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SUMMARY

Alcohol-induced fatty liver, a major cause of morbid-
ity, has been attributed to enhanced hepatic lipogen-
esis and decreased fat clearance of unknown mech-
anism. Here we report that the steatosis induced in
mice by a low-fat, liquid ethanol diet is attenuated
by concurrent blockade of cannabinoid CB1 recep-
tors. Global or hepatocyte-specific CB1 knockout
mice are resistant to ethanol-induced steatosis and
increases in lipogenic gene expression and have
increased carnitine palmitoyltransferase 1 activity,
which, unlike in controls, is not reduced by ethanol
treatment. Ethanol feeding increases the hepatic
expression of CB1 receptors and upregulates the en-
docannabinoid 2-arachidonoylglycerol (2-AG) and its
biosynthetic enzyme diacylglycerol lipase b selec-
tively in hepatic stellate cells. In control but not CB1

receptor-deficient hepatocytes, coculture with stel-
late cells from ethanol-fed mice results in upregula-
tion of CB1 receptors and lipogenic gene expression.
We conclude that paracrine activation of hepatic CB1

receptors by stellate cell-derived 2-AG mediates eth-
anol-induced steatosis through increasing lipogene-
sis and decreasing fatty acid oxidation.

INTRODUCTION

Alcoholism is a leading cause of liver disease in Western socie-

ties. Chronic alcohol use can lead to the development of fatty

liver, which can further progress into steatohepatitis and liver cir-

rhosis. The steatogenic action of ethanol has been attributed to

enhanced hepatic lipogenesis (Lieber and Schmid, 1961; Lieber

et al., 1966; Arakawa et al., 1975; You et al., 2002; Ji et al., 2006)

and decreased fatty acid oxidation in the liver (You et al., 2004;

Garcia-Villafranca et al., 2007). Obesity is also frequently associ-

ated with fatty liver and the subsequent development of cirrho-

sis, and high-fat diets in rodents induce obesity, hepatic lipogen-

esis, and steatosis (Osei-Hyiaman et al., 2005a; Lin et al., 2005;

Savage et al., 2006; Sampath et al., 2007).
Endogenous cannabinoids (endocannabinoids) are lipid medi-

ators that interact with cannabinoid receptors to produce effects

similar to those of marijuana, the two main endocannabinoids

being arachidonoyl ethanolamide (anandamide) and 2-arachido-

noylglycerol (2-AG). To date, two types of cannabinoid receptors

have been identified: CB1 receptors, which are expressed at high

levels in the brain but are also present at much lower concentra-

tions in peripheral tissues, and CB2 receptors, which are ex-

pressed predominantly in immune and hematopoietic cells

(Pacher et al., 2006). Endocannabinoids and CB1 cannabinoid

receptors have been recently identified in the mouse liver, where

their expression is increased in response to a high-fat diet (Osei-

Hyiaman et al., 2005a). Mice deficient in CB1 receptors are resis-

tant to high-fat-diet-induced obesity and steatosis (Ravinet Tril-

lou et al., 2004; Osei-Hyiaman et al., 2005a), and in wild-type

mice, both of these diet-induced effects are reversed by chronic

treatment with a CB1 receptor antagonist (Ravinet Trillou et al.,

2003). The hepatic steatosis of genetically obese Zucker rats is

also reversed by CB1 antagonist treatment (Gary-Bobo et al.,

2007), and in wild-type mice, CB1 blockade attenuates the

increase in hepatic lipogenesis induced by either a high-fat diet

or treatment with a cannabinoid agonist (Osei-Hyiaman et al.,

2005a). These findings implicated endocannabinoids acting at

hepatic CB1 receptors in diet-induced obesity and steatosis,

although the possible role of CB1 receptors at extrahepatic sites,

such as the central nervous system and/or adipose tissue, could

not be excluded (Osei-Hyiaman et al., 2005a).

Similar to high-fat diet, chronic ethanol exposure can increase

endocannabinoid levels, at least in the brain (Basavarajappa

et al., 2000). These similarities between diet- and ethanol-in-

duced changes in hepatic fat metabolism and endocannabinoid

activity, together with recent data suggesting that elevated en-

docannabinoid levels are associated with ectopic fat accumula-

tion in visceral obesity (Blüher et al., 2006; Després and Lemieux,

2006; Côté et al., 2007; Matias and Di Marzo, 2007), suggest that

endocannabinoids may also be involved in ethanol-induced fatty

liver. We tested this hypothesis using a mouse model of alcoholic

fatty liver. Through the use of wild-type mice as well as mice with

either global or hepatocyte-specific genetic ablation of CB1 re-

ceptors, we were able to provide a definitive answer as to the

cellular target of endocannabinoids. Our findings also revealed

that a specific endocannabinoid, 2-AG, generated in a unique
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cellular source, the hepatic stellate cell, is the most likely media-

tor involved.

