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Suppose one observes a sample of size m from the mixture density s p(x 12) dq(z) 
and a sample of size n from the distribution n. The kernel p(x[z) is known. We 
show existence of the maximum likelihood estimator for n, characterize its support, 
and prove consistency as m. n + co. v 1992 Academic Press, Inc. 

1. INTRODUCTION 

If one observes a sample of independent, identically distributed variables 
Z i, . . . . Z, from a completely unknown distribution q, then the usual 
estimator for 4 is the empirical distribution 6 = n- ’ c,“= I 6,. Consider the 
situation wherein the observed Z,, . . . . Z, are actually part of a larger 
number m + n of replications of some experiment. Unfortunately, m out of 
the m + n times the Z value is not observed, but instead one gets to see X 
which conditionally on Z = z has a known density p(x 1 z) with respect to 
a fixed measure p. Hence the total set of observations is Xi, . . . . X,, 
Z,, . . . . 2,; all observations are independent and their joint distribution can 
formally be written as 
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(The first factor in the product is a density with respect to $‘; the second 
factor is just formal notation.) For definiteness let (SY, d) and (a, %?) be 
the sample spaces for each A’, and Z,, respectively. It is assumed 
throughout that the function (x, 2) -+ p(x( z) is (jointly) measurable and 
also that % contains the one-point sets in 3. The density of X, is (with 
abuse of notation) written as p(x 1 q) = j p(?r I :) Q(z); it is assumed to be 
finite for every .Y. 

In this situation the set Z,, . . . . Z,, clearly contains much more infor- 
mation about q than the set X,, . . . . A’, if m and n are of comparable 
magnitude. Nevertheless, one would certainly want to take all information 
available in A’,, . . . . X,,, into account and obtain improved estimator for r] 
relative to using rj, the empirical distribution of the second sample. Formal 
calculations in the manner of semi-parametric theory (cf. Bickel, Klaassen, 
Ritov, and Wellner [3]) show that a decrease in asymptotic variance of as 
much as m/(m + n) percent is possible, depending of course on the aspect 
of r~ one is interested in. Surprisingly enough there may even be con- 
siderable gain in using A’, , . . . . A’, in situations where the information (in 
the technical sense of semi-parametric theory) in A’,, . . . . A’,,, alone is zero 
and fi consistent estimators based on the first sample do not exist. 

It is thus of interest to study estimators for n based on the whole set of 
observations X,, . . . . A’,,, Z,, . . . . Z,,. In this paper we limit ourselves to 
showing that maximum likelihood estimators exist and are asymptotically 
consistent under weak conditions on the “kernel” p(.ul z). We intend to 
study asymptotic efficiency of the maximum likelihood estimator in a later 
paper, using different methods. 

The model as defined here, or special cases thereof, has been studied by 
Has’minskii and Ibragimov [6], Bhanja and Ghosh [2], Vardi [14], and 
Vardi and Zhang [15]. In the literature the type of distribution of each Xi 
is called a mixture model and sometimes a structural model. Estimation of 
q based on X,, . . . . A’, alone has been considered by among others Kiefer 
and Wolfowitz [9], Laird [lo], Jewel1 [8], Heckman and Singer [7], and 
van der Vaart [ 131. The problem of existence of the maximum likelihood 
estimator in mixture models is solved by Lindsay [ 111 and the problem of 
consistency of Pfanzagl [ 121. Roughly, the proofs in the present paper are 
carried through by conditioning on the “good” observations Z, , . . . . Z, and 
next extending the arguments as developed for mixture models by these 
authors. We do not discuss computation of the maximum likelihood 
estimator. However, modifications of methods developed for pure mixture 
models, for instance those motivated by the EM-algorithm or the methods 
of Groeneboom [S], apply. 
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2. EXISTENCE AND SUPPORT 

For a measure 9 write r~(z ) for the mass that q gives to the one-point 
set (z). In this section x,, . . . . x,, z,, . . . . z,, are fixed (observed) values. For 
our purposes the likelihood function is the map 

A maximum likelihood estimator q is a probability distribution that 
maximizes the likelihood function. In this section it is shown that q always 
exists (in other words the supremum is achieved) and can be taken finitely 
discrete with no more than m + n support points. (We do not address 
uniqueness, but note that in some examples the maximum likelihood 
estimator is clearly nonunique and also distributions with a continuous 
component may maximize the likelihood.) 

