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SUMMARY

Brain networks are commonly defined using correla-
tions between blood oxygen level-dependent (BOLD)
signals in different brain areas. Although evidence
suggests that gamma-band (30–100 Hz) neural
activity contributes to local BOLD signals, the neural
basis of interareal BOLD correlations is unclear. We
first defined a visual network in monkeys based on
converging evidence from interareal BOLD correla-
tions during a fixation task, task-free state, and anes-
thesia, and then simultaneously recorded local field
potentials (LFPs) from the same four network areas
in the task-free state. Low-frequency oscillations
(<20 Hz), and not gamma activity, predominantly
contributed to interareal BOLD correlations. The
low-frequency oscillations also influenced local pro-
cessing by modulating gamma activity within indi-
vidual areas. We suggest that such cross-frequency
coupling links local BOLD signals to BOLD correla-
tions across distributed networks.

INTRODUCTION

There is currently a limited understanding of the neurophysiolog-

ical basis of fMRI signals, despite the prevalence of fMRI in

neuroscience research. Arguably, most progress has been

made toward finding local neural signatures of blood oxygen

level-dependent (BOLD) activity in individual brain areas. A

number of studies have demonstrated a tight coupling between

BOLD responses to sensory stimuli and power in the gamma

band (30–100 Hz) of local field potential (LFP) signals (Goense

and Logothetis, 2008; Logothetis et al., 2001; Mukamel et al.,

2005; Niessing et al., 2005; Shmuel et al., 2006). A prominent

role for gamma frequencies is not limited to evoked BOLD

responses, but extends to BOLD activity during the resting state.

This task-free state has been related to spontaneous, slow (i.e.,

<0.1 Hz) fluctuations in BOLD signals (Fox and Raichle, 2007).

Recent evidence suggests that slow changes in the power of

neural gamma oscillations make a significant contribution to
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the spontaneous local fluctuations of resting-state BOLD signals

in humans (He et al., 2008; Nir et al., 2007, 2008) and monkeys

(Schölvinck et al., 2010). The close relationship between gamma

oscillations and BOLD activity in individual brain areas supports

the notion that gamma processing reflects local neural computa-

tions (Canolty and Knight, 2010; Siegel et al., 2012).

Functional interactions between distributed brain areas,

known as functional connectivity, give rise to coherent patterns

of BOLD signals within specific neural networks during the

resting state as well as behavioral tasks. Covariant relations of

spontaneous BOLD signals in the resting state have been re-

ported in the awake human (Biswal et al., 1995; Damoiseaux

et al., 2006; Dosenbach et al., 2010; Fox et al., 2005; Seeley

et al., 2007; Wang et al., 2010; Yeo et al., 2011) andmonkey (Mo-

eller et al., 2009), as well as the anesthetized monkey (Vincent

et al., 2007) and rat (Lu et al., 2007, 2012). Resting-state connec-

tivity studies have proven useful for characterizing network

architectures and for exploring pathological alterations in neuro-

logical and psychiatric diseases (Greicius, 2008; Matthews et al.,

2006; Zhang and Raichle, 2010). Although there has been a rapid

increase in the number of resting-state connectivity studies and

in the use of functional connectivity measures in general, there

have been few studies of the neural basis of BOLD connectivity.

This is at least partly due to the technical difficulty of obtaining

simultaneous recordings frommultiple network sites using depth

electrodes in awake humans or animals. The only such study to

date reported that gamma oscillations most strongly correlated

with BOLD connectivity between auditory cortices in epilepsy

patients (Nir et al., 2008), similar to the relationship previously

reported between gamma oscillations and local BOLD signals.

However, it is not clear whether the link between gamma

oscillations and BOLD connectivity generalizes to other circuits.

It is important to test how sensitive BOLD connectivity is to

oscillatory frequencies lower than gamma because it is not

necessary for local computation and large-scale communication

to recruit the same frequencies of oscillatory activity. Rather, low

frequenciesmay be advantageous and commonly used for inter-

actions between distant brain areas (Fujisawa and Buzsáki,

2011; Siegel et al., 2012).

A number of electrophysiological studies have demonstrated

that brain oscillations show statistically nested coupling, with

low frequencies modulating high frequencies (Buzsáki and
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Figure 1. Robust Resting-State fMRI Functional Connectivity across

a Visual Thalamo-Cortical Network

Correlation map showing the connectivity of a right V4 seed with the rest of the

brain of monkey BS. V4 was significantly connected with the LIP, TEO, and

pulvinar, among other regions. ROI boundaries are color coded (red, LIP; blue,

V4; green, TEO; cyan, pulvinar). See also Figure S1.

Neuron

Cross-Frequency Coupling Contributions to BOLD
Wang, 2012; Jensen and Colgin, 2007; Schroeder and Lakatos,

2009). Given that different oscillations are associated with

different spatiotemporal scales (Buzsáki and Draguhn, 2004;

von Stein and Sarnthein, 2000), cross-frequency coupling may

integrate information transmission over a large-scale network

with local cortical processing (Canolty and Knight, 2010). We

thus hypothesized that (1) BOLD functional connectivity predom-

inantly reflects low-frequency neural interactions between

remote brain areas (e.g., alpha [8–13 Hz] and theta [4–8 Hz]);

(2) low frequencies modulate local high-frequency activity (e.g.,

gamma), which predominantly reflects BOLD signals from an

individual area; and (3) such cross-frequency coupling links

BOLD correlations in distributed network nodes to local BOLD

activations.

