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Abstract—In this paper, we consider the nonexistence of eventually positive solutions of the
difference inequality

m
Tnt1 —Tn+ Y Pi(M)Tn_ky(n) S O

i=1

Let m be a positive integer. Then for each positive integer i: 1 <4 < m, {k;(n)}3%q and {p:(n)}S%o
are a sequence of positive integers and a sequence of nonnegative real numbers, respectively. A
sufficient condition guaranteeing the nonexistence of eventually positive solutions is obtained with
the help of a new method. As an application of the main result, a conjecture is proved. (© 2000
Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Consider the difference inequality

Tni1 —Tnt Z‘pi(n)xn—k,‘(n) <0, (1.1)

i=1

and the difference equation corresponding to (1.1)

m
Tp4l — Tn + Zpi(n)zn—k,—(n) =0, (12)

i=1
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where m is a positive integer, for each i : 1 < i < m, {k;(n)}3L, and {pi(n)}o2, are sequences
of positive integers and nonnegative real numbers, respectively. By a solution of (1.1) (respec-
tively, (1.2)), we mean a sequence {z,} 1 ¢+ Where the positive integer ¢ is sufficiently large so
that {z, };12°_, satisfies (1.1) (respectively, (1.2)) for n > 0. For the existence and general theory
of solutions of inequality (1.1) and equation (1.2), we refer to {1,2].

A solution {z,} of equation (1.2) is called oscillatory if for any L (positive integer) there exist
n(L),R”(L) > L such that z,, - zz < 0. Otherwise, it is nonoscillatory. Equation (1.2) is said to be
oscillatory if every solution of (1.2) is oscillatory. A solution {x,} of (1.1) is called an eventually
positive solution (EPS, for short) if there is a positive integer N such that n > N implies z,, > 0.
Note that if {z,,} is a solution of equation (1.2), then so is {~z, }. From this, it is clear that the
nonexistence of EPS of (1.1) implies that every solution of equation (1.2) is oscillatory.

Let m = 1 and set k1(n) = ky, p1(n) = p,. Then equation (1.2) becomes
Tptl — Tp + PnTn—k, = 0. (1‘3)

The oscillation of equation (1.3) has been studied in [3,4].
In (3], Philos proved the following results: if p, > 0 and lim, oo (n — k) = oo, then

n—1 k kn+1
lim inf ; > limsu = 14
iminf ), P lggfoop(kﬁ ) (14
i=n—kn

implies equation (1.3) is oscillatory.

In [4], Yu proved that if

(i) Pn 2 0;
(i) {n — kn}, is 2 monotone nondecreasing sequence and lim,_, oo (n — kn) = 00;

(i)

ko £ 1)1 2
liminf( - ) S >l (1.5)

n—00
n i=n~—ky,

then (1.3) is oscillatory.

Based on the above result, there arises a natural conjecture for (1.1) and (1.2).

CONJECTURE A. If
(i) pi(n) = 0;
(ii) limy,_oo(n — ki(n)) = oo, for eachi:1 <i < my
(iii)
L. i k‘i n)+1 ki(n)+1
I;ngZpi(n)( (ki(n)k?(") > 1, (1.6)

i=1

then (1.1) has no EPS, thus equation (1.2) is oscillatory.

The purpose of this paper is to prove Conjecture A. Indeed, we will first establish a weaker
sufficient condition for the nonexistence of EPS of (1.1) which is analogous to (1.6), that is,
Theorem 1 in Section 2. Then, employing this weaker condition, we prove Conjecture A.

2. MAIN RESULT AND PROOF

THEOREM 1. If
(i)
pi(n) 20, n=0,12,...; (2.1)
(ii)

lim (n — k;(n)) = oo, i:1<i<my (2.2)
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(iit)

-1
iminfd ] ki(n)
lm gt {ozﬂi X pim) (-] } > 1, 3
then (1.1) has no EPS and equation (1.2) is oscillatory.
PROOF. Set kn, = maxi<i<m ki(n) for n =0,1,2,.... We know from (2.2) that
nler;o(n —kp) = 00. (2.4)

We note that (2.3) implies that there exist Cy > 1 and 7 such that for n > 7 and X € (0,1)

sz [ A)AKi (”] sa (2.5)

Assume, for the sake of contradiction, that (1.1) has an EPS, say {x,}. Then there exists ig > 7
so that z,, > 0 for n > 7.