The main conditions are expressed in terms of the following subsets of 
R”, 

u=i(p(x,I-‘),...,p(x,j-‘)):zE~} 

v= {au:O<cc< 1, UE u> 

where 3 is the set of all subprobability measures on (2, $7). (The positive 
measures with total mass less than or equal to 1.) It is clear that 
U c I/c W. Furthermore, for every finitely discrete subprobability distribu- 
tion q the corresponding element in W is a convex linear combination of 
elements of V. If we write conv( V) for the convex hull of V and S(V) 
for its closure, then it is also true that 

conv( V) c WC conv( V). 

Here the last inclusion is a consequence of the geometric form of Jensen’s 
inequality: the random variable (p(xl IZ), . . . . p(.u,J Z)) takes its values in 
the closed convex set conv( V), so its expectation under q is in this set too. 
It is well known that the convex hull of a compact subset of OX” is 
automatically compact, hence closed. Consequently, if V is compact, then 
so is Wand the inclusions in the last display are equalities. It may be noted 
also that if U is compact, then so is V. 

THEOREM 2.1. Zf W is compact in KY, then there exists a probability 
distribution ij which maximizes the likelihood function. Moreover, If V is 
compact in R”, then ij can be taken a discrete distribution with between n and 
m + n support points. 
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ProoJ Maximization of the likelihood can be carried out in two steps. 
First fix p1 , . . . . p,, for the point masses v] { z,) and maximize 

fi P(xilv) 
,=I 

over all subprobability distributions q with h{ z,] = pi for every j. Suppose 
the maximum value is mp and taken for qP. Then in the second step 
maximize 

over nonnegative subprobability vectors p = ( p I, . . . . p,). If the maximum 
value is taken for @, then qa is a maximum likelihood estimator. 

For fixed pl, . . . . pn the first problem is equivalent to maximization of the 
function II + n;=, u; over all vectors u in the set W, given by 

wp=( i PjPCxllzj)9...* i ~~P(xmlT,))+(l~,~l Pj) w, 
j= I j= 1 

(Here u + tl W is the set of all vectors of the form u + u W with w  E W.) If 
W is compact, then so is W,. Consequently, the maximum is taken for 
some v E Wp. Also, the set W, depends continuously on p, so that the 
maximum value of the everywhere continuous function u -+ fly=, ui 
depends continuously on p. This implies that the second maximization 
problem, consisting of maximizing p + mp nJ= 1 pi over the compact set of 
all subprobability vectors p, has a solution too. This concludes the proof of 
existence of the maximum likelihood estimator. 

For the proof of the second part of the theorem let jj be the vector of 
probabilities (q{~, }, . . . . Q(z,,}) and let IE W be such that u + ny=, ui is 
maximized at 

in the first maximization problem. Thus the function 

is maximized over W at w  = G. Since this function is convex and W is 
convex, the point $ must be on the boundary of W. Since W is the closed 
convex hull of the compact set V, every point on its boundary is expressible 
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as a convex linear combination of at most m elements of V. Hence $5 can 
be written 

for a subprobability vector q and suitable y,, ,.., y,. Then the discrete 
measure 6 with tj{z,} = pj and q{ yi> = (1 --I;=, pi) qi for each j and i 
maximizes the likelihood function. Renorming the vector q so that it is a 
probability vector will lead to a likelihood that is certainly not smaller. 
Hence $ may be assumed to be a probability measure. 1 

The conditions on V and W in the existence theorem are usually satisfied 
and can easily be checked directly. (The pictures one can draw for m = 2 
often give a good indication of how to approach the problem.) 
Alternatively, a large class of examples can be handled through continuity 
of the functions z + p(x I--). Recall that a metric space is called locally 
compact if every point has a compact neighbourhood (a compact set 
containing a ball around the point). Any such space has a one-point 
compactification, written 22? u { % >. A function f: 5F + II2 is said to vanish 
at infinity if lim;, r f(z) = 0. M ore explicitly f vanishes at infinity if for 
every E > 0 there is a compact Kc F with If(;)/ < F if 2 4 K The set of all 
continuous functions that vanish at infinity is denoted C,(2’). Examples of 
locally compact metric spaces are [Wk, closed or open subsets of lRk and 
cells (c, n]. Each of these examples is also separable and a function 
vanishes at infinity if its value converges to zero as the argument 
approaches an open boundary. (The open boundary as a whole, if there is 
one, may be considered the point cc.) 

