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Let as be the number of strings of length n in a set -//_C 27", where 27 is 
a finite alphabet. Several criteria for determining that a set is not recognizable 
by a finite automaton are given, based solely on the sequence {a~}. The sequence 
{a~} is also used to define a finitely addititive probability measure on all 
recognizable sets. 

1. INTRODUCTION 

T h e  mos t  c o m m o n  proof  that  a set is not  recognizable  by a finite au tomaton  

uses a fundamenta l  t heo rem which  says that  i f  a sufficiently long str ing x 

is accepted by a par t icular  automaton,  the  s tr ing can be factored as x = uyv, 

where ,  for each n >~ O, uynv will also be accepted by the automaton.  Us ing  

this t heo rem to p rove  unrecognizabi l i ty  of  a set requires  some knowledge  

of  the  way  symbols  are ar ranged in the  strings of  the  set, in o rder  to prove  

tha t  such  a factorizat ion cannot  always be made.  

Minsky  and Paper t  (1966) and C o b h a m  (1966, 1969) have deve loped  other  

cri teria for recognizabi l i ty .  T h i s  paper  discusses some proper t ies  of  

recognizable  sets based solely on the  sequence  {an} , where  a n is the  n u m b e r  of  

s tr ings of  length  n in a set. T h e  connec t ion  be tween  finite au tomata  and 

M a r k o v  chains suggested by Har tman i s  and Stearns  (1967) is explored,  

p rov id ing  a finitely addi t ive measure  on all recognizable  sets, which  can be 
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characterized in terms of the sequence {an}. The  sequence {an} also determines 
the generating function f ( z )  = Y~n~o a~ zn. The main result of the paper 
indicates some connections between a recognizable set A, the measure of 
A, its generating function, the rate of growth of the sequence {an}, and some 
properties of the minimal automaton recognizing d .  These results can be 
used to show that certain sets are not recognizable. 

Consider a problem which motivated this investigation. Suppose + is a 
symbol for a binary operation and x is a variable symbol. The  well-formed 
expressions involving q- and x can be represented as binary trees with 
label + at the branch points and x at the end points, as shown in Fig. 1. 

FIG. 1. 

+ X 

/ \  
X X 

Tree representation of (x + x) + x. 

I f  any of the usual methods of writing these expressions is used, such as 
Polish prefix or infix with parentheses, the resulting set is context-free, but 
not recognizable by a finite automaton. See, for example, Brainerd (1969). Is 
there some way of writing the expressions so that the set of strings is 
recognizable ? 

There are cn = (~n)/(n - /  1) trees with n + 's, which also have exactly 
n + 1 x's; see Knuth  (1968). I f  A is a set of strings in which just  the symbols 
+ and x appear and a n is the number of strings of length n, then a2n+l = % 
and a2~ = 0. Theorem 4 will show,  using this information alone, that the 
set A cannot be recognizable. Even if other symbols, such as parentheses, 
are used, then the set still cannot be recognizable, since recognizable sets are 
closed under the morphism which deletes the extra symbols; see Hopcroft  and 
Ullman (1969). 

Let  27 = {1, 2,..., k} be a finite alphabet and let 2J* denote the set of finite 
strings over 2J. Let  l x l  denote the length of x ~ 27*. We are primarily 
interested in the case where # Z  = k > 1, i.e., z contains at least two letters. 
The  case # Z  = 1 will be discussed in Section 7. 

All automata discussed will be deterministic minimalfinite automata. I f  the 
machine is in state q, then qx will represent the unique state of  the automaton 
after reading input x ~ Z*. The  initial state wilI always be ql ,  and the set 
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recognized by the automaton is {x e Z* ] qlx eF}, where F is the set of final 
states. 

A state q is a dead (or sink) state if q @F and qa = q for each a e2;.  A 
minimal  automaton can have at most one dead state. 