RESULTS

Ethanol Feeding Induces Fatty Liver and Activates
the Hepatic Endocannabinoid System
Exposure of 8- to 10-week-old male C57BL/6N mice to a low-fat,

liquid ethanol diet for 3 weeks resulted in a significant increase in

the hepatic expression of the gene encoding the CB1 receptor

(Figure 1A) and in the hepatic levels of 2-AG, but not anandamide

(Figure 1B). This latter change occurred selectively in hepatic

stellate cells, as determined in purified hepatocytes and stellate

cells isolated from the livers of ethanol-fed versus pair-fed mice

(Figure 1C). In stellate cells from ethanol-fed compared to pair-

fed mice, the gene expression of diacylglycerol lipase b (DAGLb),

one of two isozymes implicated in 2-AG biosynthesis (Bisogno

et al., 2003), was significantly increased, whereas the expression

of DAGLa and monoglyceride lipase (MGL), the enzyme respon-

sible for the selective degradation of 2-AG (Dinh et al., 2002), re-

mained unchanged (Figures 1D and 1E). These findings suggest

that the increased 2-AG content of stellate cells from ethanol-fed

mice is related to increased biosynthesis of 2-AG. No ethanol-in-

duced change in the expression of any of these enzymes was de-

tected in isolated hepatocytes (data not shown). Chronic ethanol

exposure also resulted in hepatocellular damage, as indicated

by elevated plasma levels of alanine aminotransferase (ALT) as

compared to matched controls exposed to an isocaloric control

liquid diet. The ethanol-fed mice also developed fatty liver, as

verified by postmortem histological and biochemical analyses

(Figures 1F and 1G).

CB1 Receptor Blockade Protects
against Ethanol-Induced Steatosis
In view of the observed upregulation of CB1 receptors and their

endogenous ligand 2-AG in ethanol-fed mice, we tested whether

activation of CB1 receptors contributes to the development of

ethanol-induced steatosis. Male mice were treated every other

day with intraperitoneal injections of vehicle or 10 mg/kg of

the CB1 antagonist SR141716 (rimonabant) throughout their

3 week exposure to the ethanol-containing diet. Body weight

gain and ethanol intake were slightly lower in the rimonabant-

treated mice than in their controls, but the intake of ethanol per

g of body weight was similar in the two groups, and blood etha-

nol concentrations were also similar (see Figure S1 available

online). Despite this, rimonabant-treated mice were resistant to

the steatogenic effect of ethanol: their hepatic lipid content, as

verified histologically and by measuring hepatic triglyceride

concentrations, was not different from that of mice on the control

liquid diet (Figures 1F and 1G), although rimonabant did not pre-

vent the rise in plasma ALT levels.

Resistance of CB1 Receptor-Deficient
Mice to Ethanol-Induced Steatosis
To further test the potential involvement of endocannabinoids,

CB1 receptor-deficient (CB1
�/�) mice and their wild-type litter-

mates were exposed to the ethanol diet or were pair-fed with

an isocaloric control liquid diet. Similar to the rimonabant-treated

wild-type mice, CB1
�/� mice were resistant to the steatogenic
228 Cell Metabolism 7, 227–235, March 2008 ª2008 Elsevier Inc.
effects of ethanol and were also resistant to its hepatotoxic ef-

fects: hepatic triglyceride content and plasma ALT levels were

significantly lower than in the ethanol-exposed wild-type mice

and were similar to levels in wild-type mice on the control diet

(Figure 2A). The absence of significant steatosis was also evident

in liver sections stained with hematoxylin and eosin or oil red O

(Figure 2B). These findings strongly suggest that endocannabi-

noids acting at CB1 receptors mediate the effects of ethanol in

the liver.

Hepatocyte-Specific Deletion of CB1 Receptors
Confers Resistance to Ethanol-Induced Steatosis
Although functional CB1 receptors have been identified in the

mouse liver (Osei-Hyiaman et al., 2005a), hepatic metabolism

can be regulated by autonomic input from the brain (Pocai

et al., 2005), where the level of expression of CB1 receptors is

much higher than in the liver and ethanol exposure has been

shown to upregulate the endocannabinoid 2-AG (Basavarajappa

et al., 2000). Accordingly, the observed hepatic effects of ethanol

may be mediated indirectly by an action of ethanol on CB1 recep-

tors in the central nervous system.