So for n > Ty, we can rewrite (1.1) as
x"+1—1+z ""(")<0 (2.6)

Furthermore, we may assume by (2.4) that there exists @; > 71y so that n — k, > 7ig for n > 7,
that is, for each ¢ : 1 <4 < mand n > 7, we have z,,_g,(n) > 0. Combining this result with (1.1),
one obtains .41 — zn, <0, ie., (Tnt1)/Tn < 1 for n > 7;. In a similar way, from (2.4) we can
find My > Ty so that n — k, > 7y for n > M. Thus, foralln > 7y andeachi:1 <1 <m,

ki(n)
Inckin) _ [T 2=l >,
Tn jo1 Tn—gtl
This result and (2.6) lead to
m
.
% -1+ Z:pi(n) <0. (2.7)

-«

We may assume from (2.3) that for n > 7,y .-, pi(n) > 0. Combining this and (2.7), we get
(Tny1)/2n < 1 for n > Ty. In a similar fashion, we find T3 > 71, so that n — k,, > 7y for n > 73.
So we have

Incitl o, forn>7;,  j:0<j<ky (2.8)

Tp—j

Dividing (2.6) by (1 — (zn+1)/zx) yields

sz n) [( x"“) ]:—"]_1 <1 (2.9)

Tn Tn—ki(n)

For each n > 7i3, we define a(n) : 1 < a(n) such that

e (2.10)
Tn—a(n) 1<j<ks Tp—j .
By (2.8), we obtain
T
TnmeWH o forn > T (2.11)

Tpn—a(n)
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At the same time, for n > i3 and each i :< i < m, we have

k,(n) k.(n)
In Tn—-1+1 < <$n—-a(n)+1) (2 12)

Tp—a(n)

From (2.9), (2.11), and (2.12), it is easily obtained that

m ko] 7!y
3 piln) [(1 ~ .’L'n—a(n)+1> (:vn-a(n)+1> ] [ (xn—a,(n)-i-l/xn—a(n))] <1 @13
i=1

Tp—a(n) Tpn—a(n) 1- (.’IJn+1)/.’L‘n

Now, combining (2.11) with (2.13) and (2.5), one obtains

Co [1 - (In—a(n)-{-l/xn—a(n))] <1
1- (mnﬁ-l)/xn
From this, for n > 7i3, we have
Ty
Tn41 < In a(n)+1 ‘ (2.14)
Tn Tn—a(n)

To complete the proof of Theorem 1, we need the following lemma.

LEMMA 1. If (2.1)-(2.3) hold, then

Tp—
limsup —2=2*L _ imsup 22 — g < 1. (2.15)

n—oo  Tp—g(n) n—oo In

PROOF OF LEMMA 1. Let a = limsup,,_,.(Zn+1/Tn). Then we know from (2.4) and (2.14) that
lim sup,, o0 (Trn—a(n)+1/Tn-a(n)) = a. It is sufficient to prove a < 1. To.do so, we let

LTm+1
U, =  max mtl (2.16)
e<m<n—-1 Ty,

It is easy to see that up41 > up and u, < 1 for n > Tiz. On the other hand, (2.16) gives

Tm+1
Up41 = Max
Tia<m<n Ty,
Tn41 z 1
= max + max m
In fig<m<n—1 Iy

Tn+i
= max{ —* u, }.
Tn

But for n > Tig, we have iy < n—k, < n—a(n) < n—1. We then derive, from (2.10) and (2.14),

that
Tn41 Tm+1
“ntl o max L= .
T fie<m<n—1 T,

Thus, up4+1 = Uy, for n > 73, that is, for all n > N3, u, = ug,. Moreover, we actually obtain that,

for all n > 73,
Tn+1

Tn

S Upy1 = Un, < 1.

So we have a = limsup,,_,o,(n+1/Zn) < tug, < 1. This complete the proof of Lemma 1.