RESULTS

To test our hypotheses, we first mapped out thalamo-cortical

networks (i.e., network defined as a set of interconnected brain

regions) derived from BOLD signals acquired from macaque

monkeys.Given that task-free fMRI studies have involved various

experimental conditions in humans (free gaze, eyes closed, and

fixation) and monkeys (free gaze and anesthesia), our study

incorporated three experimental conditions to allow generaliza-

tion and ready comparison with the literature: a task-free, free-

gaze condition, defined as resting state here; a fixation task;

and anesthesia.We focused on a thalamo-cortical visual network

constituted by the lateral intraparietal area (LIP), the temporal

occipital area (TEO), area V4, and the pulvinar, which has been

well studied in termsof its anatomical connectivity (e.g., Felleman

andVan Essen, 1991; Saalmann et al., 2012; Shipp, 2003; Unger-

leider et al., 2008). After verifying BOLD correlations across our

visual network, we performed simultaneous electrophysiological

recordings from the same four network areas andmeasured their

functional connectivity based on LFPs. We included a thalamic

nucleus, the pulvinar, in our study because the limited evidence

available suggests that the thalamus makes an important contri-

bution to cortical oscillations (Hughes et al., 2004; Saalmann

et al., 2012; Steriade and Llinás, 1988).

Robust fMRI Functional Connectivity across Different
Behavioral States
We used a combination of fMRI retinotopic mapping (Arcaro

et al., 2011) and high-resolution structural MRI scans to target

the four interconnected visual areas (Shipp, 2003; Ungerleider

et al., 2008). Because inaccurate regions of interest (ROIs)

have a detrimental effect on connectivity estimates (Smith

et al., 2011), the retinotopic mapping ensured that the spatial

ROIs we used to extract average time series matched functional

areal boundaries. The brain activation pattern evoked by the ret-

inotopic mapping task was projected to the corresponding

structural surface (see Figures S1A and S1B available online)

to accurately delineate the border of cortical regions LIP, TEO,

and V4 (Figure 1). The subcortical region, the pulvinar, was

manually delineated based on anatomical criteria using high-

resolution structural images (Figure 1).

We first aimed to show fMRI networks consistent with

previous macaque studies (Moeller et al., 2009; Vincent et al.,
N

2007), by calculating intrinsic voxelwise functional connectivity

during anesthesia, the resting state, and a fixation task. For the

anesthesia condition, we used the right LIP as the seed region

to allow direct comparison with previous work (Moeller et al.,

2009; Vincent et al., 2007). We calculated the correlation

between the average time series from the right LIP and the

time series from all other brain voxels, with the confounding vari-

ables regressed out. The right LIP showed significant connec-

tivity (p < 0.001, corrected using Monte Carlo simulation) with

the left LIP and the frontal eye field bilaterally (Figure S1C), as

previously shown (Moeller et al., 2009; Vincent et al., 2007).

This connectivity pattern was consistent across all six monkeys.

To establish functional connectivity across the visual thalamo-

cortical network in the resting state, we performed a correlation

analysis for our four ROIs, seeding LIP, V4, TEO, and the pulvinar

in turn, during the awake conditions. There was robust connec-

tivity between each seed region and the other ROIs. Figure 1

shows that the right V4 seed significantly correlated (p < 0.001,

corrected using Monte Carlo simulation) with the ipsilateral LIP,

TEO and the pulvinar (the same was true for the left V4 seed).

Because the resting-state and fixation conditions showed

a consistent functional connectivity pattern (Figure S1D), we

combined the two conditions to increase the statistical power

of the ROI-based analyses. These findings suggest that the

architecture of spontaneous functional connectivity is robust

across different resting-state conditions and can be replicated

across animals.

To allow subsequent comparison with the electrophysiological

results, we next evaluated ROI-based BOLD functional connec-

tivity between LIP, TEO, V4, and the pulvinar in the right hemi-

sphere for the resting state and fixation task. The average time

series from each ROI was extracted for each run in the native

space, and Pearson’s correlation coefficients between those

time series were calculated for the epochs (437 ± 241 s) that

were not contaminated by head movement. There was a signifi-

cant correlation between each pair of regions (one-sample t test,

p < 0.001; Figure S2). To control for the effect of eyemovements,

we also calculated Pearson’s correlation between the BOLD

activities corresponding to each stable-eye epoch (R6.4 s)

and observed a significant correlation between the ROIs

(p < 0.01; Figure 2). Having established a robust resting-state

fMRI network between V4, TEO, LIP, and the pulvinar, we next

probed the electrophysiological basis of this BOLD connectivity.
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Figure 2. fMRI Functional Connectivity between Pulvino-Cortical

ROIs

There were significant correlations between all ROIs during epochs without

eye movements. Bars show mean functional connectivity ± SEM. See also

Figure S2.
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Slow Fluctuations of Low-Frequency, and Not Gamma,
Power Predominantly Contributed to BOLDConnectivity
We derived power time series from the magnitude of the Hilbert

transform for different frequency bands (Figure 3) from the LFPs

simultaneously recorded in the pulvinar, LIP, TEO, and V4 (58

sessions from two monkeys, one of which was also scanned

under anesthesia; see Figure S3 for finer frequency band divi-

sions). These power time series were then band-pass filtered

to 0.01–0.1 Hz to correspond to the main frequencies consti-

tuting the BOLD signal (Fox and Raichle, 2007). We performed

correlation analyses on long and short epochs of the power

time series. The long epochs included eye movements, as com-

monly used in resting-state studies, thereby allowing compar-

ison with published results, whereas the short epochs only

included stable eye positions (no eye movements; see Supple-

mental Experimental Procedures for eye movement controls).

The correlation analyses on long epochs (184 ± 84 s) showed

significant correlations of power time series between ROIs for

all frequency bands (one-sample t tests, p < 0.001). However,

the low-frequency bands (theta, alpha, and beta) showed signif-

icantly higher correlation values than the gamma band (paired-

sample t tests, p < 0.001, theta/alpha/beta versus gamma).

