|v>u,|u|=|v|-l\}
$$

and

$$
P_{l}(v)=\operatorname{span}\{u-w|v>u, v>w,|u|=|w|=|v|-l\} .
$$

Note that $P_{l}(v)=S_{l}(v)=(0)$ if $l>|v|$, that $S_{0}(v)=\operatorname{span}\{v\}$, and that $P_{0}(v)=(0)$.
Note also that $P_{l}(v)=\left.\operatorname{ker} f\right|_{S_{l}(v)}$ and therefore

$$
P_{l}(v) \mathbf{V}^{m}=\operatorname{ker} g_{m+1} \mid S_{l}(v) \mathbf{V}^{m}
$$

for all $l, m \geqslant 0$. Combining this with Proposition 3.6, we have

$$
\operatorname{gr} \mathbf{R}_{2}=\operatorname{span}\left\{v(u-w) \mid u, w \in \mathcal{S}_{1}(v), v \in \mathbf{V}\right\}=\sum_{v \in \mathbf{V}} v P_{1}(v)
$$

Lemma 4.2. For $k \geqslant 2$,

$$
\mathbf{R}^{(k)}=\operatorname{Path}_{k} \cap \bigcap_{i=0}^{k-2} \operatorname{ker}\left(I^{i+1} \otimes f \otimes I^{k-i-2}\right)
$$

Proof. Since

$$
\mathbf{R}^{(k)}=\bigcap_{i=0}^{k-2} \mathbf{V}^{i} \mathbf{R}^{k-i-2}
$$

we have

$$
\mathbf{R}^{(k) \perp}=\sum_{i=0}^{k-2} \mathbf{V}^{* i} \mathbf{R}^{\perp} \mathbf{V}^{* k-i-2}
$$

We also have that

$$
\begin{aligned}
\mathbf{R}^{\perp} & =\operatorname{span}\left\{\left\{v^{*} u^{*}| | u|\neq|v|-1 \text { or } v \ngtr u\} \cup\left\{v^{*} f \mid v \in \mathbf{V}\right\}\right\}\right. \\
& =\operatorname{span}\left\{v^{*} u^{*}| | u|\neq|v|-1 \text { or } v \ngtr u\}+\mathbf{V}^{*} f .\right.
\end{aligned}
$$

Let

$$
M=\operatorname{span}\left\{v^{*} u^{*}| | u|\neq|v|-1 \text { or } v \ngtr u\} .\right.
$$

Then

$$
\begin{aligned}
\mathbf{R}^{(k) \perp} & =\sum_{i=0}^{k-2}\left\{\mathbf{V}^{* i} M \mathbf{V}^{* k-i-2}+\mathbf{V}^{* i+1} f \mathbf{V}^{* k-i-2}\right\} \\
& =\sum_{i=0}^{k-2} \mathbf{V}^{* i} M \mathbf{V}^{* k-i-2}+\sum_{i=0}^{k-2} \mathbf{V}^{* i+1} f \mathbf{V}^{* k-i-2} \\
& =\left(\left(\sum_{i=0}^{k-2} \mathbf{V}^{* i} M \mathbf{V}^{* k-i-2}\right)^{\perp} \cap\left(\sum_{i=0}^{k-2} \mathbf{V}^{* i+1} f \mathbf{V}^{* k-i-2}\right)^{\perp}\right)^{\perp}
\end{aligned}
$$

So

$$
\mathbf{R}^{(k)}=\left(\sum_{i=0}^{k-2} \mathbf{V}^{* i} M \mathbf{V}^{* k-i-2}\right)^{\perp} \cap\left(\sum_{i=0}^{k-2} \mathbf{V}^{* i+1} f \mathbf{V}^{* k-i-2}\right)^{\perp}
$$