Let us return to proof of Theorem 1. Let {x,;} be a subsequence of {z,} so that

lim Z* g (2.17)

N0 Ty
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Then we obtain from (2.15) and (2.17) that

(1 — .'L'n]--—a("jHl) /Z'nj—a(,,,j) (1 — znj—a(-,.j)+1) /Cl?nj—a(.,lj)

lim inf = liminf
ny a0 1 — 2,41/, Ry 2150 lim (1 —2p;41/2n,)
n;—o0
1 —lim supxn]._a("]_)“/znj_a("]_)
_ n;—o0
- l-a
S l1-a
T l-o
In summary, we have established the following:
hm lnf 1 — (xnj_a(nj)+1/xnj_a(nj)) > 1 (2 18)

nyTeo 1~ (2n,+1/%n,)
Putting {z,} into (2.13) and employing (2.18), we have

. m 1Inj_a(nj)+1 :I:nj_a(nj)+1 ki(n)]~
1> lminf§ > pilng) | (1

im1 Tn;—a(n;) Tn;—a(ny)

1

1- (wn,-—a(nj)-f-l/x"j—a("j))
1- (wnj+1/z"j)

m kj n -1
> liminf ¢ > pi(n;) [(1 - “’nj—a<nj)+1> (mnj-a(n]->+1) ( )]
~ nj—o0 T

i=1 Zn;-a(n,) Tn;—a(n;)

{ 1 = (%n,~a(n;)+1/%n;—a(n;)) }

1- (xnj+1)/$nj

lim inf
n; —00

n;—o00 | 0<i<

i -1
> liminf{ infl pz'('nj) [(1 _ )\))\ki(ﬂj)] } .
1=1

Putting these inequalities together, we get

. . . . _ k;(n)
e e, S50 1] <1

Then, using (2.3), we obtain a contradiction. The proof of Theorem 1 is completed.
We are now in the position to prove Conjecture A by virtue of Theorem 1.
THEOREM 2. If
(i) pi(n) 20,i:1<i<m,n=0,1,2,...;
(if) limpoo(n — ki(n)) = o0, for eachi:1<i<m;
(iii)
m
o ' (ki(n) + l)ki(")+1
11nn_1>101c1)f z;p,(n) R () F: ) > 1, (2.19)
=

then (1.1) has no EPS, that is, Conjecture A is true.

ProoF. The proof is merely a verification for

U -1 = (ki(n) 4 1)k:(m)+1
i , _ ki(n) . %
,min ;pz(n) [(1 = a7 > ;pz(n) Py ET O

which is easily obtained by noting that
-1 (ki(n) + 1)ki(n)+1
B ki(n)ki ()

Jmin, (1= k)]

This completes the proof of Theorem 2.
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3. A COMPARISON BETWEEN
THEOREM 1 AND CONJECTURE A

From the proof of Theorem 2, we see that Condition (iii) in Theorem 1 is no stronger than
Condition (iii) in Conjecture A. In this section, we give an example to show that Condition (iii)
in Theorem 1 is indeed weaker than Condition (iii) in Conjecture A.

Consider the nonexistence of EPS of the difference inequality

Tntl = Tn + PnZn—j, + @nTn—k, < 0. (3.1)
We have the following theorem.

THEOREM 3. Ifp, >0, ¢, >0, n=0,1,2,..., and

(i) there exists a positive integer k so that

1<, <k, forn=20,1,2,...; (3.2)
(ii)
lim k, =00 and lim (n —ky) = o0; (3.3)
n—>00 n—o0
(i)
(kn + 1)k +1

#0, (3.4)

liminf p,, - liminf ¢, -
n—o0 n—00

k"’fin
then (3.1) has no EPS.
PRrROOF. We first show that limsup,,_,., p, > 1 implies that (3.1) has no EPS. Indeed, if this
were false, let 8 = limsup,,_,,, pn > 1 and {z,} be an EPS of (3.1). Then
Tptl —Tn + PnZn_j, <0 (3.5)
Let {pn,} be a subsequence of {p,} so that limy, .o pn, = 8. Choosing fo : 1 < By < B, then
there exists N such that n > N implies p,, > By. From this and (3.5), we have
Tni41 — Tn, + ﬂoxm—ju, <0. (36)