There  is a convenient bijection between Z'* and the natural numbers  given 

by 

' - ' (%  " "  ~1%) ~ ~ x h i 
i=O 

The  null sting • corresponds to zero, i.e., v(•) = 0. Note that this is not the 
usual k-ary notation which, due to leading zeros, does not define a bijection 

between {0, 1,..., k - -  1}* and the natural numbers.  
The  following definitions are slight modifications of those in Minsky and 

Papert  (1966). For  n > 0 and A C Z*, let as = {xeA[~,(x) < n}. For  the 
set 2* ,  a~ = n, so, in general, o~n/n is the proport ion of strings x in A with 
~(x) < n and lim~-~o %/n, if it exists, is a measure of the set A. Minsky and 
Papert  proved, among other things, that if lim~_~ an/n = O, then a minimal 
automaton recognizing A must  have a dead state. This  will be generalized 

slightly by Theorem 4. A diNcul ty  is that lim,_~o %In does not exist even for 
some very simple recognizable sets. I f  A = (Z"~) * = {x ~ 2* I I x[  is even}, 
then there are subsequences of an/n converging to ½ and x,2 thus lim~_,~o %/n 
does not exist. A measure will now be defined on all recognizable sets, which 
is equal to lim.~_~o %In whenever the limit exists. 

2. A MEASURE FOR RECOGNIZABLE SETS 

Each determinist ic finite automaton with s states determines an s × s 
stochastic matrix M, where ~V/ij = # { e  ~ 2[qi~ = qs}/k. In  other words a 
Markov chain is obtained by treating the input  letters as being generated by 
independent  Bernoulli  trails with the probabil i ty of each letter equal to 1/k. 
Thus,  if the machine is in state q and an input  letter is generated, the machine 
will enter state q~, 1 ~< ~ ~< k, with probabil i ty 1/k. T h e  result of a com- 
putat ion will be uncertain due to the random input, but  the machine itself 
still operates in a determinist ic way. 

T h e  terminology used here is that of Doob (1953) and Kemeny and Snell 
(1960). A Markov chain induced by a minimal automaton will have some 
special properties.  Let  T be the set of transient states. I f  there are any transient  
states, then the initial state ql must  be one of them. If  there are no transient 
states, i.e., T = ~ ,  then M itself must  be ergodic. 
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A measure/~(A) of any recognizable set may be calculated as the probability 
that the Markov chain induced by the minimal automaton accepting A is in 
a final state. 

The  following facts concerning stochastic matrices will be used [see, for 
example, Doob (1953)]. 

The  value of (M' ) i j  is the probability of being in state j after n steps, if 
initially in state i. Let  ~)(n) = (M~)lj be the probability of being in state j 
after n steps, starting in the initial state. Note that 

a, /k  n ~ A.) 
= PJ " (2.1) 

j e F  

I f j  is a transient state ( j  6 T), then 

limp) .) ---- 0. (2.2) 

I f  j is not a transient state ( j  ~ T), then there are integers t~ > mj ~ 0, 
such that 

-(n~j+~) t~rj > 0 if m ~ mj(mod 6"), 
lim pj :: (2.3) 
. ~  ~0 otherwise. 

Hence the Cesaro limit 
N 

lim 1 ~ A,) 2.2=1 pj = ~j / t j .  (2.4) N - ~  

The  measure k~(A) is thus defined and characterized by the equations 

. ] N 

= (a . /k")  (2.5) 

---- lira ~ 1 (n) 

n = l  i~F 

= E 
J~FnT 

Kemeny and Snell (1960) give methods for calculating/~(A). The  essential 
step is the inversion of a matrix which will always be nonsingular. 

THEOREM 1. For each recognizable set A,  the measure 

~(A) = lira 1 ~ (a=/k') 
N - ~  J¥  . = 1  
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exists and satisfies the following properties: 

a. 0 <~(A) '~  1 

b. IX(A k3 B)  = IX(A) + ~(B)  i f  A (5 B = Z ,  i.e., IX is finitely additive. 
More generally, IX(A k3 B)  = tz(A) + t~(B) - -  t~(A (~ B). 

c. IX(A) ~ - 0  i f  A is finite, i.e., g, is diffuse. 3/Iore generally 
~(A w B) = ~(B). 

d. ix(Z* - -  A )  = 1 - -  ix(A). 

Pro@ For part (b), if C = A tJ B and D = A n B, then c~ ~- an+bn - d, .  
For part (c), if A is finite, then all final states are transient states and so 
ix(A) = 0 by (2.5). | 

The  measure IX has other intuitively appealing properties. For example, 
if # Z  = k, then /z(a " N * ) =  IX(X*- a ) =  l /k,  for each letter a. Also 
ix(2i) * = 1/i. This last example is the one cited in Section 1 for which the 
Minsky-Papert  measure does nqt exist. Tsichritzis (1969) discusses other 
interesting properties of measures on countable sets. 