To test whether the endocannabinoid-mediated actions of eth-

anol can be unequivocally attributed to a local, hepatic mecha-

nism, we generated mice with a hepatocyte-specific deletion of

the CB1 receptor gene by crossing CB1 floxed mice (CB1
f/f; Mar-

sicano et al., 2002, 2003) with transgenic mice expressing the

bacterial Cre recombinase gene driven by the mouse albumin

promoter. These CB1
f/f;albCre mice (also referred to as LCB1

�/�

mice) lack CB1 receptors in hepatocytes (Figure 2C; see also

below) but have normal levels of CB1 receptors in other tissues,

including the brain (data not shown). CB1
f/f;albCre mice exposed

to the ethanol diet for 3 weeks were as resistant to steatosis

and hepatocellular damage as global CB1
�/�mice were, whereas

CB1
f/f controls on the same diet developed steatosis and had el-

evated plasma ALT levels, similar to wild-type mice on the same

diet (Figures 2A and 2B). Blood ethanol concentrations were sim-

ilar in wild-type, CB1
�/�, and CB1

f/f;albCre mice (see Figure S1),

discounting the possibility that the striking resistance of the latter

two strains to ethanol-induced steatosis could be due to altered

ethanol metabolism. These findings indicate that the steatotic

actions of ethanol are locally mediated via hepatic CB1 receptors.

Hepatic CB1 Receptors Mediate Ethanol Induction
of Lipogenesis and Inhibition of Fatty Acid Oxidation
In agreement with previously published findings (You et al., 2002;

Ji et al., 2006), ethanol feeding increased the hepatic nuclear ex-

pression of sterol regulatory element-binding protein 1c (SREBP-

1c), a transcription factor with a key role in the control of lipogenic

gene expression, and its target fatty acid synthase (FAS) and de-

creased both the hepatic expression and enzyme activity of car-

nitine palmitoyltransferase 1 (CPT1; Figure 3). In both CB1
�/� and

CB1
f/f;albCre mice, ethanol induction of SREBP-1c and FAS ex-

pression and the parallel inhibition of CPT1 expression were

blunted or absent (Figures 3A–3C). Furthermore, the enzymatic

activity of CPT1 was significantly higher in both knockout strains

than in their respective controls, and unlike in controls, chronic

ethanol intake failed to reduce CPT1 activity (Figure 3D).

Fatty acid b-oxidation is positively regulated by the AMP-acti-

vated protein kinase (AMPK) in the liver (Muoio et al., 1999).
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Figure 1. Alcohol-Induced Steatosis, CB1 Receptor Expression, and Endocannabinoid Levels in the Liver

Male C57BL/6N mice were placed on a low-fat, liquid alcohol diet (EtOH) or pair-fed with an isocaloric control liquid diet for 3 weeks. Mice exposed to the EtOH

diet were treated every other day with 10 mg/kg rimonabant (R) or vehicle (V).

(A) CB1 receptor mRNA detected by RT-PCR and quantified by densitometry.

(B) Hepatic anandamide and 2-AG content in control and EtOH-treated mice as measured by liquid chromatography/mass spectrometry. *p < 0.05 versus pair-

fed group.

(C) Anandamide and 2-AG content in isolated hepatocytes and hepatic stellate cells (HSC) in control and EtOH-fed mice. **p < 0.01 versus pair-fed HSC.

(D) Relative levels of MGL, DAGLa, and DAGLb mRNA in purified fractions of hepatic stellate cells were determined by real-time PCR. *p < 0.05 versus pair-fed

DAGLb.

(E) Chronic EtOH feeding does not affect MGL protein levels in hepatocytes or stellate cells as detected by western blotting.

(F) Postmortem liver sections stained with hematoxylin and eosin (H&E) or oil red O. Note the increased deposition of lipids in the EtOH + V group as compared to

the other two groups. (Colorimetric quantification of oil red O-stained sections: 132 ± 17 arbitrary units in control, 218 ± 12* in EtOH + V, 159 ± 11 in EtOH + R; *p <

0.05 relative to control liquid diet.)

(G) Plasma alanine aminotransferase (ALT) and hepatic triglyceride and cholesterol content. *p < 0.05 versus control, &p < 0.05 versus EtOH + V.