Among the low-frequency bands, there were moderately but

significantly higher correlation values for the alpha band

compared with the theta and beta bands (p < 0.001, alpha versus

theta/beta; p > 0.05, theta versus beta). Similarly, for stable-eye

epochs, significant correlations were found in the power time

series derived from all frequency bands (one-sample t tests,

p < 0.001; Figures 3 and S3); but the low-frequency bands had

significantly higher correlation values than the gamma band

(paired-sample t tests, p < 0.001, theta/alpha/beta versus

gamma), with the alpha band being moderately but significantly

higher than the theta and beta bands (p < 0.001, alpha versus

theta/beta; p > 0.05, theta versus beta). Overall, these results

indicate that slow fluctuations in the power of low-frequency

oscillations contributed most to the connectivity. To verify

that power correlations predominantly resulted from slow oscil-
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lations (<0.1 Hz), we also applied the correlation analyses to the

signals derived from band-pass filtering the power time series in

two higher-frequency bands (0.1–1 Hz and >1 Hz). There were

significantly higher correlation values for the 0.01–0.1 Hz band

compared with both the 0.1–1 Hz band and the >1 Hz band

(paired-sample t tests, p < 0.001). The major contribution of

frequencies < 0.1 Hz is consistent with a recent study of bilateral

primary auditory cortex (Nir et al., 2008). However, our findings

suggest that in contrast to the current view on the predominant

contribution from gamma activity, low-frequency oscillations

are a major contributor to large-scale network connectivity.

Low-Frequency Coherence Predicts BOLD Connectivity
Slow oscillations (<0.1 Hz) are commonly thought to signal

general changes in network excitability (Hughes et al., 2011;

Monto et al., 2008), whereas oscillations on a faster timescale

(>1 Hz) may be better suited to more specific information

exchange between areas. To measure interactions between

network areas on a faster timescale, we calculated the coher-

ence between the ‘‘raw’’ LFP signals (cf. power time series in

the previous section) in each pair of network areas. The coher-

ence measures the linear association between the LFPs as

a function of oscillation frequency. For each recording session,

we used multitaper methods (three tapers and ±4 Hz bandwidth)

to estimate the coherence in every 500ms timewindow for which

there was no eye movement (excluding 0–200 ms after any

preceding eye movement). The population mean coherence

spectrum for each ROI pair showed the peak coherence at low

frequencies (<20 Hz; Figure 4). Within a specified frequency

band, we counted the number of sessions showing significant

coherence for each pair of ROIs (jackknife variance estimates,

p < 0.001). There was significant coherence in the 4–20 Hz range

for 41–55 sessions (range across the six pairs of ROIs) out of the

total of 58 sessions, whereas only 9–29 out of 58 sessions

showed significant coherence in the 30–100 Hz range. Notably,

the rank of connection strengths based on mean alpha coher-

ence was similar to that seen in BOLD connectivity (Figure 2).

For example, alpha coherence and BOLD connectivity both

showed the strongest connection between the pulvinar and V4

and the weakest connection between the TEO and LIP. With

respect to the greater effects at low versus high frequencies,

these coherence results were consistent with that observed in

the slow-wave power correlations. Thus, the coherence of neural

activities on a fast timescale may give rise to the power correla-

tion of band-limited neural activities at the slow fMRI timescale.

Specifically, low-frequency oscillations (<20 Hz) may predomi-

nantly contribute to resting-state functional connectivity.

Cross-Frequency Coupling Between Low Frequencies
and Gamma
Different frequencies of neural oscillations may be useful for

different temporal and spatial scales: high frequencies like

gamma for local computation, and lower frequencies like alpha

for large-scale interactions. Because low-frequency oscillations

have been shown to modulate high-frequency activity (Buzsáki

and Wang, 2012; Canolty and Knight, 2010; Jensen and Colgin,

2007; Schroeder and Lakatos, 2009), such cross-frequency

coupling may integrate functions across multiple spatiotemporal



Figure 3. Slow Fluctuations in the Power of

Low Frequencies, but Not Gamma, Contrib-

uted Most to Functional Connectivity

There were significantly higher correlations in slow

waves of alpha power between ROIs compared

with slow waves of theta, beta, and gamma power

(p < 0.001). We found the lowest correlations for

gamma power. Bars show mean functional

connectivity ± SEM. The mean connectivity of ROI

pairs across frequency bands fits a Gaussian

function, ffittedðxÞ= 0:543eð�1Þ3ððx�1:92Þ=2:51Þ2 , with

a peak at the alpha band (R2 = 0.989). See also

Figure S3.
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scales. We hypothesized that low frequencies may contribute to

fluctuation of the power in the gamma band through a cross-

frequency coupling mechanism. To measure cross-frequency

coupling, we used the synchronization index (SI; Cohen, 2008),

which supposes that high-frequency power should fluctuate ac-

cording to the phase of the low-frequency oscillation if the low-

frequency oscillation modulates the high-frequency activity.

For each recording session, the SI was computed for theta-

gamma, alpha-gamma, and beta-gamma coupling and then

normalized to a Z score. We found that theta, alpha, and low

beta (13–20 Hz) frequencies significantly coupled with gamma

between 40 and 80 Hz for each ROI (Figure 5, right column), indi-

cating that low-frequency rhythms (<20 Hz) modulated gamma

rhythms (permutation tests, p < 0.001). The strongest cross-

frequency coupling occurred between the alpha and gamma

bands (Figure S4; paired-sample t tests, p < 0.001, alpha-

gamma coupling versus theta/low beta/high beta coupling with

gamma). This coupling was highly consistent across recording

sessions (Figure 5, left column). Although previous studies of

the electrophysiological signatures of BOLD emphasized

gamma frequencies, our cross-frequency coupling result

suggests that lower frequencies like alpha may ultimately shape

gamma activity and BOLD signals.