TI4EOREIvI 2. I f  the Minsky-Paper t  measure l i m ~  (c~/n) exists for a 
recognizable set A,  then it is equal to IX(A). Indeed, i f  ~n/n --> p, then an/k ~ --~ p. 

Proof. Let c~ = V(I~), the number whose k-ary representation is a string 
of n l 's. Then  a~ = ~%+1 - -  ~% ' and so 

a~l kn = (%+1 - -  % ) I  kn 

= (%+de~+i) × (k~+~ - ~)lk~(k - -  1) 

--  (ac~/c~) × (k ~ - -  l)/k~(k - -  1) 

--+ p(h ~+~ - -  kn)lk~(k - -  1) 

~- p, 

since the subsequence {a%/Cn} must also converge to p. | 

3. THE RATE OF GROWTH OF a n 

I f  Z' has k letters then lim,_~ a,~+l/a,~ <~ k, for any set A. I t  might be 
conjectured that if the measure IX(A) of a recognizable set is zero, then the 
maximal rate of growth cannot be achieved. This will be shown to be true, 
but  first, we will show that there are recognizable sets with IX(A) -= 0 such 
that l i m n ~  an+l/a,~ is arbitrarily close to k. 

643[2I[2-6 
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For  a given number  s of states, there is an interesting automaton which, it 
is conjectured, has the max imum l i m n ~  a~+l/a ~ of all machines with s states 
such that  if(A) = 0, i.e., of all machines having a dead state as the only 
ergodic state. Fo r  simplicity, let k = 2. This  machine is nicely represented 
by the tree in Fig. 2. 

FIG. 2. 

1 2 \,: /// 

\ / 

t / 

The s-state Fibonacci machine. 

All states are final except the dead state s. I t  is easily verified that  for 
0 ~ n  < s ,  an = 2  n and for n ~ s ,  a~ = a n _ l - } - a ~ _ ~ - } - . - . + a ~ _ ( , _ l ) .  
Thus  a .  is a generalized Fibonacei  sequence, and for s = 3, it  is the familiar 
sequence 1, 2, 3, 5, 8, 1 3 , . . .  Fo r  this reason, call this machine the s-state 
Fibonacci  machine. As in Alfred (1965), x ~ limn~o~ an+a/an may be calculated 
by  solving the equation P s ( x ) =  x 8-1 . . . . .  x -  1 = 0. (For  s = - 3 ,  

a• = an_ i @ an_ 2 implies (an/an-s) × (an-i/an-x) = (an-1/an-~) + (an-2/a,~-~) 
and taking the l imit  of both sides yields x • x = x -]- 1 or x ~ - -  x - -  1 = 0, 
whose positive solution is the golden ratio (1 + V/5)/2.) Now P ~ ( 1 ) =  
1 - -  (s - -  1) < 0, for s > 2, and Ps(2) : 1, which means that  there is a 
solution between 1 and 2. Fur thermore ,  for x > 2, 

Thus  

8-1 
1 > 1 1Ix x -  ~ 

x - - 1  - -  1 - - 1 / ~ - -  > ~ x - i "  
i=I i=l 

s--1 s--1 
x~-I  > x~-I  × ~ x-~ = ~ x ~-~-1 = x~-2 + . . .  + x + 1. 

i=l i=1 
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Hence Ps(x) > 0 for all x > 2. Since all solutions of P~(x) are less than 2, 

that  means l imn~,  an+l/a~ < 2. 

THEOREM 3. For every 8, 0 < 8 < 1, there is a recognizable set A C_ {1, 2}* 

such that t~(A) = 0 and l i m n ~  an+l/an = r, where 2 --  3 ~ r < 2. 

Proof. 

_ 1 (1)/(, 
i = 1  

1 \ 

} = 1 / ( l - - a )  > 1. 
8 / 

s - 1  
Choose s large enough so that ~i~1 (2 - -  8) - i  > 1. Then  

Thus  

s - -1  

Z (2 - - 8 )  8-'-1 > (2 - - 8 )  8-1. 
i = 1  

P,(2 - -  8) = (2 - -  8) 8-1 - -  (2 - -  8) ~-* . . . . .  (2 - -  8) - -  1 < 0. 