LEMMA 2.2. Let 3’ he a locally compact separable metric space with 
Bore1 o-field %. Suppose that for each fixed x the function z -+ p(x ( z) is 
continuous and vanishes at infinity. Then the set U u (0 > and consequently 
the sets V and W are compact in R”. 

Proof: Under the stated conditions the one-point compactification 
2 u (as } is a metrizable compact space. Thus both the set of all proba- 
bility measures on 2 and the set of all one-point probability measures on 
2 are compact for the weak topology. Set p(x I co) = 0 for each x. Then 
= + p(x 1 z) is continuous on the one-point compactification. Hence so is 
the map 

from the Bore1 measures on Z u { CXI } to [Wm. The set U u { 0} is the image 
of all one-point probability measures under this map. The set W is the 
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image of all probability measures. The set P’ is the image of 
(Uu (0)) x co, 11 under the map (u, ~1) + CIU, so is compact. fl 

3. CONSISTENCY 

Throughout this section let EZ be a locally compact, separable metric 
space and let GF? be its Bore1 a-field. The set X of all Bore1 subprobability 
measures on .F can be equipped with the vague topology. This can be 
determined by defining that v,~ 3 q, or q,, converges vaguely to g, if and 
only if 

(The set HO of continuous functions that vanish at infinity was defined 
at the end of Section 2.) It is well known that under the stated on ZY the 
vague topology is metrizable; the set of all subprobability measures is 
vaguely compact; and for probability measures v, and q vague convergence 
qn j)l is equivalent to the more usual weak convergence. (See, e.g., 
Bauer [ 11.) 

Assume that the kernel p(x 1 Z) satisfies the weak smoothness condition 

lim p(x I v,,) = P(.~ I v  ), for p-almost all .Y. (3.1) 
‘In * rl 

(The exceptional set of .Y may depend on q, but not on the sequence q,,.) 
Moreover, assume that 

the map x -+ sup p(x 11’) is measurable 
;t CT 

(3.2) 

for every sufficiently small open ball U c .#‘. These conditions are certainly 
satisfied if z + p(x 1~) is in C,(b) for every x. Since convergence need only 
hold almost everywhere, the conditions actually cover a much larger class 
of examples. 

Secondly, assume that q is identifiable in the pure mixture model in the 
sense that 

A-x: P(-49’)2P(-~11~)>0 for every q’ # 9. (3.3) 

These conditions suffice for consistency. 

THEOREM 3.1. Let Y be a locally compact, separable metric space and 
let the kernel p(x I z) satisfy (3.1) f or every Y]E%, (3.2),,and (3.3) for the 
true ye. Then any sequence of maximum likelihood estimators r-j,,,, satisfies 

L,ll =S 9 almost surely under ye if m -+ oci. 
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Proof: Case 1. Both m + cx, and n + 03. Let )i be the empirical 
distribution of 2,) . . . . Z,,. It is well known that i + 9 for almost every 
realization z,, z2, . . . . (Varadarajan’s theorem, see Dudley [4, p. 3131.) Fix 
such a sequence throughout the remainder of this part of the proof. It will 
be shown that 8 = q,,,(X,, . . . . A’,,,, z,, . . . . :,,) *v] conditionally on the 
sequence -i,, i2, . . 

Since i is the maximum likelihood estimator for q based on -7)) . . . . zrl 
alone. 

From this and concavity of the function u + log u we obtain that 

,p0++0(!&1)])80. (3.4) 

for every c1 E (0, 1). Fix such an c( throughout the remainder of the proof. 
The true parameter q is also identifiable in the sense that Pg( p(X] 7) # 

p(XI q)) > 0 for every subprobability 8 # ye. Indeed, if this probability were 
zero, then it would follow that P(I: p(.\: 1 y) # p(x 1 q), p(x 1 u) > 0) = 0. So 
for p-almost x with p(x 1 r~) > 0 the densities p(x 1 YJ) and p(x 1 y) are equal. 
Since the total mass of the second density is not larger than 1, the total 
mass of the first density, it must be that p(x I y) = 0 at almost all x where 
~(~17) = 0. Combination yields that p(.v : p(xl y) # p(~i q)) = 0, in 
contradiction to the identifiability condition (3.3). 

