The uremic solute indoxyl sulfate acts as an antioxidant against superoxide anion radicals under normal-physiological conditions

Yohei Miyamoto,1 Yasunori Iwao,1 Yuka Tasaki, Keizo Sato, Yu Ishima, Hiroshi Watanabe, Daisuke Kadowaki, Toru Maruyama, Masaki Otagiri

1 Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
2 School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada Suruga-ku, Shizuoka 422-8526, Japan
3 School of Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino Nobeoka, Miyazaki 882-8508, Japan
4 Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
5 Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0822, Japan

A R T I C L E I N F O

Article history:
Received 19 March 2010
Revised 13 April 2010
Accepted 19 April 2010
Available online 21 April 2010
Edited by Vladimir Skulachev

Keywords:
Indoxyl sulfate
Scavenging activity
Superoxide anion radical
Neutrophil
Chemiluminescence
Electron paramagnetic resonance

A B S T R A C T

The effect of the uremic solute indoxyl sulfate (IS) on scavenging superoxide anion radicals (O$_2^-$) generated from both the xanthine/xanthine oxidase (X/XO) system and activated neutrophils was investigated by electron paramagnetic resonance spectroscopy, combined with 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide (EMPO). The findings show that the presence of normal-physiological serum concentrations of IS (0.1–10 μM) resulted in decreased formation of EMPO-superoxide adduct without affecting XO activity. Furthermore, IS showed scavenging activity against cell-derived O$_2^-$ generated from activated neutrophils. In addition, IS also eliminated hydroxyl radicals. These findings suggest that IS acts as a novel endogenous antioxidant under normal-physiological conditions.

© 2010 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

1. Introduction

When kidney function is impaired, a variety of pathological changes occur that are collectively referred to as uremic syndrome. A part of this syndrome involves elevated serum levels of a number of substances [1]. In patients with chronic kidney diseases (CKD), uremic toxins accumulate in the serum by a combination of the following four mechanisms: (1) a decrease in renal clearance (indoxyl sulfate (IS)); (2) the accumulation of abnormal metabolites (meth-
tryptophan (Trp) was reported to scavenge both hydroxyl radicals (·OH) and superoxide anion radicals (O₅⁻⋅) [11,12]. In addition, MLT, serotonin and the MLT metabolite 6-OH-MLT also showed antioxidant activity against various free radicals [13,14]. Interestingly, Chyan et al. reported that indole-3-propionic acid scavenges ·OH and also showed potent neuroprotective properties against the Alzheimer β-amyloid [15]. Based on these reports, we hypothesize that, although under high serum levels, IS functions as a prooxidant due to an enhancement in oxidative stress, it may also function as an antioxidant under normal-physiological conditions. However, the detailed information on the role of IS under normal-physiological conditions does not appear to be available.

In the current study, using a luminal-dependent chemiluminescence assay and electron paramagnetic resonance (EPR) spectroscopy, combined with a 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrrole-1-oxide (EMPO)-spin trapping technique, we examined the issue of whether normal-physiological concentrations of IS (0.1–10 μM) show scavenging activity for O₂⁻, generated by both the xanthine/xanthine oxidase (X/XO) system and neutrophils treated with LPS. The findings were compared with the data for other antioxidant compounds, such as Cu, Zn-superoxide dismutase (Cu, Zn-SOD, an O₂⁻ scavenger) and allopurinol (ALP) (a XO inhibitor), and also were compared with that for other uremic toxins under normal non-uremic conditions [16]. In addition, the effect of IS on ·OH generated by a H₂O₂/UV system was also investigated.

2. Materials and methods

2.1. Chemicals and materials

X, XO, IS, uric acid sodium salt, Cu, Zn-SOD and ALP were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Diethyl-ene-triamine-pentaacetic acid (DTPA) was purchased from Dojindo Laboratories (Kumamoto, Japan). EMPO and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) were purchased from Alexis Biochemicals (Lausen, Switzerland). Luminol, indolacetate (IA), hippurate (HA) and p-cresol were purchased from Nakalai Tesque Inc. (Kyoto, Japan). 3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) was synthesized as described previously (Tsutsumi et al., 1999). All other reagents used were of the highest grade available from commercial sources.