Since P,(2) > 0, the solution r = limn_,~ an+l/a,, for the set A accepted by 
the s-state Fibonaeci  machine must  be between 2 - -  8 and 2. The  measure 
/~(A) = 0, because all final states are transient states. | 

4. GENERATING FUNCTIONS 

T h e  sequence an = # { x E A I ]  x l =  n} of a set A determines the  
o~ n 

generating function f ( z )  = Y~n=0 a ~ z .  Cobham (1966) and Kuich (1970) 
show that  the generating function of any recognizable set must  be rational. 
Let  PA be the radius of convergence of the power series f ( z )  = ~n~°=o a~z n. 
I f  A C B, then an ~ bn and so PA >/ PB" For  the set 27* = {1, 2,..., k}*, 
f ( z )  = ~n~=o k~z ~, hence Pz* = 1/k. Thus,  for any set A C_ 27", Pa ~ 1/k. 

In  the next section, relationships between the value of PA and other things 
discussed previously are proved. Some additional facts about generating 
functions are needed. Let  g(z) = ~ = o  b,~ zn be the generating function for 
a set B. I f  A u B, AB,  and A*  are unambiguous sets (i.e., A and B are 
disjoint;  x ~ A B  can be factored in only one way as x = uv, where u E A, 
v ~ B; and each x ~ M* can be factored uniquely as x = x 1 "-" xn ,  where 
x I ~ A, 1 ~ 1 ~ n), then the generating functions for A t.) B, AB,  and A *  
a r e f ( z )  + g( z ) , f ( z )  × g(z), and 1/[1 - - f ( z ) ] ,  respectively; see Kuich  (1970). 
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5. CRITERIA FOR RECOGNIZABILITY 

THEOREM 4. Let A C 27*, with #27 = k, be recognized by a finite automaton. 
Let Q be the states of the minimal automaton 6g which recognizes A.  Let 

cO ~b 

a~ = {x e A [ ] x i = n}, PA = the radius of convergence of Z,=0 a , z  , and 
/x(A) = limN_.~o 1/N Z~=I (a,/k~) • Then the following are equivalent: 

a .  

a t" 

a t t "  

b. 

b ' .  

b ~" 

c .  

d. 

e .  

f. 
such that 

6g has a dead state d accessible from each state q ~ Q. 

Vq ~x(qx = d) 

Vy 3x ~/z(yxz ~ _/t) 

3x Vy Vz (yxz  ¢ A)  

~x Vq(qx = d) 

3x(Z*xZ* n A = ~ )  

PA > 1/k 

an/k n -+ 0 

= o 

There is no subsequence of {an} of the form {an~+m}~=O, t > m ~ 0, 
lim~_~ a(~+l)~+m/a~+m = hL 

Proof. a, a', and a", as well as b, b ' ,  and b" are obviously equivalent. T h e  
chain of implications a' => b '  => b" => c ~ d ~ e => a ~ f ~ e will be proved. 

a ' ~  b ' :  Le t  Q = {ql,.. . ,  q~} be the states of C/. Assume qixi = d, 
l < ~ i < ~ s .  

Let  q2xz = qi2 , then q~xlxi~ = d 

L e t  qaXlXi2 = qi3 , t h e n  q3xlxi2xia = d 

. . ,  

L e t  qsx lx i~  "~" xi~_l = qi~ , then qisXlXi~ . . .  Xi ~ 7-- d 

Let  x = xlxi2 "'" x i , ,  then Vq qx = d. 

b" ~ c: T h e  technique used in this p roo f  was provided by  S. Eilenberg.  
Assume Z * w Z * C S A  = N, where  w = ( 7 1 a  u . - . a  m. For  each a~22, let 
Zo = 2J - -  {o}. Let  A '  = 27* - -  27*wZ* D A,  so that  PA >/ PA" • Let  

B = (2 1) w u u . . .  u . . . .   m_i2o,.) 
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and let C = {e;a 1 , ~1% ,-.., ala~ "'" ~ - 1 } .  For  example, if w = 121 and 

k = 3, then 

B = {2, 3, 11, 13, 122, 123} and C = {e, 1, 12}. 

Now A '  = X*  - -  Z * w Z *  C_ B A  w C, since if x e A ' ,  then either x e C or x 
consists of a member  of B followed by  a string in which w does not occur. 

LEMMA. 

Pro@ 

I f  X C_ B X  U C and e ~, B,  then X C_ B*C.  

X C _ B X t 3  C C  B ( B X U  C ) w  C ~- B 2 X u  B C W  C 

C _ B a X u  B 2 C u  B C u  CC__ .... 