DISCUSSION

Our simultaneous LFP recordings from four distributed network

sites show that low-frequency neural oscillations (<20 Hz)

predominantly contributed to resting-state BOLD connectivity,

providing evidence of the electrophysiological basis of tha-

lamo-cortical functional connectivity in fMRI. The important

role for low-frequency oscillations suggested by our findings

contrasts with the current view that BOLD signals (whether
Neuron 76, 1010–1020, D
evoked responses or resting-state

signals) reflect neural oscillations in the

gamma frequency band (Logothetis

et al., 2001; Niessing et al., 2005; Nir

et al., 2007). However, our finding of

the prominent role of low-frequency

oscillations and the notion that gamma

oscillations play a prominent role can

be integrated by considering cross-

frequency coupling mechanisms. We

found that the phase of low-frequency
oscillations modulated the amplitude of gamma oscillations,

suggesting that cross-frequency coupling integrates long-range

neural interactions mediated by low-frequency rhythms (e.g.,

theta/alpha) with local computations mediated by high frequen-

cies (i.e., gamma).

Cross-Frequency Coupling Contributions to BOLD
Different rhythms are commonly associated with different

spatiotemporal scales. Low-frequency oscillations have long

time windows for information processing, which are useful for

synchronizing distant network areas with large conduction

delays between areas. In contrast, high-frequency oscillations

have short time windows for information processing, which are

useful for selectively synchronizing small groups of neurons

(Buzsáki and Draguhn, 2004; Canolty and Knight, 2010;

Schroeder and Lakatos, 2009; Siegel et al., 2012; von Stein

and Sarnthein, 2000). Thus, cross-frequency coupling may serve

to coordinate multiple nodes of fast, local cortical processing,

which is necessary for specialized computations, across

a large-scale network, necessary for effective behavioral

responses. Interestingly, recent studies showed that low-

frequency activity, such as the alpha band, carried information

about BOLD signals largely complementary to that carried by

gamma power (Hermes et al., 2012; Magri et al., 2012). In our

study, we conducted cross-frequency coupling analysis in

each brain area to demonstrate that low-frequency oscillations

synchronize with high-frequency activity. This suggests that

gamma power correlations between brain areas, as obtained

here and in previous studies,may be induced by the combination

of interareal synchronization of low-frequency oscillations

and cross-frequency coupling between these low frequencies

and the gamma band. Taking into account our coherence

results showing high synchronization between low-frequency
ecember 6, 2012 ª2012 Elsevier Inc. 1013



Figure 4. Fast-Wave Coherence at Low Frequencies Best Predicts

BOLD Connectivity

The population mean LFP-LFP coherence (± SEM) was calculated for all ROI

pairs during stable-eye epochs of 500 ms duration. The peak coherence

occurred at low frequencies <20 Hz.

Figure 5. Cross-Frequency Coupling between Neural Oscillations in

the Alpha and Gamma Frequency Bands

Left column: normalized SI between the alpha frequency band (8–13 Hz) and

higher frequencies across each of the 58 sessions, for the pulvinar, TEO, LIP,

and V4. The color bar (bottom) shows the SI range. The SI was highly

consistent across sessions for each ROI. Right column: the population

average SI (± SEM) shows high coupling between the alpha and gamma

frequency bands (predominantly 40–80 Hz) for all four ROIs. See also

Figure S4.
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oscillations in different areas, the cross-frequency coupling may

indicate temporal coordination of local computations (Siegel

et al., 2012).

Probing the Neural Basis of BOLD Connectivity
Previous animal studies of the neural basis of the BOLD signal

have generally relied on recordings from a single brain area (Log-

othetis et al., 2001; Niessing et al., 2005). The neural data from

one brain area were then compared with BOLD activity, whether

recorded simultaneously (Goense and Logothetis, 2008;

Logothetis et al., 2001; Niessing et al., 2005; Schölvinck et al.,

2010) or in different sessions (Leopold et al., 2003; Lu et al.,

2007; Nir et al., 2007). This approach offers insight into localized

neural processes contributing to the BOLD signal. Because our

main objective was to better understand distributed processing,

as measured with functional connectivity approaches, we

naturally attempted to acquire simultaneous recordings from

distal, but interconnected, sites and measure their interac-

tions. However, it is technically challenging to obtain simulta-

neous recordings from multiple brain areas, which currently

precludes the simultaneous acquisition of BOLD signals. Thus,

we acquired electrophysiological and fMRI data in different

sessions under similar experimental conditions, as has been

done in human studies (Mukamel et al., 2005; Nir et al., 2007,

2008). Rather than directly comparing the LFPs to BOLD signals

across sessions to probe localized neurovascular coupling,

we compared the functional connectivity derived from LFPs

within-session to the connectivity derived from BOLD signals

within-session to probe the large-scale neural interactions

underlying correlations of BOLD signals across networks. We

did perform both LFP and BOLD recordings (in different

sessions) in one monkey, and the results from this monkey are

consistent with the results from the different groups of monkeys

used in the electrophysiology and fMRI experiments.
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Comparison with Previous Studies of the Neural Basis
of BOLD Connectivity
Previous human electrocorticography (ECoG) studies reported

that interareal correlations in the power of gamma oscillations

are a major contributor to BOLD connectivity (He et al., 2008;

Nir et al., 2008). Electrodes on the cortical surface in these

ECoG studies may prominently reflect processing in supragra-

nular and granular cortical layers (Fukushima et al., 2012; Kaji-

kawa and Schroeder, 2011). In comparison, intracerebral LFP

recordings with higher-impedance electrodes in monkeys have

higher spatial resolution (e.g., Katzner et al., 2009) and can

reflect superficial or deep cortical layers (or a subcortical area)

depending on the electrode depth. There is evidence that

neurons in different cortical layers may predominantly operate

in different frequency bands. For example, gamma oscillations

have been associated with superficial layers, while lower

frequency oscillations have been found in deep layers (Buffalo
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et al., 2011;Maier et al., 2010; but see Lakatos et al., 2005, 2008).

Thus, compared with methods used in animal studies, human

electrophysiological techniques may not be as sensitive to

low-frequency oscillations in deep cortical layers, although the

effects of volume conduction and cortical folding complicate

the interpretation of cortical surface recordings. Nir et al.