2.2. EPR spectroscopy in combination with EMPO and DMPO spins trapping technique

O₂⁻ was assayed by EPR spin trapping with EMPO and the scavenging activity was calculated from the relative intensity of the peak corresponding to the EMPO-superoxide adduct (EMPO-OOH) EPR signal. The reaction mixtures contained 100 μg/ml X, 0.02 μM DTPA, 100 μM EMPO, 20 μM EMPO in the absence or presence of varying concentrations of IS and were immediately transferred to quartz EPR flat cells. EPR spectra were recorded at room temperature on a JES-TE 200 EPR spectrometer (JEOL, Tokyo, Japan) under the following conditions: modulation frequency, 100 kHz; modulation amplitude, 50 Gauss; scanning field, 335.2 ± 5 mT; receiver gain, 300–500; response time, 0.03 s; sweep time, 2 min; microwave power, 40 mW; and microwave frequency, 9.43 GHz. In order to confirm the specificity of the reaction, 100 μg/ml ALP and 5 μM Cu, Zn-SOD were added to the above mixture.

·OH was assayed by EPR spin trapping with DMPO and the scavenging activity was calculated from the relative intensity of the peak for the DMPO-hydroxyl radical adduct (DMPO-OH) EPR signal. The reaction mixtures contained 100 μM DTPA, 9 mM DMPO and 500 μM H₂O₂ in the absence or presence of varying concentrations of IS and were immediately transferred to the EPR flat cell and irradiated with UV (254 nm) for 1 min. EPR spectra were obtained immediately after the UV-irradiation. This analysis was done under the same conditions as were used for the previous EPR experiments. After recording the EPR spectra, the signal intensities of the DMPO-OH or the EMPO-OOH adducts were normalized against that of a manganese oxide (Mn²⁺) signal, in which Mn²⁺ served as an internal control.

2.3. Chemiluminescence assay using activated neutrophils

The scavenging activity of IS against O₂⁻ from the neutrophils was determined using a MiniLumat LB 9506 luminometer (Berthold Technologies, Bad Wildbad, Germany). The neutrophils (1.0 × 10⁷ cells/ml) were pre-treated with LPS (1 μg/ml) for 30 min at 37 °C to activate the cells and generate O₂⁻. Aliquots of this cell suspension were combined with 100 μM DTPA and 500 μM luminol in HBSS in the absence or presence of varying concentrations of IS and 1 U/ml Cu, Zn-SOD. Chemiluminescence was obtained from a graph of the slope of the counts versus time. Isolation of polymorphonuclear neutrophils are given in Supplementary data.

2.4. Chemiluminescence assay using X/XO system

The chemiluminescence response, induced by O₂⁻ generated by an X/XO system, was measured using a MiniLumat LB 9506 luminometer. The reaction was initiated by adding 40 μg/ml X to a sodium phosphate buffer (pH 7.4) containing 0.004 μM XO, 250 μM DTPA and 500 μM luminol in the absence or presence of each physiological concentration of IA, HA, CMPF, uric acids, and p-cresol (Fig. 3). In order to confirm the specificity of the reaction, a solution containing 40 μg/ml ALP and 5 U/ml Cu, Zn-SOD were added to the above mixture. The Chemiluminescence response was continuously recorded for 10 min at room temperature.

2.5. Statistics analyses

Statistical analyses were performed using the Student’s t-test. A probability value of P < 0.05 was considered to be statistically significant.