By induction X C _ B ~ + I A u B ~ C u ' " k J B C U ( 2 ' ,  for any n ~  1. Let  
x ~ X ,  I x I  = n ,  then x ¢ B n + l X ,  since y 6 B  n+l implies IYl  > / n + l .  
Thus  x ~ B n C  U "" u B C  w C C_ B*C.  (This  is part  of the proof  of the well- 
known result that  if E 6 B, then the unique solution of X = B X  u C is 
X = B*C. )  

Since A '  C_ B A  ~ u C, d '  C B ' C ,  by the lemma. Thus  PA ~ PA" ~ PB*C" 
T h e  generating function for B is k ' (z  + z 2 + ."  + z "~) = h'z (z  ~ - 1)/(z - 1), 
where k' = k - - 1  = # Z ~ ,  and the generating function for C is 
1 + z + ... -~- z m-~ = (z m - -  1)/(z - -  1). Thus  g(z) = h(z)/[1 - -  k'zh(z)],  

where h(z) = (z ~ - -  1)/(z - -  1) = (1 - -  z~)/(1 - -  k z  + k'z'~+~). Let  D(z)  = 

1 - -  k z  + k ' z  ~+1, then D(0) = 1 and D(1/k) = k ' /k  ~+1 > 0. The  derivative 
D'(z)  = (m + 1) k ' z  ~ -  k. For  0 <~ z <~ l /k ,  

D' (z )  <~ (m + 1) k ' /k  ~ - - . k  < k[(m -I- 1)/k "~ - -  1] ~< 0. 

Thus ,  since D'(z)  < 0 for 0 ~ z ~ 1/k, D(z)  > O, for 0 ~ z ~ 1/k and thus 

PA >~ P.~" >~ PB*C > 1/k. 

c ~ d: I f  ~2~_0 a~(1/k) ~ converges, then an/k n --+ 0. 

d ~ e :  I f a n / k  n - - + O , t h e n  

L _ 1 N 
. c A )  = Z a o / "  = ao/kn = 0 

~Y=I 

e ~ a: If /x(A) = 0, then each final state of 0 / m u s t  be a transient state by 
(2.5). Any  two nontransient  nonfinal states would be:equivalent  dead states; 
thus there is exactly one nontransient state (the dead state) which must  be 
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accessible from every state, since at least one nontransient state is accessible 
from each transient state in any Markov chain. 

a ~ f: Let  x be a string of length nt + m in A,  where n >~ 0, t > 0, and 
m ~> 0 are arbitrary. Let  i be the smallest integer such that 

( n +  1) t + m > s =  # ~ .  

By assumption, there is a y such that qlxy  = d, the dead state, and y may be 
picked so that l Y [ < s = # Q .  Thus  x y z  ~ A ,  for all z. Thus  

#{weAt  lxwl = ( n + i )  t +  m) ~< k"- -  1; 

h e n c e  a(n+i)t+m/ant+m ~.~ k i~ - -  l .  H e n c e  

(lim a(~+1)t+~/a~t+)~) i 

lira a(n+1)t+~/ant+m × lim a(~+2It+~/a(n+l)t+~ × "'" 
n - - )  co  n - > c o  

74 lira a(~+i)t+~/a(n+i+l)t+~ 
n - )  oo 

lim a(~+i)t+m/ant+~ < k it, 

and so 
lim a(n+lit+~/ant+~ < k t, if the limit exists. 
n - - )  oo 

I t  should be noted that this result does not follow from only the fact that 
the automaton has a dead state. I t  is crucial that the dead state be accessible 
from every state. For the set A = 1Z* , / x (A)  = ½ and A is recognized by the 
minimal automaton in Fig. 3 which has a dead state. 

1 , 2  

FIG. 3. An automaton with a dead state and ~(A)~> 0. 

f ~ e: The  contrapositive is proved. Assume ~(A) > 0. Then  by (2.5) 
and (2.3), there is a final nontransient statej  e F  c~ T and numbers 0 ~< m < tj 
such that lim ,(n~+~) n ~ m  ~- ~r~ > O. Let t = l-IieF•T t i ,  where t i is the 
number given by (2.3) for each final nontransient state. Then  

n-~oo n ~ o o  i f f F r ' ~ T  
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which exists by (2.4) and the choice of t. Fur thermore ,  

L ~> l im p(nt+m) = rrj > O. 
n ~  co 

Thus  

l im a(n+l)~+m/ant+l 
n - ~ m  

= lim [a(n+l),+m/k (~+l)~+m] × [knt+m/a.~+r~] × (k ~) = ( L / L )  × k ~ = k t, 
n-+ rro 

181 

which contradicts condition f. | 

6. EXAMPLES 

Any set which satisfies one of the conditions in Theorem 4 but  does not  
satisfy one of the other conditions must  not be recognizable by  a finite 
automaton. Several examples will now be given. In  each example, assume 

= {1, 2}. 
Let  d = {x • ~ [ x E 27"}, where ~ is the string x reversed. For  this set 

a2~ = 2 n and a2~+, = 0. Thus  / , (d )  = l im~,~2~/2  = ~ =  0, satisfying 
condit ion e. However,  A violates condition b", since for each x, e • x • ~ E d .  

