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1. Introduction

The subgroup complexes associated to suitably chosen collections of p-subgroups are relevant to
the understanding of the p-local structure of the underlying group G , and also provide valuable tools
for investigating the modular representation theory and the mod-p cohomology of the group G .

This paper continues the systematic study, started in [11], of certain collections of p-subgroups,
which we call distinguished. These are subcollections of the standard collections of p-subgroups and
which consist of those p-subgroups which contain p-central elements in their centers.

A group G has parabolic characteristic p if all the p-local subgroups which contain a Sylow p-sub-
group of G have characteristic p (see Definitions 2.4 and 2.7). If G has parabolic characteristic p,
then the collection of distinguished p-radical subgroups equals the collection of p-centric p-radical
subgroups (Proposition 3.7(b)). This latter collection has been studied by several authors, including
Dwyer [5], Yoshiara [20] and Sawabe [15], and it has been suggested as a “best” geometry for a finite
group, generalizing the Tits building for a finite group of Lie type in characteristic p.

The structure of fixed point sets leads to information about the reduced Lefschetz module, a virtual
module given by an alternating sum of chain complexes. For example, Webb [19] uses an assumption
about certain fixed point sets having Euler characteristic one to conclude that the reduced Lefschetz
module is projective, and he obtains an alternating sum formula for the Tate cohomology of the group.
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Thévenaz [17] generalizes this to a situation in which the reduced Lefschetz module is projective
relative to a collection of subgroups.

Our main result in this paper concerns the homotopy type of the fixed point sets of subgroups
of order p acting on the complex Δ of distinguished p-radical subgroups of G , for a group G of
parabolic characteristic p. Let P = 〈x〉 be such a p-subgroup. If x is p-central then the fixed point set
is contractible. If x is not of central type, then the homotopy type of the corresponding fixed point set
depends on the group structure of CG(x). If CG(x) has characteristic p, then ΔP is again contractible.
If we assume that CG(x) does not have characteristic p, and that C = CG(x)/O p(CG (x)) has parabolic
characteristic p, then the fixed point set ΔP is equivariantly homotopy equivalent to the complex of
distinguished p-radical subgroups of C .

In Section 2, notation is introduced and a few basic results are reviewed. In Section 3, two varieties
of collections of p-subgroups are defined and various homotopy properties are described; the fixed
point sets of p-central elements acting on the corresponding complexes are shown to be contractible.
In Section 4, under certain hypotheses, the fixed point sets of subgroups of order p of noncentral type
are shown to be equivariantly homotopy equivalent to the complex for a quotient of the centralizer.
In Section 5 we consider a few examples where G is a sporadic finite simple group; applications to
modular representation theory are also given.

2. Notation, terminology and standard results

Throughout this paper G is a finite group and p a prime dividing its order.
A p-subgroup R of G is called p-radical if R = O p(NG(R)), where O p(H) is the largest normal

p-subgroup of H . Every p-subgroup Q of G is contained in a p-radical subgroup of G uniquely
determined by Q and G . This is called the radical closure of Q in G and it is the last term R Q of the
chain Pi+1 = O p(NG(Pi)) starting with Q = P0. It is easy to see that NG(Q ) � NG(R Q ). A p-subgroup
R is called p-centric if Z(R) is a Sylow p-subgroup of CG(R), in which case CG(R) = Z(R) × H , with
H a subgroup of order relatively prime to p. A p-local subgroup is the normalizer of a nontrivial
p-subgroup.

A collection C of p-subgroups of G is a set of p-subgroups which is closed under conjugation;
a collection is a G-poset under the inclusion relation with G acting by conjugation. The order com-
plex or the nerve |C| is the simplicial complex which has as simplices proper inclusion chains in C ;
the correspondence C → |C| allows assignment of topological concepts to posets [13, Section 1]. A col-
lection C is contractible if |C| is contractible. A poset map is a G-homotopy equivalence if and only if
the induced map on H-fixed points is a homotopy equivalence for all H � G; see [18, 1.3].

Notation 2.1. For P � G a subgroup let C P = {Q ∈ C | P � NG(Q )} denote the subcollection of C fixed
under the action of P . Next C>P = {Q ∈ C | P < Q }. Similarly define C�P and also C<P and C�P . We

will also use the notation C�H
>P for the set C�H

>P = {Q ∈ C | P < Q � H}. The notation F � IdC used
below means that F (P ) � P for all P ∈ C .

Theorem 2.2. Let G be a finite group and C ⊆ D two collections of subgroups.

(1) [18, Proposition 1.7] Assume that D>P is NG(P )-contractible for all P ∈ D \ C . Then the inclusion C ↪→
D is a G-homotopy equivalence.