Now

$$
\left(\sum_{i=0}^{k-2} \mathbf{V}^{* i} M \mathbf{V}^{* k-i-2}\right)^{\perp}=\bigcap_{i=0}^{k-2} \mathbf{V}^{i} M^{\perp} \mathbf{V}^{k-i-2}=\operatorname{Path}_{k}
$$

and

$$
\begin{aligned}
\left(\sum_{i=0}^{k-2} \mathbf{V}^{* i} f \mathbf{V}^{* k-i-2}\right)^{\perp} & =\bigcap_{i=0}^{k-2} \mathbf{V}^{i+1}\langle f\rangle^{\perp} \mathbf{V}^{k-i-2}=\bigcap_{i=0}^{k-2} \mathbf{V}^{i+1}(\operatorname{ker} f) \mathbf{V}^{k-i-2} \\
& =\bigcap_{i=0}^{k-2} \operatorname{ker}\left(I^{i+1} \otimes f \otimes I^{k-i-2}\right)
\end{aligned}
$$

giving the result.
We will need the following result, whose proof is straightforward.
Lemma 4.3. Let W_{1} and W_{2} be F-vector spaces, $h: W_{1} \rightarrow W_{2}$ a linear transformation, $A \subseteq W_{1}, C \subseteq W_{2}$, subspaces, and $B=h^{-1}(C)$. Then

$$
h(A) \cap h(B)=h(A \cap B)
$$

Lemma 4.4. If $l \geqslant 0, j \geqslant 1$, and $v \in \bigcup_{j=2}^{n} V_{j}$, then

$$
P_{j}(v) \mathbf{V}^{l+1} \cap \mathbf{R}^{(l+2)}=g_{l+3}\left(S_{j-1}(v) \mathbf{V}^{l+2} \cap \mathbf{R}^{(l+3)}\right)
$$

Proof. Note that

$$
(f \otimes I)\left(S_{j-1}(v) \mathbf{V} \cap \mathbf{R}\right) \subseteq P_{j}(v)
$$

and

$$
\left(f \otimes I^{l+2}\right)\left(\mathbf{V} \mathbf{R}^{(l+2)}\right) \subseteq \mathbf{R}^{(l+2)}
$$

Consequently,

$$
g_{l+3}\left(S_{j-1}(v) \mathbf{V}^{l+2} \cap \mathbf{R}^{(l+3)}\right) \subseteq P_{j}(v) \mathbf{V}^{l+1} \cap \mathbf{R}^{(l+2)}
$$

To prove the reversed inclusion we note that by Lemma 4.2,

$$
P_{j}(v) \mathbf{V}^{l+1} \cap \mathbf{R}^{(l+2)}=P_{j}(v) \mathbf{V}^{l+1} \cap \operatorname{Path}_{l+2} \cap\left(\bigcap_{i=0}^{l} \operatorname{ker}\left(I^{i+1} \otimes f \otimes I^{l-i}\right)\right)
$$

and

$$
\begin{aligned}
& g_{l+3}\left(S_{j-1}(v) \mathbf{V}^{l+2} \cap \mathbf{R}^{(l+3)}\right) \\
& \quad=g_{l+3}\left(S_{j-1}(v) \mathbf{V}^{l+2} \cap \operatorname{Path}_{l+3} \cap\left(\bigcap_{i=0}^{l+1} \operatorname{ker}\left(I^{i+1} \otimes f \otimes I^{l+1-i}\right)\right)\right) .
\end{aligned}
$$

Let $g=g_{l+4} \cdots g_{l+j+2}$. Then for any subspace $W \subseteq \mathbf{V}^{l+2}$ we have