Columns and error bars represent means and SEM, respectively; n = 12–14 per group.
Ethanol-induced steatosis can be prevented or reversed by

in vivo treatment with AMPK activators such as metformin

(Yamauchi et al., 2002), adiponectin (Bergheim et al., 2006), or

5-aminoimidazole-4-carboxamide-1-b-D-furosamide (AICAR)

(Tomita et al., 2005), and the phytocannabinoid D9-tetrahydro-

cannabinol has been shown to inhibit hepatic AMPK activity

(Kola et al., 2005). Unexpectedly, we found that phosphorylation

of AMPK was modestly increased rather than decreased in mice
fed ethanol compared to mice fed the control liquid diet, both in

whole liver (Figure 4A) and in hepatocytes (Figure 4B). However,

a much more robust increase in the ratio of phosphorylated

AMPK (pAMPK) to AMPK was observed in the liver of ethanol-

treated CB1
�/� and LCB1

�/� mice (Figure 4A, right panel). This

suggests that in mice chronically exposed to ethanol, hepatic

AMPK activity is tonically inhibited by endocannabinoids, and

removal of this mechanism results in higher AMPK and CPT1
Cell Metabolism 7, 227–235, March 2008 ª2008 Elsevier Inc. 229
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Figure 2. Mice with Global or Hepatocyte-

Specific Knockout of CB1 Receptors Are

Resistant to Ethanol-Induced Steatosis

(A) The alcohol-induced increase in plasma ALT

and hepatic triglyceride in wild-type mice is absent

or blunted in CB1 knockouts (CB1
�/�, global

knockout; LCB1
�/�, hepatocyte-specific knock-

out). *p < 0.05 versus pair-fed mice, &p < 0.05 ver-

sus EtOH-treated wild-type mice. Columns and

error bars represent means and SEM, respec-

tively; n = 8–10 per group.

(B) H&E- or oil red O-stained liver sections from

ethanol-fed mice. Note the accumulation of fat in

the wild-type (WT) but not in the CB1
�/� or

LCB1
�/� specimens. (Colorimetric quantification

of oil red O-stained sections: 112 ± 12 arbitrary

units in pair-fed wild-type, 61 ± 18** in CB1
�/�,

60 ± 21** in LCB1
�/�; **p < 0.01 relative to wild-

type.)

(C) CB1 receptor mRNA is absent in hepatocytes

of LCB1
�/� mice. Relative levels of CB1 mRNA in

whole liver and purified hepatocytes were deter-

mined using real-time PCR.
activity, which likely accounts for the resistance of CB1-deficient

mice to steatosis. These findings further suggest that chronic ex-

posure to ethanol also triggers an endocannabinoid-independent

mechanism to activate AMPK, which may represent a compensa-

tory or ‘‘repair’’ mechanism counteracting its steatogenic effect.

Role of Hepatic Stellate Cells in Ethanol-Induced
Steatosis
Hepatic stellate cells have a key role in tissue repair. These cells

are activated by fibrogenic stimuli such as CCl4 or ethanol, and
230 Cell Metabolism 7, 227–235, March 2008 ª2008 Elsevier Inc.
a selective increase in 2-AG levels occurs in the liver of mice

chronically treated with either CCl4 (Siegmund et al., 2007) or

ethanol (Figure 1C). However, the potential role of stellate cells

and their mediators in ethanol-induced steatosis has not been

explored. To do this, we cocultured stellate cells freshly isolated

from ethanol-fed or pair-fed mice with hepatocytes from pair-fed

wild-type or LCB1
�/� mice and analyzed the effect of coculture

on lipogenic gene expression in the hepatocytes. As illustrated

in Figure 4C, the presence of stellate cells from ethanol-fed ver-

sus pair-fed mice resulted in a robust increase in the expression
Figure 3. Ethanol Upregulates Hepatic

Lipogenic Gene Expression and Inhibits

Fatty Acid Oxidation via Activation of He-

patic CB1 Receptors

(A) Chronic ethanol exposure increases nuclear

levels of SREBP-1c protein in the liver of wild-

type (WT) but not CB1
�/� or LCB1

�/�mice, as de-

tected by western blotting.

(B) The alcohol-induced increase in FAS and de-

crease in CPT1 protein levels in the liver of WT

mice are blunted, absent, or reversed in CB1
�/�

and LCB1
�/� mice.

(C) Densitometric analysis of data in (B). Labeling

of columns as in Figure 2A.

(D) Hepatic CPT1 activity is inhibited by chronic

EtOH in the presence, but not in the absence, of

hepatic CB1 receptors.

Columns and error bars represent means and

SEM, respectively; n = 3 per group. *p < 0.05 ver-

sus wild-type, &p < 0.05 versus pair-fed control.
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Figure 4. Increased Hepatic AMPK Phos-

phorylation in the Absence of CB1 Recep-

tors in Ethanol-Treated Mice

(A) Chronic ethanol-induced activation of hepatic

AMPK is potentiated in CB1
�/� and LCB1

�/�

mice, as indicated by increased phosphorylation

of AMPK (pAMPK) in liver tissue detected by west-

ern blotting.

(B) Activation of AMPK in hepatocytes isolated

from ethanol-fed versus pair-fed mice.