3. Results

3.1. IS scavenges O₂⁻ generated by X/XO system

Fig. 1A shows data for the radical scavenging activity of IS examined by EPR using an EMPO spin trapping technique. EMPO was generally considered to be a good candidate for quantifying and trapping O₂⁻ and has been extensively used as an efficient spin trapping agent for applications in vitro and in vivo [17,18]. In these experiments, Cu, Zn-SOD (O₂⁻ scavenger) and ALP (XO inhibitor) were used as positive controls. These EPR signals generated by the X/XO system were completely inhibited by the action of both Cu, Zn-SOD and ALP. In the presence of 10 μM IS, the EPR signals were also significantly decreased. When the production of O₂⁻ was calculated using the EPR spectra (Fig. 1B), the concentration of O₂⁻ was found to be about 2.1 μM in the control and IS markedly inhibited O₂⁻ production. These results demonstrate that normal-physiological concentration of IS, exhibited radical scavenging activity against O₂⁻.

3.2. IS does not affect XO activity

Generally, XO uses X/hypoxanthine and oxygen as substrates to generate uric acid and O₂⁻. Although decreases in the EPR signal
can be concluded that IS directly scavenges O$_2^-$.

Further details are given in Supplementary data. Based on these results, since the normal-physiological serum levels of IS had no effect on XO activity, it can be concluded that IS directly scavenges O$_2^-$ generated by the X/XO system.

3.3. IS scavenges O$_2^-$ generated by activated neutrophils

We also examine whether IS shows scavenging activity against O$_2^-$ in a cell system. O$_2^-$ was also generated from LPS-stimulated neutrophils by means of luminol-dependent chemiluminescence, because white corpuscle cells such as monocytes and neutrophils are major sources of various free radicals within blood vessels. As shown in Fig. 2, IS at concentrations of 0.1–10 µM also significantly decreased the chemiluminescence. It is especially noteworthy that the quenching effect of IS at 10 µM was comparable to that of Cu, Zn-SOD. These data suggest that IS also functions as a potential antioxidative compound against cell-derived O$_2^-$.

3.4. IS has strong O$_2^-$ scavenging activity compared with other uremic toxins

As shown in above, within the concentrations observed under normal-physiological conditions, IS would be a potent endogenous scavenger of O$_2^-$.

Thus, we investigate whether other uremic toxins also exhibit antioxidative activity within the concentration range for non-CKD conditions. IA, HA, CMPF, uric acids, and p-cresol, were used, as representative toxins (Fig. 3A) and their scavenging activities against O$_2^-$ under normal-physiological concentrations, respectively were evaluated using the luminol chemiluminescence system. As shown in Fig. 3B, significant decreases in chemiluminescence were observed in the cases of IS, uric acids, and p-cresol, whereas IA and HA showed no effects. Recent evidences demonstrated that in human, p-cresol was mainly circulated in the form of its sulfated conjugate, p-cresyl sulfate, and it increased leukocyte oxidative burst activity [19,20]. Thus, it is interesting to know whether p-cresyl sulfate also possesses radical scavenging activity as well as p-cresol. However, from a structural perspective, it is possible to deduce that the antioxidative potential of p-cresyl sulfate may be weaker than that of p-cresol because conjugate loses the phenolic OH which is generally corresponded to the radical scavenging property of phenolic compounds [21]. If this is correct, the radical scavenging activity of p-cresyl sulfate against O$_2^-$ may be weaker than that of IS since this activity was comparable to p-cresol (Fig. 3B). Of course, further studies using p-cresyl sulfate would be required to provide precise information regarding the roles of p-cresol as a radical scavenger. Collectively, these results and the data shown in Fig. 1, indicate that IS is an effective scavenger of O$_2^-$, among the endogenous uremic toxins.

3.5. IS scavenges OH generated by H$_2$O$_2$/UV system

As mentioned in Section 1, MT, another endogenous indole derivative, was an effective scavenger of, not only O$_2^-$, but also

Fig. 1. Indoxyl sulfate scavenges superoxide anion radicals generated by a xanthine/xanthine oxidase system. (A) The EPR spectrum of EMPO spin adducts of O$_2^-$ generated in the xanthine/xanthine oxidase system; (B) the quantitation of the O$_2^-$ production. Values are expressed as the mean ± S.D. (n = 3–4). *P < 0.05, **P < 0.01 in comparison to the control.