(2008) also performed depth electrode recordings from auditory

cortex in both hemispheres and showed a predominant contri-

bution of gamma oscillations to BOLD connectivity. This

predominance of gamma over lower frequencies may be due

to auditory networks operating at different frequencies to visual

networks, their intracranial recordings targeting particular

cortical layers, or the possibility that cross-hemispheric interac-

tions between homologous areas are more likely to involve

gamma oscillations than intrahemispheric interactions (Engel

et al., 1991; Sil’kis and Bogdanova, 1998). Although these

ECoG studies reported the strongest interareal correlations

in gamma power, there were also significant correlations in

the power of lower-frequency oscillations (1–25 Hz) between

areas. Given this synchronization of low-frequency oscillations

between brain areas, cross-frequency coupling between the

low and gamma frequencies in the individual areas may have

contributed to the reported interareal correlations in gamma

power.

There is evidence for prominent low-frequency oscillatory

contributions to BOLD connectivity in a recent electroencepha-

lography study using electrodes on the intact dura of anesthe-

tized rats (Lu et al., 2007). This study demonstrated that delta

oscillations (1–4 Hz) contributed to BOLD connectivity between

bilateral primary somatosensory cortices during anesthesia.

However, it is not clear how much delta oscillations normally

contribute to BOLD connectivity, because anesthetic agents

generally alter neural activity and hemodynamics, including

shifts in relative power from higher-frequency neural activity to

delta oscillations (Franks, 2008; Williams et al., 2010). Delta

oscillations have been reported to have an organizing influence

on sensory processing in behaving monkeys through hierar-

chical coupling (Lakatos et al., 2005, 2008), but our band-pass

of 3–300 Hz for LFP recordings did not allow us to test the role

of delta oscillations in the resting state. Further support for

a role of low-frequency oscillations derives from a macaque

resting-state study that showed cross-correlations between

LFP power at one cortical site (frontal, parietal, or visual cortex)

and simultaneously acquired BOLD signals at distant sites

(Schölvinck et al., 2010). Although gamma-frequency contribu-

tions were emphasized, theta- and alpha-frequency oscillations

at times showed the strongest correlation with BOLD signals,

consistent with our study. Because different functional networks

can recruit distinct frequency bands (Siegel et al., 2012), the

particular low frequencies of neural oscillations that predomi-

nantly contribute to BOLD connectivity across the brain may

be network dependent.

Dissecting Contributions of Different Circuit Paths
to BOLD Signals
It has been suggested that the biophysical properties of neural

circuits determine the frequencies of network interactions (Sie-

gel et al., 2012; Wang, 2010). For example, conduction delays
N

between distant network nodes may be one important factor

contributing to the frequency range of cortical network interac-

tions (Kopell et al., 2000; von Stein and Sarnthein, 2000). Long

conduction delays between distant brain regions may limit the

frequency of large-scale network oscillations to a low-frequency

band, accounting for the low-frequency oscillations observed

during our multisite recordings. Evidence suggests that low-

frequency oscillations (e.g., theta and alpha) can be generated

locally in thalamic nuclei (Hughes and Crunelli, 2005; Lörincz

et al., 2008) or the deep layers of high-order visual cortex (Bolli-

munta et al., 2008, 2011; Lopes da Silva, 1991; Lopes da Silva

and Storm Van Leeuwen, 1977) and propagated to other network

nodes. Because previous studies of the neural basis of BOLD

connectivity (He et al., 2008; Nir et al., 2008) focused mainly on

the primary sensory cortices (which reportedly have different

oscillation-generating mechanisms; Bollimunta et al., 2008; Mo

et al., 2011), rather than on these generators, the low-frequency

contributions of oscillations to the BOLD signal may have been

more difficult to detect.

Different oscillatory frequency bands may also be associated

with different functional properties. It has been suggested that

different frequencies reflect different directions of cortical infor-

mation transmission (Buffalo et al., 2011; Buschman and Miller,

2007; von Stein et al., 2000), specifically, gamma-band coher-

ence for feedforward processing, and lower-frequency coher-

ence for feedback processing. In our study (similar to other

resting-state studies), the absence of visual stimulation in

a completely dark room possibly reduced gamma activity in

bottom-up processing and relatively increased the contribution

from lower-frequency oscillations. However, an alternative

interpretation of the finding of prominent alpha oscillations in

deep cortical layers (Buffalo et al., 2011) is that the low-

frequency oscillations play a role in feedforward (and feedback)

processing via extensive cortico-thalamo-cortical pathways

(Saalmann et al., 2012), which originate in the deep cortical

layers (Sherman and Guillery, 2006), instead of giving rise to cor-

tico-cortical feedback, which originates in the deep cortical

layers aswell. Because it is probable that therewas largely spon-

taneous activity in our visual network in the absence of visual

stimulation, the interactions between areas may well have

been bidirectional.

Functional Role of Alpha Oscillations
Although electroencephalography and myeloencephalography

studies have proposed a suppressive role for alpha oscillations

on sensory processing (Jensen and Mazaheri, 2010; Klimesch

et al., 2007), recent evidence suggests it is the phase of alpha

oscillations that is important for regulating information transmis-

sion (Busch et al., 2009; Jensen et al., 2012; Mathewson et al.,

2009). Thus, phase synchronization between alpha oscillations

in different brain areas allows for effective network communica-

tions (Palva and Palva, 2011; Saalmann et al., 2012; von Stein

et al., 2000). Alpha oscillations can be recorded in sensory areas

and fronto-parietal cortex, but are typically prominent in occipital

areas. Because we recorded from a visual network, it might be

expected that alpha frequencies sizably contributed to the low-

frequency interactions between network areas. It may well be

that different brain networks predominantly operate in different
euron 76, 1010–1020, December 6, 2012 ª2012 Elsevier Inc. 1015
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low-frequency bands for interareal communication, for instance,

theta frequencies inmedial temporal networks and beta frequen-

cies in motor networks (Siegel et al., 2012).