$$
g^{-1}(W)=\mathbf{V}^{j-1} W
$$

and

$$
\left(g_{l+3} g\right)^{-1}(W)=\mathbf{V}^{j} W
$$

Then

$$
\begin{aligned}
P_{j} & (v) \mathbf{V}^{l+1} \cap \operatorname{Path}_{l+2} \cap\left(\bigcap_{i=0}^{l} \operatorname{ker}\left(I^{i+1} \otimes f \otimes I^{l-i}\right)\right) \\
& =\left(g_{l+3} g\right)\left(\operatorname{Path}_{j+1}(v) \mathbf{V}^{l+1}\right) \cap\left(g_{l+3} g\right)\left(\mathbf{V}^{j}\left(\operatorname{ker}\left(f \otimes I^{l+1}\right)\right)\right) \\
& \cap\left(g_{l+3} g\right)\left(\mathbf{V}^{j} \operatorname{Path}_{l+2}\right) \cap\left(\bigcap_{i=0}^{l} \mathbf{V}^{j}\left(\operatorname{ker}\left(I^{i+1} \otimes f \otimes I^{l-i}\right)\right)\right) \\
& =\left(g_{l+3} g\right)\left(\operatorname{Path}_{j+1}(v) \mathbf{V}^{l+1} \cap \mathbf{V}^{j} \operatorname{Path}_{l+2} \cap\left(\bigcap_{i=0}^{l+1} \mathbf{V}^{j}\left(\operatorname{ker}\left(I^{i} \otimes f \otimes I^{l+1-i}\right)\right)\right)\right) \\
& =\left(g_{l+3} g\right)\left(\operatorname{Path}_{j+l+2}(v) \cap\left(\bigcap_{i=0}^{l+1} \mathbf{V}^{j}\left(\operatorname{ker}\left(I^{i} \otimes f \otimes I^{l+1-i}\right)\right)\right)\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
g_{l+3} & \left(S_{j-1}(v) \mathbf{V}^{l+2} \cap \operatorname{Path}_{l+3} \cap\left(\bigcap_{i=0}^{l+1} \operatorname{ker}\left(I^{i+1} \otimes f \otimes I^{l+1-i}\right)\right)\right) \\
= & g_{l+3}\left(g\left(\operatorname{Path}_{j}(v) \mathbf{V}^{l+2}\right) \cap g\left(\mathbf{V}^{j-1} \operatorname{Path}_{l+3}\right)\right. \\
& \left.\cap\left(\bigcap_{i=0}^{l+1} g\left(\mathbf{V}^{j-1}\left(\operatorname{ker}\left(I^{i+1} \otimes f \otimes I^{l+1-i}\right)\right)\right)\right)\right) \\
= & \left(g_{l+3} g\right)\left(\operatorname{Path}_{j}(v) \mathbf{V}^{l+2} \cap \mathbf{V}^{j-1} \operatorname{Path}_{l+3} \cap\left(\bigcap_{i=0}^{l+1} \mathbf{V}^{j-1}\left(\operatorname{ker}\left(I^{i+1} \otimes f \otimes I^{l+1-i}\right)\right)\right)\right)
\end{aligned}
$$

$$
=\left(g_{l+3} g\right)\left(\operatorname{Path}_{j+l+2}(v) \cap\left(\bigcap_{i=0}^{l+1} \mathbf{V}^{j}\left(\operatorname{ker}\left(I^{i} \otimes f \otimes I^{l+1-i}\right)\right)\right)\right),
$$

proving the lemma.
Lemma 4.5. Suppose $\left\{P_{1}(v) \mathbf{V}^{k}\right\} \cup\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1} \mid 0 \leqslant i \leqslant k-1\right\}$ is distributive for any $v \in \mathbf{V}$. Then $\left\{\mathbf{V}^{i} \mathbf{R V}^{k-i} \mid 0 \leqslant i \leqslant k\right\}$ is distributive.

Proof. By [SW, Lemma 1.1] it is sufficient to prove that

$$
\left\{v \mathbf{V}^{k+1} \cap \mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i} \mid 0 \leqslant i \leqslant k\right\}
$$

is distributive for all $v \in \mathbf{V}$. Now g_{k+2} restricts to an isomorphism of $v \mathbf{V}^{k+1}$ onto \mathbf{V}^{k+1}. Since $g_{k+2}\left(v \mathbf{V}^{k+1} \cap \mathbf{R} \mathbf{V}^{k}\right)=P_{1}(v) \mathbf{V}^{k}$ and $g_{k+2}\left(v \mathbf{V}^{k+1} \cap \mathbf{V}^{i+1} \mathbf{R} \mathbf{V}^{k-i-1}\right)=\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1}$ for $0 \leqslant i \leqslant k-1$, the result follows.