(C) Upregulation of CB1 receptor, SREBP-1c, and

FAS gene expression in hepatocytes from pair-fed

wild-type (WT) mice cocultured with hepatic stel-

late cells from ethanol-fed versus pair-fed mice

(middle two lanes versus left two lanes). In

LCB1
�/� hepatocytes cocultured with hepatic

stellate cells from ethanol-fed mice (right two

lanes), CB1 mRNA is absent and the induction of

SREBP-1c and FAS expression is blunted com-

pared to in WT hepatocytes. mRNA levels were

determined by RT-PCR.

(D) Increased SREBP-1c and FAS protein levels as

determined by western blotting in wild-type con-

trol hepatocytes cocultured with hepatic stellate

cells from ethanol-fed (right lanes) versus pair-

fed mice (left lanes).

(E) In hepatocyte/hepatic stellate cell cocultures,

the presence of hepatic stellate cells from etha-

nol-fed mice results in increased phosphorylation

of AMPK in hepatocytes, which is more pro-

nounced in LCB1
�/� than WT hepatocytes.

(F) Scheme of paracrine regulation of hepatic lipo-

genesis via hepatic stellate cell-derived endocan-

nabinoids acting on CB1 receptors in hepatocytes.
of the gene encoding the CB1 receptor as well as the lipogenic

transcription factor SREBP-1c and its target FAS in the wild-

type hepatocytes (middle two lanes versus left two lanes).

SREBP-1c and FAS protein levels were also markedly increased

(Figure 4D). In similar cocultures using LCB1
�/� hepatocytes

exposed to stellate cells from ethanol-fed mice, CB1 receptor ex-

pression was absent, and the induction of SREBP-1c and FAS

was less pronounced than in wild-type hepatocytes (Figure 4C,

right two lanes). This suggests that ethanol upregulates hepatic

CB1 receptors through a paracrine mechanism involving one or

more stellate cell-derived mediators and that activation of these

receptors by endocannabinoids, including stellate cell-derived

2-AG, contributes to the lipogenic action of ethanol. Stellate

cell-derived mediators may also be involved in the endocannabi-

noid-independent activation of AMPK by ethanol, described

above. The presence of stellate cells from ethanol-fed mice in

cocultures resulted in a more pronounced increase in the

pAMPK/AMPK ratio in LCB1
�/� hepatocytes than in wild-type

hepatocytes (Figure 4E).

We also tested whether the effect of ethanol feeding on stellate

cell 2-AG levels is a direct result of ethanol, acetaldehyde, or re-

active oxygen species or whether paracrine mechanisms requir-

ing the presence of neighboring cells may be involved. Incuba-

tion of freshly isolated hepatic stellate cells with 100 mM

ethanol, 0.2 mM acetaldehyde, or 0.5 mM H2O2 for 24 hr resulted

in no change in the cellular 2-AG content (Figure S2).
DISCUSSION

The present study provides evidence for the involvement of

endocannabinoids acting at hepatic CB1 receptors in the devel-

opment of alcohol-induced fatty liver. Several findings support

this notion. First, chronic ethanol feeding resulted in the activa-

tion of the hepatic endocannabinoid system, as reflected in the

upregulation of both CB1 receptor expression and 2-AG levels

in the liver. Second, chronic treatment of mice with a CB1 recep-

tor antagonist protected against ethanol-induced steatosis.

Third, mice with either global or hepatocyte-specific knockout

of CB1 receptors were resistant to ethanol-induced steatosis

and the effects of ethanol on de novo lipogenesis and fatty

acid oxidation. Fourth, ethanol feeding selectively increased

2-AG levels in hepatic stellate cells, and coculture of ethanol-ac-

tivated stellate cells with control hepatocytes resulted in a CB1

receptor-dependent increase in the expression of the lipogenic

genes SREBP-1c and FAS in the latter.

A surprising finding was the selectivity of the effect of ethanol

in terms of both the nature of the endocannabinoid affected,

2-AG, and its source, the hepatic stellate cell. The biosynthesis

and degradation of anandamide and 2-AG occur through distinct

pathways (Pacher et al., 2006), so the ethanol-induced selective

increase in 2-AG levels in stellate cells is most likely due to

the increased expression of the gene encoding the 2-AG bio-

synthetic enzyme DAGLb in these cells, whereas the rate of
Cell Metabolism 7, 227–235, March 2008 ª2008 Elsevier Inc. 231
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degradation of 2-AG is probably unaffected in view of the un-