Subcortical Contributions to Resting-State Connectivity
Partly because of methodological issues associated with

imaging subcortical areas and partly because of current views

of cognitive functions being confined to the cortex, there have

been few studies of thalamic contributions to functional

connectivity measured using fMRI. The thalamus and cerebral

cortex are extensively and reciprocally connected (Jones,

2007; Sherman and Guillery, 2006), with the thalamus well posi-

tioned to regulate information transmitted to the cortex and

between cortical areas. A recent study in humans (Zhang et al.,

2008) and our own results from monkeys suggest that this

closely coupled thalamo-cortical system produces robust

resting-state fMRI networks incorporating the thalamus. Tha-

lamo-cortical interactions, supported by recurrent thalamo-

cortical loops (McCormick and Bal, 1997; Steriade and Llinás,

1988; Steriade et al., 1993), are important for generating brain

oscillations. In particular, low-frequency neural oscillations

(e.g., alpha) in the cortex are highly dependent on the thalamus,

whereas cortical gamma oscillations are highly dependent on

inhibitory interneurons (Buzsáki and Wang, 2012). Simultaneous

neural recordings from thalamo-cortical sites have shown

a strong coherence between alpha rhythms in the thalamus

and cortex (Chatila et al., 1993; Lopes da Silva et al., 1980).

Evidence suggests that the alpha oscillations can be generated

in thalamic nuclei (Hughes and Crunelli, 2005; Hughes et al.,

2004; Lörincz et al., 2008), and thalamic lesions have been re-

ported to suppress cortical alpha activity (Ohmoto et al., 1978).

We have recently demonstrated that the pulvinar regulates the

degree of alpha-band synchrony between visual cortical areas

based on behavioral demands (Saalmann et al., 2012). This

suggests that the thalamus may be a vital node for supporting

resting-state networks.

Resolving Connectivity on Slow versus Fast Timescales
Previous studies have indicated that spontaneous BOLD

connectivity best correlates with slow (<0.1 Hz) cortical poten-

tials (Nir et al., 2008). Consistent with these previous cortico-

cortical studies, we showed the highest correlations between

power time series on a slow timescale (<0.1 Hz) in our

thalamo-cortical network. Such slow changes in LFP power

match the main frequencies (<0.1 Hz) contributing to the

BOLD signal. However, we also showed significant coherence

between ‘‘raw’’ time series on a fast timescale. Both of these

effects on slow and fast timescales were associated with

the same range of low-frequency oscillations (e.g., alpha

power on a slow timescale and alpha coherence on a fast

timescale). Computational modeling studies have proposed

that interareal coupling on slow timescales can emerge from

neural synchrony on fast timescales (Cabral et al., 2011; Honey

et al., 2007). Our study provides an empirical demonstration

that slow power fluctuations could reflect the faster coherent

oscillations, linking the fMRI measure to neural interactions

occurring on a timescale better suited to more detailed informa-

tion processing.
1016 Neuron 76, 1010–1020, December 6, 2012 ª2012 Elsevier Inc.
Conclusions
In summary, our findings suggest that the following neural

processes support BOLD connectivity: (1) phase-locking of

low-frequency oscillations for effective information transmission

between remote brain areas; (2) low-frequency oscillations

modulating the higher-frequency activity of local information

processing; and (3) the slow fluctuations in oscillatory power

changes correlating with BOLD connectivity across distinct brain

areas.
EXPERIMENTAL PROCEDURES

fMRI Studies

Experimental Design

Anesthesia Condition.Macaquemonkeys (BU, BS, CA, HO, MC, and PH) were

anesthetized with Telazol (tiletamine/zolazepam, 10 mg/kg, i.m., administered

at regular intervals as needed to maintain anesthesia) and held securely in an

all-plastic MR-compatible stereotaxic apparatus. Two to four fMRI time series

(1,125 measurements in each series) were acquired from each monkey during

anesthesia (two sessions collected from monkey BU). The monkey’s eyes

were closed, and the experiments were performed in darkness. We monitored

respiration rate and pulse rate during scan sessions using an MR-compatible

respiratory belt and a pulse oximeter (Siemens). fMRI data were acquired from

monkey CA prior to implantation of the recording chamber.

Resting State.MonkeysBUandBSeachparticipated in three scan sessions,

in which there were no behavioral requirements and they were free to move

their eyes. We placed the monkey in an MR-compatible primate chair in

a sphinx-like position, with his head fixed using the implanted head bolt, and

inflated pillows around the body to minimize movement (Pinsk et al., 2005).

Three to four fMRI time series (1,125measurements each series) were acquired

in each scan session, during which the monkey rested in the dark (lights off in

the scanner and console room). Themonkey’s eye position at the MRI scanner

was monitored using a 60 Hz long-range optics system (Model LRO, Applied

Science Laboratories) to determine the periods when the eyes were stable.

At the end of the awake fMRI scans, we anesthetized the animals (ketamine,

2–10 mg/kg, i.m.) to collect the field map and structural images.

Fixation Task. Monkey BU participated in a third fMRI experiment that

required him to fixate on a central fixation point. A single fMRI time series

was acquired (2,250 measurements) per scan session while the monkey per-

formed a simple fixation task. A juice reward was provided at regular 2 s inter-

vals as long as the monkey fixated on a central fixation point (0.50� diameter)

within an invisible 4� square window (Pinsk et al., 2005). This small gray fixation

point on a black background was projected from a single-lamp, three-chip

LCD projector (Christie LX650; Christie Digital Systems) outside the scanner

room onto a translucent screen located at the end of the scanner bore at an

�60 cm viewing distance. We synchronized the display, eye position record-

ings, reward delivery, and the beginning of each scan via a computer running

Presentation software (Neurobehavioral Systems). A total of five fMRI time

series was acquired over five scan sessions.