Theorem 4.6. Let Γ be a uniform layered graph with a unique minimal element. Then $\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-1} \mid 0 \leqslant i \leqslant k\right\}$ generates a distributive lattice in $T(\mathbf{V})$. Consequently, gr $A(\Gamma)$ is a Koszul algebra.

In view of Lemma 4.5, this will follow from:
Lemma 4.7. $\left\{P_{l}(v) \mathbf{V}^{k}\right\} \cup\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1} \mid 0 \leqslant i \leqslant k-1\right\}$ is distributive for all $k \geqslant 1$ and all $l>0$.

Proof. The proof is by induction on k, the result being trivial for $k=1$. We assume $\left\{P_{l}(v) \mathbf{V}^{m}\right\} \cup\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{m-i-1} \mid 0 \leqslant i \leqslant m-1\right\}$ is distributive for all $m<k$ and all $l>0$.

First note that any proper subset of $\left\{P_{l}(v) \mathbf{V}^{k}\right\} \cup\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1} \mid 0 \leqslant i \leqslant k-1\right\}$ is distributive. Indeed, by Lemma 4.5, $\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1} \mid 0 \leqslant i \leqslant k-1\right\}$ is distributive. Hence it is sufficient to show that $\left\{P_{l}(v) \mathbf{V}^{k}\right\} \cup\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1} \mid 0 \leqslant i<j\right\} \cup\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1} \mid j<i \leqslant k-1\right\}$ is distributive for all $j, 0 \leqslant j \leqslant k-1\}$. Now let $\mathcal{K}_{j, 1}=\left\{P_{l}(v) \mathbf{V}^{j}\right\} \cup\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{j-i-1} \mid 0 \leqslant i \leqslant\right.$ $j-1\}$ and $\mathcal{K}_{j, 2}=\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-j-2-i} \mid 0 \leqslant i \leqslant k-j-2\right\}$. Then $\mathcal{K}_{j, 1}$ and $\mathcal{K}_{j, 2}$ are distributive by the induction assumption. Since $\left\{P_{l}(v) \mathbf{V}^{k}\right\} \cup\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1} \mid 0 \leqslant i<j\right\} \cup\left\{\mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1}\right.$ | $j<i \leqslant k-1\}=\mathcal{K}_{j, 1} \mathbf{V}^{k-j} \cup \mathbf{V}^{j+1} \mathcal{K}_{j, 2}$, the assertion follows.

In view of [SW, Theorem 1.2], it is therefore sufficient to prove that

$$
\begin{aligned}
& \left(P_{l}(v) \mathbf{V}^{k} \cap \mathbf{R} \mathbf{V}^{k-1} \cap \cdots \cap \mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1}\right) \cap\left(\mathbf{V}^{i+1} \mathbf{R} \mathbf{V}^{k-i-2}+\cdots+\mathbf{V}^{k-1} \mathbf{R}\right) \\
& \quad=\left(P_{l}(v) \mathbf{V}^{k} \cap \mathbf{R} \mathbf{V}^{k-1} \cap \cdots \cap \mathbf{V}^{i+1} \mathbf{R} \mathbf{V}^{k-i-2}\right) \\
& \quad+\left(P_{l}(v) \mathbf{V}^{k} \cap \mathbf{R} \mathbf{V}^{k-1} \cap \cdots \cap \mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1} \cap\left(\mathbf{V}^{i+2} \mathbf{R} \mathbf{V}^{k-i-3}+\cdots+\mathbf{V}^{k-1} \mathbf{R}\right)\right) .
\end{aligned}
$$

Now write

$$
\begin{aligned}
X_{i} & =S_{l}(v) \mathbf{V}^{k} \cap \mathbf{R} \mathbf{V}^{k-1} \cap \cdots \cap \mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-1}, \\
Y_{i} & =\mathbf{V}^{i+1} \mathbf{R} \mathbf{V}^{k-i-2},
\end{aligned}
$$

and

$$
Z_{i}=\mathbf{V}^{i+2} \mathbf{R} \mathbf{V}^{k-i-3}+\cdots+\mathbf{V}^{k-1} \mathbf{R}
$$

Then we need to show that

$$
\left.\operatorname{ker} g_{k+1}\right|_{X_{i} \cap\left(Y_{i}+Z_{i}\right)}=\operatorname{ker} g_{k+1}\left|X_{i} \cap Y_{i}+\operatorname{ker} g_{k+1}\right| X_{i} \cap Z_{i} .
$$

The right-hand side is contained in the left-hand side, so it is enough to prove equality of dimensions.