changed cellular levels of MGL mRNA and protein (Figures 1D

and 1E). Although the anandamide-degrading enzyme fatty

acid amidohydrolase (FAAH) can also hydrolyze 2-AG under

in vitro conditions, the unchanged tissue levels of 2-AG in FAAH

knockout mice (Osei-Hyiaman et al., 2005b) argue against its

involvement in the observed increase in hepatic 2-AG levels. In

contrast to the source of 2-AG, the functionally relevant upregu-

lation of CB1 receptors most likely occurs in hepatocytes, as also

suggested by the effect of coculture on hepatocyte CB1 receptor

expression (Figure 4C). Whether 2-AG itself or another stellate

cell-derived signal is involved in the upregulation of CB1 recep-

tors in hepatocytes is not yet known. Induction of 2-AG may be

a general response of stellate cells to injury, as treatment of

mice with CCl4 also results in a selective increase in hepatic

2-AG levels (Siegmund et al., 2007). The paracrine, lipogenic ac-

tion of 2-AG on adjacent hepatocytes may also be a general phe-

nomenon, as one of the earliest actions of both ethanol and CCl4
treatment is increased lipid accumulation in the liver (Cunnane,

1987). Steatosis is also commonly found in chronic hepatitis C

cases, and recent observations indicate that daily marijuana

use is an independent predictor of steatosis severity in such in-

dividuals (Hézode et al., 2008). These latter findings, together

with studies cited in the introduction, suggest that endocannabi-

noids and hepatic CB1 receptors are part of a common pathway

involved in the development of hepatic steatosis of varied etiol-

ogies, including high-fat diet, ethanol, and viral hepatitis.

Ethanol feeding resulted in a selective increase in 2-AG levels

in stellate cells and a parallel induction of CB1 receptor-mediated

steatosis, which is known to occur in hepatocytes. This sug-

gested a paracrine mechanism for ethanol-induced steatosis,

which was further supported by the results of coculture experi-

ments, demonstrating that stellate cells from ethanol-fed mice

induce lipogenic gene expression in cocultured wild-type but

not CB1-deficient hepatocytes (Figure 4C). Hepatic stellate cells

are thought to play a key role in tissue repair and fibrogenesis,

but their possible involvement in steatosis has not been previ-

ously contemplated. In addition to the CB1 receptor-mediated

increase in lipogenic gene expression likely mediated by stellate

cell-derived 2-AG, other stellate cell-derived mediators may be

involved in compensatory mechanisms aimed at counteracting

steatosis. Cytokines produced by activated stellate cells, such

as TGF-b or HGF, are known to activate AMPK in hepatocytes

(Suzuki et al., 2005; Martinez-Chantar et al., 2006), and HGF

has been shown to promote recovery from alcohol-induced fatty

liver (Tahara et al., 1999). Release of such a cytokine (or cyto-

kines) may account for the activation of hepatic AMPK by chronic

ethanol feeding (see Figure 4A). Indeed, the presence of ethanol-

activated hepatic stellate cells in cocultures stimulated AMPK

phosphorylation in hepatocytes, a result which, similar to the

findings in whole liver, was more pronounced in LCB1
�/� than

wild-type hepatocytes (Figure 4E). Thus, stellate cells may play

a key role in both the endocannabinoid-dependent lipogenic

action of ethanol, which involves decreased AMPK phosphoryla-

tion, and the endocannabinoid-independent increase in fatty

acid oxidation in CB1-deficient mice, which is triggered by an

increase in AMPK phosphorylation.

In contrast to the robust increase induced in stellate cell 2-AG

by in vivo ethanol treatment, incubation of freshly isolated stel-
232 Cell Metabolism 7, 227–235, March 2008 ª2008 Elsevier Inc.
late cells with ethanol, acetaldehyde, or H2O2 failed to affect

cellular 2-AG content. This argues against a direct action by eth-

anol, its metabolite, or reactive oxygen species and rather sug-

gests an indirect, paracrine mechanism. Although the specific

mechanism of 2-AG induction remains to be established, ethanol

is known to increase the circulating levels of bacterial endotoxin

(Thurman, 1998; Tamai et al., 2002), which has been shown to

stimulate endocannabinoid production in LPS-sensitive cells

such as macrophages and platelets (Varga et al., 1998; Liu

et al., 2003). Endotoxin can also directly affect hepatic stellate

cells (Paik et al., 2003), and it remains to be established whether

it can stimulate them to produce 2-AG.

Endocannabinoids are lipophilic substances that act at or

close to their site of release, and their plasma levels remain

well below concentrations required for a hormone-like action at

distant receptors (Pacher et al., 2006). Therefore, the present

findings strongly suggest that the steatogenic action of chronic

ethanol intake is mediated through a paracrine mechanism, by

endocannabinoids produced by and released from hepatic stel-

late cells that activate CB1 receptors on adjacent hepatocytes to

increase lipogenesis and decrease fatty acid oxidation in the liver

(Figure 4F). As discussed above, the ethanol-induced elevation

of 2-AG levels suggests its primary role, although anandamide

may also be involved in spite of its unchanged tissue levels, in

view of the observed upregulation of hepatic CB1 receptor ex-

pression in ethanol-treated mice.