Fix a subprobability measure 7 #q. By convexity of the function 
u + N log( 1 + tx(u - 1 )), identifiability of q and Jensen’s inequality 

E,log[l+z(Jy$-l)]>O. (3.5) 

(Let the quotient of a positive number and zero be infinity.) By (3.1) one 
has p(x 14) -+ p(x I q) for almost all X. For an open ball U around y define 
the expression p(xl U) as sup; , E G p(x 17’ ). Then for a sequence of open 
balls U, decreasing to y we have p(.u I U,) + p(~ I y) by (3.1). Thus by 
Fatou’s lemma and (3.5) we have for every such U, 1 y and M, r co, no 
matter how slowly, 

lim inf 
n - z s lr.ptr,?,>O) {log[l++Y%$l)] AM,} 

x P(-X I v-1 40) > 0. 



140 VAN DER VAART AND WELLNER 

(Note that logf 1 + a(u - 1)) is bounded below by log( 1 -M) if u 2 0.) This 
implies that there is an open neighbourhood U:, of y and a constant M, 
with 

A M,.>O, (3.6) ,z - T 

where the expectation is to be understood as conditional on the fixed 
sequence z,, z2, . . . This has been obtained for an arbitrary 1’ #q. 

The likelihood function is at 4 not smaller than at cr{ + (1 - a)o. Using 
the linearity of the map q --f p(x 19) this can be expressed as 

i log[ltr(~~-l)] 
i= I 

+~,log[l+&l)]<O. 

Combination with (3.4) yields that 

f lo,[l+.(p~-l)]~o 
i= 1 I 

(3.7) 

(3.8) 

Fix a vaguely open neighbourhood U of the true r]. The complement of 
U in the set of subprobability measures is a vaguely closed subset of a 
compact set, so vaguely compact. The open cover (U,: y $ Uj of this 
complement has a finite subcover U,,, . . . . Uyp. If q is not in U, then it is in 
one of the U,,, in which case p(x 1 U,,) > p(x 1 q) for every x. Thus by (3.8) 

The conditional probability (given z,, z2, ._.) of each of the sets in the union 
is the probability that an average of m uniformly bounded random 
variables is nonnegative. For a fixed, sufftciently large n these variables 
have a positive expectation under 4 by (3.6). By Hoeffding’s inequality each 
of the probabilities is of order e-“” for some E > 0. More precisely, E can 
be chosen equal to 

2p? 
(M:,-logfl -a))* 

and the upper bound e-‘“’ holds for every n such that the expectation in 
(3.6) is larger than p, say n B N. Consequently, 

f sup P(r?,,, $ U) < co. 
m=* n>N 
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By a minor modification of the Borel-Cantelli lemma it follows that 
fir??, II E U, eventually, almost surely. 

Case 2. n fixed and m + co. The likelihood function is at rl not smaller 
than at IX? + (1 -a)*. Rewrite this as in (3.7), but with q substituted for f. 
The second term on the left is bounded below by n log( 1 -a). Hence we 
obtain 

f log[l+-a(~-lj]+illog(l-z). 
i= 1 I 

Though the right side of this inequality is now positive, the proof can be 
finished as before, where (3.5) is now used instead of (3.6). 1 

Note. The proof of the theorem shows that condition (3.1) may be 
relaxed to the two conditions: 

- q -+ p(.u 1 v]) is vaguely continuous at the true q for almost all x; 

- q -+ p(x 1 r~) is vaguely upper semi-continuous at every ye for almost 
all X, where the set of exceptional set of x may depend on ‘I. 

Note. The measurability condition (3.2) requires some “separability” of 
the stochastic process q + p(x) q); it is satisfied if there is a countable set 
2’ of subprobability measures such that for every x the supremum of 
p(.u 1 y) over y E U is the same as the supremum over all y E U n Y’. One 
sufficient condition for this is lower semi-continuity of the map y + p(x / y) 
for every x and at every y. (Then any countable dense Y?’ qualifies.) This 
is in turn true if the map z -+ p(x I z) is lower semi-continuous and vanishes 
at infinity for every X. Other situations wherein the process q + p(x ( q) is 
separable occur when the map 2 + P(X I z) is left- or right-continuous for 
every X. We exploit this in the examples rather than write up a general 
lemma. 

To compute a maximum likelihood estimate the hardest problem is to 
find the location of the support points of rj. One way to avoid this problem 
is to fix a grid of support points from the beginning and maximize the 
likelihood over all distributions with support in this grid. If the number of 
grid points is chosen larger and larger as the number of observations 
increases, this procedure is known as the “method of sieves.” 