Hence it is enough to prove

$$
\begin{aligned}
& \operatorname{dim} X_{i} \cap\left(Y_{i}+Z_{i}\right)-\operatorname{dim} g_{k+1}\left(X_{i} \cap\left(Y_{i}+Z_{i}\right)\right) \\
& \quad=\operatorname{dim} X_{i} \cap Y_{i}-\operatorname{dim} g_{k+1}\left(X_{i} \cap Y_{i}\right)+\operatorname{dim} X_{i} \cap Z_{i}-\operatorname{dim} g_{k+1}\left(X_{i} \cap Z_{i}\right) \\
& \quad-\operatorname{dim} X_{i} \cap Y_{i} \cap Z_{i}+\operatorname{dim} g_{k+1}\left(X_{i} \cap Y_{i} \cap Z_{i}\right) .
\end{aligned}
$$

Now, by the induction assumption and Lemma 4.5, $\left\{X_{i}, Y_{i}, Z_{i}\right\}$ is distributive. Therefore, the desired equality is equivalent to

$$
\begin{aligned}
\operatorname{dim} g_{k+1}\left(X_{i} \cap\left(Y_{i}+Z_{i}\right)\right)= & \operatorname{dim} g_{k+1}\left(X_{i} \cap Y_{i}\right)+\operatorname{dim} g_{k+1}\left(X_{i} \cap Z_{i}\right) \\
& -\operatorname{dim} g_{k+1}\left(X_{i} \cap Y_{i} \cap Z_{i}\right)
\end{aligned}
$$

But, since $\left\{X_{i}, Y_{i}, Z_{i}\right\}$ is distributive,

$$
g_{k+1}\left(X_{i} \cap\left(Y_{i}+Z_{i}\right)\right)=g_{k+1}\left(X_{i} \cap Y_{i}+X_{i} \cap Z_{i}\right)=g_{k+1}\left(X_{i} \cap Y_{i}\right)+g_{k+1}\left(X_{i} \cap Z_{i}\right)
$$

Hence we need only show that

$$
\operatorname{dim} g_{k+1}\left(X_{i} \cap Y_{i}\right) \cap g_{k+1}\left(X_{i} \cap Z_{i}\right)=\operatorname{dim} g_{k+1}\left(X_{i} \cap Y_{i} \cap Z_{i}\right)
$$

Since

$$
g_{k+1}\left(X_{i} \cap Y_{i} \cap Z_{i}\right) \subseteq g_{k+1}\left(X_{i} \cap Y_{i}\right) \cap g_{k+1}\left(X_{i} \cap Z_{i}\right)
$$

this is equivalent to

$$
g_{k+1}\left(X_{i} \cap Y_{i}\right) \cap g_{k+1}\left(X_{i} \cap Z_{i}\right)=g_{k+1}\left(X_{i} \cap Y_{i} \cap Z_{i}\right)
$$

Now by Lemma 4.4, the left-hand side of this expression is equal to

$$
P_{l+1}(v) \mathbf{V}^{k-1} \cap \mathbf{R} \mathbf{V}^{k-2} \cap \cdots \cap \mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-2} \cap\left(\mathbf{V}^{i+1} \mathbf{R} \mathbf{V}^{k-i-3}+\cdots+\mathbf{V}^{k-2} \mathbf{R}\right)
$$