Le t  A = {x I v(x) is a prime}. For  the set of primes an ~'~ **/log n and so 
% ,  ~-~ 2'~/n log 2. Thus,  

a,~ ~ 2~+1/(n + 1) log 2 - -  2n/n log 2, 

an+l/a,~ ~ (2 '~+2 - -  2~+1)/(2 '~+1 - -  2 '~) = 2, 

which contradicts  condition f. However,  

a,~/2 n = [2/(n + 1) - -  1/n]/log 2 

= (n - -  1) /(n 2 q- n) × log  2 

- ~ 0  

and so A satisfies condition d. 
I t  is of interest  that  the set of primes also does not satisfy b"; in fact, for 

each x, there are infinitely many y such that  v(xy)  is prime; see Sierpinsky 
(1959). 

Le t  A be the set of strings representing well-formed expressions in a 
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binary operator and variable symbol. A s  was stated in t h e  introduction,  

1 (2n) 1 ~ / ~ ( 2 n / e )  2n 
a 2 n + l  = £ n  - -  

+ 1 ~ ~ + ~ [V~Jn (~/~)~y 

1 22n+1¢rl/Zt~2n+172e -2n  2 2n 

n 2zrrt2n+le-2n ¢ T F n  3 " 

Thus  

~lim a2n+l =- l im c~ - -  Iim 1 - -  O. 
~-,~o 2a~+1 ~ 2 2n+1 n ~  2~/~rn ~ 

Since a2, = O, limn_,~ a ~ / 2  '~ = 0 = i x ( A ) .  Off the other hand, 

l im a2~+3 - -  l im %+1 - -  l im 
"-~ a2~+1 .--,~o c~ ,,,-,~. ~/~'(n + 1) 3 2 2~ 

----- 23 = 4. 

Thus  A contradicts condition f with t = 2 and m = 1, so that it cannot be 
a recognizabl e set. 

There  are two other interestin~g proofs that  the expressions involving q- and 
x cannot be writ ten as a recognizable set of strings. I f  a2n+l ~ c~ and a n = O, 

then f ( z )  = [1 - -  ~/(1 - -  4 z 2 ) ] / 2 z ,  whichis  not  rational. Hence, by Cobham 
(1966) and Kuich  (1970), A cannot be recognizable. A proof  in Brainerd (1969) 
uses the theory of runs and the fact t h a t  in eac h s t r ing  of length 2n q- 1, 
there are n @'s  and n ~ 1 x's. 

Another  closely related set is the set of baianced parentheses over the 
alphabet  Z' = {(,)}. For  this set a ~  = % and a~+~ : 0. This  set is also 
context-free, but  not recognizable by T h e o r e m  4. 

7. THE CASE OF THE ONE LETTER ALPHABET 

Any determinist ic automaton over Z = {1} must  be of the form shown 
in Fig. 4. 

t ooo I ~ ,  

FIo. 4. An,automaton accepting a subset of {1} ~. 
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The  set of transient states is T = {1, 2,..., t}, t >/ 0, and T =- 

{t + 1,..., t + e}, e >~ l is a single ergodic set. The  sequence %/1 ~ = a~ 
is Cesaro summable to/ ,(A).  The stationary probability for each nontransient  

state is !/e = 1 / # T ,  hence/z(A) = # ( F ( ~  T ) / # T .  In  the one-letter case, 

n--I i N--I 
an = ~ ai ; hence lim ~n/n = lim ~ an = /~(A) .  

Thus  the Minsky-Papert  measure coincides with the measure /~(A) and 

always exists in this case. Since an is an ultimately periodic sequence of zeros 
and ones, each of the conditions in Theorem 4 asserts that A is finite and so are 

also equivalent in the case k = 1. 

RECEIVED: August 2, 1971 
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