In the present problem the likelihood at q is positive only if q gives 
positive mass to every of the points zr, . . . . zn. Therefore assume that our 
sieves Sm., are stochastic subsets of A?, possibly depending on z,, . . . . z,,, 
but not on A’,, . . . . A’,, that contain +, for every m, n. This already suffices 
to render the sequence of maximum likelihood estimators over &‘& 
consistent. 
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THEOREM 3.2. Let 9 he a locally compact, separable, metric space and 
let the kernel p(xlz) satisfy, (3.1) f or every q E YF, (3.2), and (3.3) for the 
true v. Let A$,, be subsets of SF that depend on z,, . . . . z,, m, and n only and 
contain +,,. Let 0 satisfy 

for some c > 0. Then fl *q almost surelv if both m, n -+ CC. 

ProofI This is almost identical to the proof of Case 1 in the previous 
theorem. 1 

4. EXAMPLES 

EXAMPLE 1 (Shifted Uniform ). Let p(x 1~) = 1 ,_,= + , ,(x) be the density 
of the uniform distribution on (z, 2 + 1) and let I equal Iw or (0, co). Then 
U and V are compact, the maximum likelihood estimator exists, has finite 
discrete support, and is consistent. 

First note that every point in the set U defined in Section 2 is a vector 
of zeros and ones. Hence U is a finite set and certainly compact. Next the 
map q + p(xl q) = q(?c - 1, x) is vaguely continuous at every q that does 
not charge the points x and x - 1. Hence (3.1) is satisfied for all v. The map 
9 + q(?c - 1, X) is also lower semi-continuous for every x. This implies that 

sup P(-~IY)= sup P(XlY) 
i’E 1: ;’ E 1’ n .A‘ 

for every vaguely dense subset of X’. Take a countable dense %” to verify 
(3.2). Finally, suppose p(x I q’) = p(x I q) for Lebesgue almost all X. In terms 
of the cumulative distribution function this equality becomes r~(.u- ) - 
~(x - 1) = q’(x- ) - ~‘(x - 1). Approach an arbitrary y from above by a 
suitable sequence x,, to find that v( y - 1, y] = $( y - 1, y] for every y, 
whence q( - co, JJ] = q’( - co, y] for every y. and r] = q’. 

EXAMPLE 2 (Shifted Exponential). Let Y = [0, co) and let the kernel 
be the shifted exponential density p(.u I Z) = e-(-Y-Z)lra_. Then the set V is 
compact and the conditions of the consistency theorem satisfied. 

To see the first, define for 1 < i < m 

uj= {(p(xlz), . . . . p(X,I=)):.~,,~,,<Z~X,,,}. 

Here for i=O read .xcO) = 0- so that z ranges over [0, x,,,]. Then 
U= lJy= 1 Ui u {0} and to show that V is compact it suffices to show that 
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each V, = {au: 0 d a d 1, u E (ii} is compact. Each element of Ui has (i - 1) 
coordinates equal to zero. Assume for simplicity that X, < x2 < . < x,. 
Then 

(ii= {e’(O, . . . . O,e-‘1, . . . . e ‘“I): xm , <:6x,) 

and 

Vi= {a(O, . . . . 0, em--“, . . . . em-‘“‘): O<a de ‘1). 

This completes the proof of compactness of V. 
Since I + p(.u 12) has only one discontinuity point for every fixed I and 

‘vanishes at infinity, one has ,u(rr/~,) + p(xi q) as q,, *)l for every x where 
rl does not have a jump; hence, for fixed q certainly for Lebesgue almost all 
X. This verifies (3.1). If p(x 1 v’) = p(x ( q) for Lebesgue almost all x, then 

for almost all x. By right continuity of these functions equality must hold 
for every x. Hence q’ = ‘I. This verifies (3.3). 

Finally for verification of (3.2) let 2”’ be the set of all discrete probability 
measures with finite support and point masses in the rationals. Since 
z + p(x 1 z) is right continuous and bounded for every x, it follows that for 
every r] l 2 and x there is a sequence r~, in #’ with qn =-q and 
p(x) qn) -+ p(x 1~). (Discretize q on a grid 2, < z2 < ... -C r, putting the 
mass of q in (zip , , zi] at z, for every i.) This implies that 

SUP P(.~lY)= SUP P(.~lY) 
7 E L’ ytc:n I’ 

for every open set U. Since X” is countable this function is measurable. 

EXAMPLE 3 (Uniform Scale). Let 9 = (0, co) and p(x I ;) = (l/z) 1 ,o,.-,(x). 
This example is treated in detail in Vardi [ 141 and Vardi and Zhang [ 151; 
the latter paper also derives the asymptotic distribution of the maximum 
likelihood estimator. Here we show briefly that this example also falls 
under the present set-up. 