But on the other hand, we know from (2.8) that for sufficient large ni, zn, < apn,—j,,, ie
—Zn, + BoZn, Gy > 0. So xp,+1 < 0 for sufficient large n;, which is a contradiction. Thus, we
assume without loss of generality,

w = limsupp, <1, 8.7)
n—00 .
v = liminf p, > 0, (3.8)
n—oo
k., ky 41
w = liminf ge TV g (3.9)

n—00 kﬁn

Using the fact that lim,—((n +1)/n)" = e, we obtain from (3.3) and (3.9) that liminf,
gn{ky, + 1) = w/e. Combining the previous estimates, we can find Ny such that for n > N,

Vo < Pn < ug, (3.10)
Glkn+1)2 =2 k> k, (3.11)

where vy is such that (1/2)v < vy < v and up is such that v < up < 2 and wy satisfies
(1/2)w < wo < w. Let fn :(0,1) — R be defined as follows:

Fa) =pa [(L= 2N ] ga [A=2M]7Y, 0<A<L (3.12)

Noting that limy_,g+ fn(A) = limx—1 fn(A) = 00, we may assume that exists r,, : 0 < r, < 1 such
that

fn(rn) = Oér/{ilfn()\)’ (313)
Fora) = 0. (3.14)
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LEMMA 2. The r, defined by (3.13) and (3.14) satisfies
lim 7, = 1. (3.15)

n—o0

PROOF OF LEMMA 2. By (3.12), it is easy to verify that f/ (r,) = 0 is equivalent to

] kn ke
(1) (7o = =220 ) o = a0 )] (g = ) e,

- Jnt+1 k, +
that is,
k . J 1k
(kn Y1 T") =144 (r" T 1) Pafgn (1 + ka)] 7T, (3.16)
So we get '
In n
T , for n > Np.
Jn+1 " kn+1 =0

From (3.10), we have

. Jn . Jn
1 - < (1 1-— = < up.
( +Jn)<7"n jn+1>Pn ( +Jn)< jn+1>Pn Pn < U

This together with (3.11),(3.16) gives

k'n Up€ k,, —k
— T < —1n TR, 17
k,+1 "n wWo "n (3 )

If there exists a subsequence of {r,}, say {r,,} so that

lim r,, =s<1,
ny—oo

we choose so : s < sp < 1. Then there exists N1 > Ny such that for n; > Ny, rn, < sq.

On the other hand, from limy, oo (kn, /(kn, +1) —7n,) = 1 — s, we can find No > Nj such
that for n; > Ns,

kn,
—_—— >1- 8. .18
ke +1 ™ %o (3.18)
By (3.3), we assume k,,, > k for n; > N,. Combining (3.17) with (3.18), it is easy to deduce that
l —
180 < S ™", formy 2 Ny, (3.19)
0

Let n; — co. Then k,, —k — o0, and (3.19) gives: 1 —sg < 0, that is, sg > 1. As this contradicts
the fact that sg < 1, the proof of Lemma 2 is complete.
Let us return to the proof of Theorem 3. Now from (3.2), (3.8), and (3.12), it is easy to obtain

liminf f () = liminf {pn {(1 = ra)r] ™ + g [(1 = ra)rke] '}

> liminf p, - liminf [(1 — rn)rn]_1
=00 n—oo .

=v-liminf (1 —7y)7!

n—o0

=v- lim (1 —7,)""

n—o0
= m7
that is, liminf, . {infocrc1 fn(A)} = o0.
Now, Theorem 1 implies the assertion of Theorem 3. The proof of Theorem 3 is completed.
Finally, if we specify p, = 1/8, j, = 1, k, = [\/n], and g, = 1/(4([v/n] + 1)e), where [] is the
greatest integer function, then

(o + 1+ (kp DRt 1 1 1\
A vt = ()
— ! + i-e _1 asn — oo
4" 4 2 ’

Thus, (1.6) is not satisfied, and hence, Theorem 2 does not apply to (3.1).
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