In view of the distributivity of $\left\{S_{l}(v) \mathbf{V}^{k}\right\} \cup\left\{\mathbf{V}^{t} \mathbf{R} \mathbf{V}^{k-t-1} \mid 0 \leqslant t \leqslant k-1\right\}$, which follows from [SW, Lemma 1.1] and the induction assumption, the right-hand side of the expression may be written as

$$
\begin{aligned}
& g_{k+1}\left(S_{l}(v) \mathbf{V}^{k} \cap \mathbf{R} \mathbf{V}^{k-1} \cap \cdots \cap \mathbf{V}^{i+2} \mathbf{R} \mathbf{V}^{k-i-3}\right) \\
& \quad+g_{k+1}\left(S_{l}(v) \mathbf{V}^{k} \cap \mathbf{R} \mathbf{V}^{k-1} \cap \cdots \cap \mathbf{V}^{i+1} \mathbf{R} \mathbf{V}^{k-i-2} \cap\left(\mathbf{V}^{i+3} \mathbf{R} \mathbf{V}^{k-i-4}+\cdots+\mathbf{V}^{k-1} \mathbf{R}\right)\right) .
\end{aligned}
$$

By Lemma 4.4, this is equal to

$$
\begin{aligned}
& P_{l+1}(v) \mathbf{V}^{k-1} \cap \mathbf{R} \mathbf{V}^{k-2} \cap \cdots \cap \mathbf{V}^{i+1} \mathbf{R} \mathbf{V}^{k-i-3} \\
& \quad+P_{l+1}(v) \mathbf{V}^{k-1} \cap \mathbf{R} \mathbf{V}^{k-2} \cap \cdots \cap \mathbf{V}^{i} \mathbf{R} \mathbf{V}^{k-i-2} \cap\left(\mathbf{V}^{i+2} \mathbf{R} \mathbf{V}^{k-i-4}+\cdots+\mathbf{V}^{k-2} \mathbf{R}\right)
\end{aligned}
$$

By the induction assumption, these expressions for the left- and right-hand sides are equal, so the proof is complete.

5. Koszulity of $\boldsymbol{A}(\boldsymbol{\Gamma})$

We will need the following lemma which is a special case of a more general result [PP, Proposition 3.7.1].

Lemma 5.1. Let A be a filtered quadratic algebra. If gr A is quadratic and Koszul then A is Koszul.

Theorem 5.2. Let Γ be a uniform layered graph with a unique minimal element. Then $A(\Gamma)$ is a Koszul algebra.

Proof. This follows from Theorem 4.6 and Lemma 5.1.

References

[GGR] I. Gelfand, S. Gelfand, V. Retakh, Noncommutative algebras associated to complexes and graphs, Selecta Math. (N.S.) 7 (2001) 525-531.
[GGRSW] I. Gelfand, S. Gelfand, V. Retakh, S. Serconek, R.L. Wilson, Hilbert series of quadratic algebras associated with decompositions of noncommutative polynomials, J. Algebra 254 (2002) 279-299.
[GRSW] I. Gelfand, V. Retakh, S. Serconek, R.L. Wilson, On a class of algebras associated to directed graphs, Selecta Math. (N.S.) 11 (2005), math.QA/0506507.
[GRW] I. Gelfand, V. Retakh, R.L. Wilson, Quadratic-linear algebras associated with decompositions of noncommutative polynomials and differential polynomials, Selecta Math. (N.S.) 7 (2001) 493-523.
[Pi] D. Piontkovski, Algebras associated to pseudo-roots of noncommutative polynomials are Koszul, Internat. J. Algebra Comput. 15 (2005) 643-648.
[PP] A. Polishchuk, L. Positselski, Quadratic Algebras, Amer. Math. Soc., Providence, RI, 2005.
[SW] S. Serconek, R.L. Wilson, Quadratic algebras associated with decompositions of noncommutative polynomials are Koszul algebras, J. Algebra 278 (2004) 473-493.

[^0]: * Corresponding author.

 E-mail addresses: vretakh@math.rutgers.edu (V. Retakh), serconek@math.rutgers.edu (S. Serconek), rwilson@math.rutgers.edu (R.L. Wilson).
 ${ }^{1}$ Partially supported by NSA.
 0021-8693/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2005.11.005