Data Acquisition

We acquired structural MRI and fMRI images on a 3 T head-dedicated scanner

(Magnetom Allegra; Siemens) using a 12 cm transmit-receive surface coil

(model NMSC-023; Nova Medical). fMRI images for the anesthesia condition,

resting-state, and fixation task scanning sessions were acquired with

a gradient echo, echo planar sequence (field of view [FOV] = 95 3 95 mm;

matrix = 64 3 64; number of slices = 24; slice orientation = transverse; slice

thickness = 1.5 mm; interslice gap = 0.5 mm; repetition time [TR] =

1,600 ms; echo time [TE] = 26 ms; flip angle = 66�; in-plane resolution =

1.5 mm2). Matching in-plane gradient echo field map and magnitude images

were acquired to perform geometric unwarping of the echo planar imaging

(EPI) images (TR = 500 ms, TE = 4.17/6.63 ms, flip angle = 55�) as well as

T1-weighted structural images for coregistration of the fMRI data (magnetiza-

tion-prepared rapid gradient echo; FOV = 1283 128 mm; matrix = 2563 256;

number of slices = 160; slice thickness = 1.0mm; TR = 2,500ms; TE = 4.38ms;

flip angle = 8�; inversion time [TI] = 1,100 ms; in-plane resolution = 0.5 mm2).
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Details of the imaging parameters used for retinotopic mapping sessions are

described in Arcaro et al. (2011).

Data Analysis

fMRI Data Preprocessing. The first six EPI volumes from each scan series were

excluded from further analysis to avoid artifacts caused by signal saturation

effects. The remaining volumes underwent slice timing correction, and rigid-

motion correction to the first volume of the first run (Cox and Jesmanowicz,

1999). After the motion correction, we geometrically unwarped the images

using a field map and magnitude image acquired in the same session (Jenkin-

son, 2001; Jezzard and Balaban, 1995). Briefly, the magnitude image was skull

stripped, forward warped using fMRIB’s FUGUE utility, and rigidly registered

to a skull-stripped reference EPI volume with fMRIB’s Linear Image Registra-

tion Tool (FLIRT; Jenkinson and Smith, 2001). The resulting transformation

matrix was applied to the field map image (scaled to rad/s and regularized

by a 2 mm 3D Gaussian kernel), which was subsequently used to unwarp all

fMRI images with the FUGUE utility. In preparation for functional connectivity

analysis, several additional preprocessing steps were performed on the un-

warped images: (1) removal of ‘‘spikes’’ from EPI volumes, (2) linear and

quadratic detrending, (3) spatial smoothing using a 3 mm full width at half

maximum Gaussian blur, (4) temporal filtering retaining frequencies in the

0.01–0.1 Hz band, and (5) removal by regression of several sources of variance

(the six motion parameter estimates and their temporal derivatives, the signal

from a ventricular region, and the signal from a white-matter region).

Voxelwise Correlation Analysis. The first step in all connectivity analyses was

to extract BOLD time courses from each ROI by averaging over voxels within

each ROI. To compute functional connectivity maps corresponding to the

selected seed ROI (LIP), we correlated the regional time course with all other

voxels in the brain (Biswal et al., 1995). We used AFNI’s AlphaSim program

(1,000 Monte Carlo simulations) to correct for multiple comparisons. For

awake monkeys, we regressed out the influence of head movements. As an

additional control, we performed the linear correlation analysis within the

longest period of stable head position, defined as within the range of the

mean ± 3 SD. In the case of an outlier > 3 SD, we excluded the outlying volume

and the surrounding ±30 volumes.

ROI-Based Correlation Analysis. We performed correlation analyses

between ROIs only for the awake states. Stable-eye epochs were identified

based on the criteria of fixation within a 4� window (i.e., epochs between

eye movements) and a duration of at least 6.4 s (4 TRs). To minimize the effect

of any evoked response to eye movements, we excluded the first 6.4 s of each

stable-eye epoch (considering the effect of eye movements on the first few

volumes due to the slow characteristics of the hemodynamic function) and

used the volumes during the subsequent 4.8 s (i.e., 3 TRs). For each ROI,

we averaged the BOLD signal over these three volumes (TRs 5–7 of the

stable-eye epoch) to generate one sample point in a discontinuous time series;

repeating this procedure for every eye epoch generated the full time series

(Kerns et al., 2004). The interregional functional connectivity was obtained

by computing Pearson correlation coefficients for all possible pairs of ROIs.

We computed statistical tests on all correlations after applying the Fisher

Z-transform, which yields variates that are approximately normally distributed.

Electrophysiology Studies

Resting-State Data Collection

Themonkey sat in a customized primate chair, alone in a completely dark room

to avoid visual stimulation and minimize eye movements (Martinez-Conde

et al., 2004). We acclimatized the monkey to this resting-state condition prior

to recordings. The monkey had no behavioral requirements and was free to

move his eyes (however, we analyzed epochs in which the eyes were stable,

except for the correlation analyses on long data epochs, to allow comparison

with the literature). We monitored eye movements using a stationary eye-

tracking system (Applied Science Laboratories) with an infrared camera oper-

ating at 120 Hz. The LFP from each electrode was amplified and band-pass

filtered (3–300 Hz; precluding assessment of delta band oscillations) using

a preamplifier (PBX3/16sp-r-G1000/16fp-G1000, with a high input impedance

headstage; Plexon) and Plexon Multichannel Acquisition Processor controlled

by RASPUTIN software. The signals were digitized at a rate of 1,000 Hz. In

total, 58 resting-state sessions (on separate days) were acquired from two

monkeys (CA, 39 sessions; LE, 19 sessions).
N

Data Analysis

Analysis of LFPs. We performed data analyses in MATLAB using the Chronux

toolbox (Bokil et al., 2010). Preprocessing steps included the exclusion of arti-

facts from any bodymovements and the removal of 60 Hz power line noise and

its harmonics using a notch filter (±1 Hz). We identified stable-eye epochs of at

least 700ms duration, during which themonkey’s eyes did not deviate bymore

than 2�. We calculated band-limited power (BLP) correlations and coherence

in 500 ms windows within each stable-eye epoch after excluding (1) the first

200 ms of stable-eye epochs to remove any evoked responses, and (2) the

210 ± 141 ms (mean ± SD) before the next eye movement to remove any

possible motor-related signals; if the stable-eye epoch spanned multiples of

500 ms (after excluding the first 200 ms of the epoch), each of these 500 ms

data segments contributed to the analyses.