CB1 receptors are also expressed in hepatic stellate cells,

where their activation by endocannabinoids has recently been

implicated in liver fibrogenesis (Teixeira-Clerc et al., 2006). Alco-

holic fatty liver is a known risk factor for cirrhosis (Reuben, 2006);

thus, endocannabinoids acting at CB1 receptors in different

types of liver cells may be involved in both the steatogenic and

the fibrogenic effects of ethanol. 2-AG at high micromolar

concentrations has been found to induce stellate cell apoptosis

in vitro, which would be antifibrogenic (Siegmund et al., 2007).

However, this is unlikely to occur at the lower concentrations

detected in vivo in the present model, as an ethanol diet identical

to the one used here inhibits rather than promotes stellate cell

apoptosis (Jeong et al., 2008), and ethanol is also known to pro-

mote stellate cell proliferation (Friedman, 1999).

Although alcoholic fatty liver is reversible in its early stages by

cessation of drinking, this is often not feasible. The present find-

ings suggest that treatment with a CB1 antagonist may slow the

development of steatosis and thus prevent or delay its progres-

sion to more severe and irreversible forms of liver disease.

Importantly, our finding that the steatogenic effect of ethanol

specifically involves CB1 receptors expressed in hepatocytes

suggests that selective targeting of peripheral CB1 receptors

may be effective in this pathology, thereby reducing the potential

for centrally mediated adverse effects of CB1 blockade, such as

anxiety and depression (Pacher et al., 2006). The additional anti-

fibrogenic effect of CB1 blockade could add to the benefit of

such treatment. Rimonabant has recently been introduced in

Europe for the treatment of visceral obesity and the metabolic

syndrome, which themselves are known risk factors for steatosis

and cirrhosis (Marceau et al., 1999). Clinical trials testing the

effectiveness of CB1 receptor blockers in the treatment of both

alcoholic and nonalcoholic fatty liver and their more severe

sequelae may be warranted.
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EXPERIMENTAL PROCEDURES

Mice

C57BL/6J mice were purchased from the National Cancer Institute. Male mice

(8 to 10 weeks old) were used in all experiments and were cared for in accor-

dance with National Institutes of Health guidelines. CB1
+/+ and CB1

�/� litter-

mates were obtained by breeding heterozygotes that had been backcrossed

to a C57BL/6J background, as described previously (Wang et al., 2003).

Mice with hepatocyte-specific knockout of CB1 receptors were generated

by crossing mice homozygous for the CB1 floxed allele (CB1
f/f), which were

on a predominantly C57BL/6N background (7–8 crosses) (Marsicano et al.,

2003), with mice expressing the bacterial Cre recombinase driven by the

mouse albumin promoter (TG[Alb-cre]21Mgn, from the Jackson Laboratory),

which had been backcrossed to a C57BL/6J background to obtain CB1
f/f 3

CB1
f/f;AlbCre breeding pairs. The littermates obtained were therefore on a mixed

C57BL/6N 3 J background. All experiments with knockout mice used the cor-

responding homozygous wild-type (+/+) littermates as controls. Genotyping

by PCR for the Cre transgene was performed as described previously (Marsi-

cano et al., 2003). Individually caged mice were placed on a Lieber-DeCarli

low-fat liquid diet (Dyets) containing 1 kcal/ml, of which 18% was derived

from protein, 12% from fat, and either 70% from carbohydrate (control diet)

or 43% from carbohydrate and 27% from ethanol (ethanol diet). In some ex-

periments, mice had free access to the diet, and food intake and body weight

were monitored daily; in other experiments, mice were pair-fed with the control

versus ethanol diet, as indicated. The mice were on these diets for a total of

26 days; ethanol was introduced gradually by increasing the content by 1%

(v/v) each day until the mice were consuming a diet containing 5% (v/v) ethanol

and was then continued for 3 more weeks. During ethanol feeding, wild-type

mice were injected every other day with 10 mg/kg rimonabant (SR141716, ob-

tained from the NIDA Drug Supply Program) or vehicle for 3 weeks. Because

CB1 receptor-deficient mice have increased sensitivity to the hypothermic

effect of ethanol (Naassila et al., 2004), these animals were maintained on

a heating pad at 37�C throughout the ethanol feeding period. At the end of

this period, mice were sacrificed and liver tissues and trunk blood were col-

lected. Although rimonabant is known to significantly reduce ethanol intake

in C57BL/6 mice in a two-bottle free-choice paradigm with free access to solid

food (Wang et al., 2003), the lack of a significant reduction per g of body weight

in the present experiments is probably due to the fact that the liquid alcohol

diet was the only nutrient or liquid available to the animals.