(2) [18, Theorem 1] Assume either that C�P is NG(P )-contractible for all P ∈ D, or that C�P is NG(P )-
contractible for all P ∈ D. Then the inclusion C ↪→ D is a G-homotopy equivalence.

(3) [10, 2.2(3)] Suppose that F is a G-equivariant poset endomorphism of C satisfying either F � IdC or
F � IdC . Then, for any collection C′ containing the image of F , the inclusions F (C) ⊆ C′ ⊆ C are G-
homotopy equivalences.

(4) [10, proof of Lemma 2.7(1)] Let C be a collection of p-subgroups that is closed under passage to
p-overgroups. Let H be an arbitrary p-subgroup in G. Then the inclusion C�H ↪→ C H is a homotopy
equivalence.
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In what follows A p(G) will denote the Quillen collection of nontrivial elementary abelian p-sub-
groups, S p(G) the Brown collection of nontrivial p-subgroups and B p(G) the Bouc collection of
nontrivial p-radical subgroups. The inclusions A p(G) ⊆ S p(G) and B p(G) ⊆ S p(G) are G-homotopy
equivalences [18, Theorem 2].

Let Cep(G) denote the subcollection of S p(G) consisting of nontrivial p-centric subgroups and let
Bcen

p (G) = Cep(G)∩ B p(G) be the collection of nontrivial p-radical and p-centric subgroups. These two
collections are not in general homotopy equivalent with S p(G); however the inclusion map Bcen

p (G) ⊆
Cep(G) is a G-homotopy equivalence; see [10, Theorem 1.1].

Because certain upward-closed collections will be important in the paper, as suggested by part (4)

of Theorem 2.2, we explicitly state the following property of the collection of p-centric subgroups.

2.3. The collection Cep(G) is closed under passage to p-overgroups; this means that if P ∈ Cep(G)

and Q is a p-subgroup of G which contains P then Q ∈ Cep(G).

Definition 2.4. The group G has characteristic p if CG(O p(G)) � O p(G). If all p-local subgroups of G
have characteristic p then G has local characteristic p.

We remark here that our notion of “local characteristic p” is what group theorists usually call
“characteristic p type”.

Proposition 2.5. Assume G has characteristic p. If P is a p-subgroup of G and H a subgroup of G with
P CG(P ) � H � NG(P ), then H has characteristic p [16, Lemma 1]. In particular, G has local characteristic p
[8, 12.6].

Proposition 2.6. Let G be a finite group.

(1) [8, 5.12] Let P � G be a p-subgroup. Then CG(P ) has characteristic p if and only if NG(P ) has character-
istic p.

(2) [16] Let Q be a p-subgroup of a finite group G, with CG(Q ) of characteristic p. Let P be a p-subgroup of
G containing Q . Then CG(P ) has characteristic p.

Definition 2.7. A parabolic subgroup of G is defined to be a subgroup which contains a Sylow p-sub-
group of G . The group G has parabolic characteristic p if all p-local, parabolic subgroups of G have
characteristic p.

We would like to mention that our usage of the term “parabolic” differs from the classical notion
of parabolics, in the special case of a Lie type group over a field of characteristic p, for in the latter,
the parabolics are actually the overgroups not of just a full unipotent group U , but of a full Borel
subgroup, i.e. of the normalizer NG(U ). Our notion of “parabolic characteristic p” appears elsewhere
in group theory: notably for p = 2 it appears as “even characteristic” in Aschbacher and Smith [1,
p. 3]; this provides further evidence for the naturality of this concept.

Remark 2.8. Examples of groups of local characteristic p, but not of “global” characteristic p, are
the groups of Lie type defined over fields of characteristic p, some of the sporadic groups (such as
M22, M24,Co2 for p = 2, M11, McL for p = 3, McL, Ly for p = 5), and any groups with self-centralizing
Sylow p-subgroup of order p, such as Alt(p).

Remark 2.9. Any group of local characteristic p has parabolic characteristic p. Some examples of
sporadic groups of parabolic characteristic p, but not of local characteristic p, are: M12, J2,Co1 for
p = 2, M12, J3,Co1 for p = 3, J2,Co1,Co2 for p = 5. Further examples of sporadic groups of parabolic
characteristic p appear in Section 5.
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3. Distinguished collections of p-subgroups

An element x of order p in G is p-central if x is in the center of a Sylow p-subgroup of G . Let
Γp(G) denote the family of p-central elements of G .

3.1. For a p-subgroup P of G define:

P̂ = 〈
x
∣∣ x ∈ Ω1 Z(P ) ∩ Γp(G)

〉
.