Fig. 2. The antioxidant properties of IS to LPS-stimulated neutrophils, as assessed by luminol chemiluminescence. Values are expressed as the mean ± S.D. (n = 3). *P < 0.05, **P < 0.01 in comparison to the control.
Therefore, we also investigated whether IS showed scavenging properties. In this study, IS was generated by means of an H2O2/UV system. As shown in Fig. 4, IS at 1–10 μM concentrations also eliminated OH significantly, suggesting that IS also acts as a scavenger of OH at normal-physiological concentrations.

4. Discussion

The present study demonstrated, for the first time, that IS, at normal serum concentrations, exhibited radical scavenging activity, especially against O2-. It is well known that O2- species is an important initiator, in that it is capable of generating various reactive oxygen species, such as OH and peroxynitrite, at physiological conditions. In particular, O2- produced by the X/XO system was known to be a significant activator of endothelial NADPH oxidase, one of other major sources of O2-. Such O2- mediate pro-oxidative, proinflammatory, and procoagulatory changes in primary endothelial cell lines. Its damage induced by O2- can disrupt the balance between vasodilation and vasoconstriction, which affects arterial remodeling, inflammatory mediators, and hemostasis and thrombosis. Thus, oxidative stress induced by O2- produced in vascular cells will cause accumulative injuries to the endothelium and consequently are likely involved in the pathogenesis of cardiovascular and metabolic diseases, including atherosclerosis, ischemia–reperfusion injury, diabetes, and hypertension [22–24], if they are not effectively controlled. In other words, an adequate scavenger for O2- is necessary to prevent the damage to the endothelium induced by O2-.

Our study clearly showed that, within the concentrations observed under normal-physiological conditions, IS is a potent endogenous scavenger of O2- generated not only from X/XO system, but also from activated neutrophils. In addition, when the normal-physiological concentration of IS at 1 μM was added to human umbilical vein endothelial cells (HUVECs), a significant de-
crease in intracellular ROS was found, even though IS at levels in CKD conditions such as 100 or 500 μM significantly enhanced the intracellular ROS in HUVECs as previously reported [8]. Further details are given in Supplementary data. These observations predict that, in addition to extracellular SOD, IS may be one of the important endogenous compounds acting as an O2− scavenger in the blood circulation and also serves to protect endothelial functions. Furthermore, IS also exhibited radical elimination properties against OH. These findings suggest that IS plays a role as a novel endogenous antioxidant under normal-physiological conditions. Although the differences of antioxidant activity between IS and other indole compounds remained unclear, the sulfate might be favorable to enhance the reactivity of the electron-attracting nitrogen atom (−NH) in the pyrrole ring rather than other substituents because this nitrogen atom was likely to be responsible for the antioxidative potential of indoles.

As mentioned in Section 1 and Supplementary data, IS at levels in CKD conditions, significantly produced oxidative stress in various cell systems. At a glance, this may seem to be in conflict with the present results in which IS was found to act as an antioxidant. If this is correct, IS has both pro- and antioxidant properties, depending on its concentration. These interesting phenomena may imply that under non-CKD condition, antioxidative activity of IS greatly exceeded the intracellular ROS produced by IS, while under CKD condition, it was well over the radical scavenging activity of IS. In fact, such complex redox alternation is not an exception and has also been observed for other endogenous compounds. For example, uric acid functions as an antioxidant at low concentrations, while it causes ROS production at high concentrations [25]. Although further in vitro and in vivo studies will be needed to clarify the dual roles of IS with respect to its pro- or antioxidant properties, our results also explain, at least in part, the protective role of IS against oxidative stress under normal-physiological conditions.

Acknowledgments

This work was supported, in part, by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (No. 18390051).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.febslet.2010.04.046.

References