Blood Chemistry and Histology

Serum ALT and ethanol levels were assayed using kits from Drew Scientific

and BioAssay Systems, respectively. Blood ethanol levels were measured in

blood drawn via tail clips at 8 a.m. For histological documentation of fat accu-

mulation in liver, 5 mm sections of paraffin-embedded tissue blocks were

stained with hematoxylin and eosin and 10 mm frozen sections were stained

with oil red O (Vector Laboratories) as described previously (Osei-Hyiaman

et al., 2005a). For quantitation of fat content, six randomly selected oil red

O-stained sections from each liver were scanned at 6003 magnification using

NIH ImageJ software (http://rsb.info.nih.gov/ij/).

Tissue Levels of Lipids and Endocannabinoids

For measuring triglyceride, cholesterol, and endocannabinoid levels in liver,

mice were sacrificed and their livers were removed and extracted. Total

hepatic triglyceride and cholesterol were measured as described previously

(You et al., 2004). Anandamide and 2-AG levels were determined by liquid

chromatography/mass spectrometry as described previously (Wang et al.,

2003).

Western Immunoblots

Hepatocytes were isolated from liver using collagenase perfusion and then

separated from nonparenchymal cells using density gradient centrifugation,

as described previously (Sun et al., 2005). Proteins obtained from whole liver

were quantified by Bradford assay (Bio-Rad), and nuclear extracts of liver

were obtained using a nuclear/cytosol fractionation kit (BioVision). Primary an-

tibodies used for blotting were anti-FAS, anti-AMPKa, anti-pAMPKa (Cell Sig-

naling), anti-b-actin (Sigma), anti-CPT1, anti-CB1 receptor (Alpha Diagnostics),

and anti-SREBP-1c (US Biological). Immunoreactive bands were visualized on
nitrocellulose membranes using alkaline phosphatase-linked anti-mouse or

anti-rabbit antibody and the ECF detection system (Amersham Pharmacia).

Band density was quantified by digital imaging using NIH ImageJ software.

RT-PCR and Real-Time PCR

mRNAs for CB1 receptors, SREBP-1c, FAS, MGL, DAGLa, and DAGLb were

quantified using RT-PCR or real-time PCR. Primers for SREBP-1c and FAS

were as described in detail elsewhere (Osei-Hyiaman et al., 2005a). Relative

mRNA levels of MGL, DAGLa, and DAGLb were quantified by real-time PCR

of cDNA from whole liver, hepatocytes, or stellate cell mRNA from ethanol-

fed (n = 4) or pair-fed (n = 4) mice. The predesigned QuantiTect Primer Assay

(QIAGEN) containing gene-specific forward and reverse primer pairs was used

for MGL (catalog number QT01163428), DAGLa (catalog number

QT00167706), and DAGLb (catalog number QT00173453).

CPT1 Assay

CPT1 activity in mitochondrial protein isolated from whole liver was quantified

by the incorporation of [3H]methylcarnitine into carnitine palmitoyl-CoA, as

described previously (Bremer, 1981).

Isolation of Pure Fractions of Hepatocytes and Hepatic Stellate Cells

Mouse hepatic stellate cells were isolated via in situ collagenase perfusion and

differential centrifugation on OptiPrep (Sigma) density gradients as described

in detail previously (Jeong et al., 2006).

Coculture of Isolated Hepatocytes and Hepatic Stellate Cells

Isolated hepatocytes were resuspended in RPMI 1640 medium containing

penicillin, streptomycin, and 10% FBS, plated onto six-well plates at a density

of 5 3 105 cells per well in 1.5 ml culture medium, and cultured for 6 hr. The

isolated hepatocytes were then cultured in serum-free medium overnight (se-

rum starvation), coincubated with hepatic stellate cells isolated from ethanol-

fed or pair-fed mice for 24 or 48 hr, and loaded onto cell-culture inserts of 3 mm

pore size (Corning) in order to keep the two types of cells separate, as de-

scribed previously (Nieto et al., 2002). The ratio of hepatocytes to hepatic stel-

late cells was 5:1, similar to the ratio of parenchymal to nonparenchymal cells

in liver.

Statistical Analyses

Data are expressed as means ± SEM. To compare values obtained from two

groups, Student’s t test or one-way ANOVA was performed as appropriate.

p < 0.05 was considered significant.

SUPPLEMENTAL DATA

Supplemental Data include two figures and can be found with this article online

at http://www.cellmetabolism.org/cgi/content/full/7/3/227/DC1/.
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