BLP and Correlation Analysis. To examine BLP modulation in different

frequency bands, we applied zero phase-shift band-pass filtering to the raw

LFP signals to produce the following frequency bands: theta, 4–8 Hz; alpha,

8–13 Hz; beta, 13–30 Hz; and gamma, 30–100 Hz. We also probed effects

at a higher-frequency resolution in the following bands: 4–8 Hz, 8–13 Hz,

13–20 Hz, 20–30 Hz, 30–40 Hz, 40–50 Hz, 50–60 Hz, 60–70 Hz, 70–80 Hz,

80–90 Hz, and 90–100 Hz. To normalize the resulting band-limited signals,

we subtracted the mean power and divided by the SD for that frequency

band. We full-wave rectified the normalized band-limited signals by taking

their absolute value, and convolved these signals with a Gaussian of full width

at half maximum equal to 100 ms. Note that this procedure extracts the time-

varying envelope amplitude of each band-pass-filtered signal. Next, the BLP

signals were further filtered into slow (<0.1 Hz) fluctuations (two other

frequency bands [0.1–1 Hz and >1 Hz] were also computed for comparison)

using a second-order, zero-phase Butterworth band-pass filter. We calculated

Pearson’s correlation coefficients between all possible pairs of ROIs (1) over

the entire time course of the filtered BLP signals (‘‘long epochs’’) and (2)

over the stable-eye epochs (‘‘short epochs’’; 135 ± 69 epochs per recording

session; a total of 58 sessions). The significance of correlations was assessed

using one-sample t tests on Fisher Z-transformed coefficients.

Coherence Analysis. We used multitaper methods (three Slepian tapers,

providing an effective taper smoothing of ± 4 Hz; Mitra and Pesaran, 1999)

to calculate the coherence Cxy(f):

CxyðfÞ=

���SxyðfÞ
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SxðfÞSyðfÞ

q ;

where Sx(f) and Sy(f) are the spectra of LFP time series, and Sxy(f) is the cross-

spectrum. Coherence values range from zero to one, where zero coherence

means that the LFPs are unrelated, and a coherence of one means that the

LFPs have a constant phase relationship. We Fisher transformed coherence

values and accounted for the different number of stable-eye epochs in each

resting-state session according to:

Cxy tðfÞ= tanh�1
�
CxyðfÞ

� � 1

2m� 2
;

where Cxy_t is the transformed coherence, and m is the product of K and the

number of stable-eye epochs (Bokil et al., 2007). We rejected the null hypoth-

esis of no significant coherence between two ROIs only when the coherence

was above zero (based on jackknife estimates of the variance) across

a frequency range greater than the bandwidth (i.e., 8 Hz), to account for

multiple comparisons (Bokil et al., 2007).

Cross-Frequency Coupling. We measured cross-frequency coupling

between low-frequency oscillations and gamma power using the SI (Cohen,

2008). There were two reasons for using this measure: (1) the SI can be reliably

computed on the short stable-eye epochs examined in our study; and (2) the SI

can capture dynamic changes in cross-frequency coupling. There were three

processing steps to calculate the SI. First, we extracted gamma power time

series for given frequency bands whose central frequency ranged from 30 to

100 Hz, stepped in 5 Hz increments, with a bandwidth of ± 5 Hz. Second,

for each of the theta, alpha, low-beta (13–20 Hz), and high-beta (20–30 Hz)

bands, we identified the low frequency with which the gamma power time

seriesmight synchronize. (The aim herewas to identify the dominant frequency

at which the gamma power time series oscillated.) Third, we identified the peak
euron 76, 1010–1020, December 6, 2012 ª2012 Elsevier Inc. 1017
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of the power of the gamma frequency envelope time series, extracted the

phase time series from both the gamma- and low-frequency bands (low-

frequency bandwidth ± 1.5 Hz), and calculated the phase coherence (SI) for

the epoch k (k = 1, ., N):

SIk =
1

T

XT
t = 1

ei½[lt�[ht �;

where T is the number of time points in an epoch; Ølt is the phase value of the

low-frequency time series, and Øht is the phase value of the gamma frequency

power time series at time point t. Themagnitude of SI, SIkm, reflects the degree

to which the phases are synchronized. The SIkm measure ranges from zero to

one: an SIkm equal to zero means the phase values are entirely desynchron-

ized, and an SIkm equal to one means the phases are entirely synchronized.

We calculated theta-gamma, alpha-gamma, and beta-gamma coupling in

1,000, 500, and 300 ms windows, respectively (to obtain 1,000 ms time

windows, we identified stable-eye epochs [2� fixation window] of at least

1,200 ms duration and removed the first 0–200 ms of these epochs to avoid

any eye movement-related activity), so that analysis time windows contained

at least four cycles of the low-frequency oscillation. We also calculated cross-

frequency coupling using the same window length for each frequency band,

and obtained similar results. Next, we used a bootstrapping technique to

transform SIkm values to Z scores by comparing the distance of SIkm to the

distribution of SIkmb values obtained by shuffling data 200 times:

SIkZ =
ðSIkm �meanðSIkmbÞÞ

stdðSIkmbÞ ;

where SIkZ is the normalized SI for the epoch k. For each recording session, we

averaged SIkZ values over all stable-eye epochs to obtain SIZ, and applied

parametric statistical tests on the SIZ values from all sessions.
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