Again V is compact and the conditions of the consistency theorem are 
satisfied. To see the first, set x,,+ ,) = CC and for 1 d i<m 

ui = {( p(x, I z), . ..) p(x, 12)): I,,) 6 z < x,i+ ,,). 

Then U = { 0) u Uy=, Uj. Every element of U, has i nonzero coordinates. 
Assume for simplicity that xi < x2 < . . . < x,. Then 

U,={(l/r)(l,..., 1, l,O,O ,...) O)):x,,_,,<,-ax,,,), 
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where the first zero occurs at the (i + 1 )th spot. The set Vi = {au: 0 d a G 1, 
u l Ui} satisfies 

Vi= {a(l, . . . . 1, l,O,O, . . . . O):O<ad(l/x,)}. 

Hence each Vi, and consequently V, is compact. 
-Validity of (3.1) follows from the fact that z -+ p(?c 1 z) has only one 

discontinuity point and vanishes at infinity, as in the shifted exponential 
example. By the same method as in that example, (3.2) follows from right 
continuity of z -+ p(xl,-) and identifiability (3.3) follows from right 
continuity of x -+ p(+u 14). 

A closer look reveals that the support points of the maximum likelihood 
estimator can be taken equal to the totality of observed values 
s, , . . . . x,, 2, , . . . . z,*. 

EXAMPLE 4 (Exponential Family). Let p(xJz) be the density of a 
one-dimensional exponential family of the form 

p(x I z) = c(z) h(x) e”‘“‘. 

The function h can always be absorbed into the dominating measure p, 
so it is not restrictive to assume that it is strictly positive. Let 
%” = {z: j h(x) ezr(x) LIP(X) < GC: } be the natural parameter space of the 
family. This is an interval that may or may not be closed at its endpoints. 

In many examples the function z -+ p(xl z) is contained in C,(a) for 
every x, but this is not necessarily the case if 9” is unbounded. 

LEMMA 4.1. Let h be strictly positive. The function z -+ p(xlz) is 
contained in C,(F) for every x if and only if both of the following statements 
are true: 

- 9 is bounded below or pt( t: z(t) < t(x) 1 > 0 for every x; 

- 3 is bounded above or p{ t: s(t) > t(x)} > 0 for every x. 

Proof: It is well known that the function z -+ c(z) PI = J h(x) e”‘“’ dp(x) 
is continuous where it is defined and finite, hence so are z + c(z) and 
z + p(x I z). The latter vanishes at infinity if and only if it converges to zero 
as z converges to an open boundarty of 9’. If 5?’ is bounded from above 
and is open on the right, then it must be that s h(x) e”‘“’ dp(x) --+ 00 as z 
increases to the boundary of S. Consequently, c(z) -+ 0 and p(x I z) -+ 0. If 
9 is unbounded from above, then 

p(xIz)=h(x) Se”““-“-~‘)h(t)d~(t) 
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converges to zero as z + cc if and only if p{ r: t(t) > Z(X)} > 0. This takes 
care of the right boundary of 2. The argument for the left boundary is 
analogous. 1 

In the case that T(X) = x the condition for z + p(xJ Z) to be in C,(a) 
may be summarized as: on both ends either d is bounded or the support 
of p is unbounded. 

If the conclusion of the lemma holds, then the set V is compact, so the 
maximum likelihood estimator exists and may be taken to have finite 
support. Furthermore, of the conditions for consistency only (3.3) remains 
to be checked. 

LEMMA 4.2. Suppose that for every u null set A the set {z(x): x 4 A i 
contains a converging sequence with limit not equal to inf r(x) or sup T(X) 
where x runs through the set of all such that p(x( n) is finite. Then n 
is identifiable in the sense of (3.3). In particular, if t(x) =x then 
n is identtyiable if u is equivalent to Lebesgue measure on an open interval 
or is discrete with a limit point in the interior of its support, 

Proof: The equality p(x 1 r~‘) = p(x 1 q) leads immediately to 

s e=6x) dq’(z) = j e=r(-r) dq(z). 
If p(xl$) = p(xl ye) almost everywhere, then v]’ and vl have the same 
Laplace transform at almost every r(x). If the Laplace transforms are equal 
on a converging sequence with limit in the interior of the interval where 
they are finite, then the two measures are equal. This interval inciudes all 
values 7(x) for which p(x I Q-) is finite, whence the result. 1 
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