Further, for C p(G) a collection of p-subgroups of G denote:

Ĉ p(G) = {
P ∈ C p(G)

∣∣ P̂ 	= 1
}

the collection of subgroups in C p(G) which contain p-central elements in their centers. We call Ĉ p(G)

the distinguished C p(G) collection. We shall refer to the subgroups in Ĉ p(G) as distinguished subgroups.
Also, denote

C̃ p(G) = {
P ∈ C p(G)

∣∣ P ∩ Γp(G) 	= ∅}

the collection of subgroups in C p(G) which contain a p-central element. Obviously Ĉ p(G) ⊆ C̃ p(G) ⊆
C p(G) and notice that:

3.2. The collection S̃ p(G) is closed under passage to p-overgroups.

Unlike S̃ p(G), the distinguished collection Ŝ p(G) is not necessarily closed under p-overgroups. But
facts such as Lemma 3.3 are almost as useful in the proofs.

Lemma 3.3. Let P ∈ S p(G) and Q ∈ Ŝ p(G)>P . Then N Q (P ) ∈ Ŝ p(G).

Proof. Since P < Q it follows that Z(Q ) � N Q (P ) so that Z(Q ) � Z(N Q (P )) and N Q (P ) is a distin-
guished p-subgroup of G . �
Proposition 3.4. All p-centric subgroups of G are distinguished, that is Cep(G) ⊆ Ŝ p(G). Consequently the
collection of distinguished p-radical subgroups contains the collection of p-centric and p-radical subgroups:
Bcen

p (G) ⊆ B̂ p(G).

Proof. Let P be a centric p-subgroup of G and let S be any Sylow p-subgroup of G which contains P .
Then Z(S) � CG(P ) and so Z(S) � Z(P ). �
Lemma 3.5. Let P ∈ S p(G) and assume that NG(P ) has characteristic p. Then CG(O p(NG(P ))) =
Z(O p(NG(P ))), and thus O p(NG(P )) is p-centric and distinguished.

Proof. Since P � O p(NG(P )), we have CG(O p(NG(P ))) � CG(P ) � NG(P ). Thus CG(O p(NG(P ))) =
CNG (P )(O p(NG(P ))) � O p(NG(P )), and so CG(O p(NG(P ))) = Z(O p(NG(P ))). Clearly O p(NG(P )) is p-
centric, and Proposition 3.4 implies this group is distinguished. �
Proposition 3.6. Let G have local characteristic p. Then Bcen

p (G) = B p(G).

Proof. Let R ∈ B p(G), so that R = O p(NG(R)). Since NG(R) has characteristic p, it follows from 2.4
that CG(R) = Z(R) and so R ∈ Bcen

p (G). �
Proposition 3.7. Let G have parabolic characteristic p. Then:

(a) If P ∈ S̃ p(G) then NG(P ) has characteristic p.
(b) Bcen

p (G) = B̂ p(G) = B̃ p(G).
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Proof. (a) Let z ∈ P be a p-central element, so that NG(〈z〉) contains a Sylow p-subgroup of G . Thus
NG(〈z〉) has characteristic p. By Proposition 2.6(1), CG(z) has characteristic p. By Proposition 2.6(2),
CG (P ) has characteristic p, and another application of Proposition 2.6(1) shows NG(P ) has character-
istic p.

(b) Note that Bcen
p (G) ⊆ B̂ p(G) ⊆ B̃ p(G). Let R ∈ B̃ p(G). Then NG(R) has characteristic p and so

CG (R) = Z(R). Thus R ∈ Bcen
p (G). �

Remark 3.8. It follows from the above proposition that if G has parabolic characteristic p and V ∈
B p(G) \ B̂ p(G), then V does not contain any p-central elements.

In the next proposition (and in many later proofs) we will establish the homotopy equivalence
between two collections by a sequence of poset maps, where usually the main part of the proof
will be to establish that the indicated terms are actually in the stated collection. Each term in the
sequence represents an equivariant poset map, and each inequality yields an equivariant homotopy
equivalence via Theorem 2.2(3).

Proposition 3.9. If G has parabolic characteristic p, then the collections B̂ p(G), Â p(G) and Ŝ p(G) are
G-homotopy equivalent.

Proof. We first show that the inclusion map Â p(G) ↪→ Ŝ p(G) is a G-homotopy equivalence. We attain
this result by showing that Â p(G)�P is NG(P )-contractible for any P ∈ Ŝ p(G) and then applying
Theorem 2.2(2). Consider the string of poset maps given by Q � Q P̂ � P̂ . Here Q ∈ Â p(G)�P , and P̂
is defined in 3.1 to be a subgroup of Z(P ). Observe that Q P̂ ∈ Â p(G)�P as P̂ � Z(P ), so P̂ centralizes
Q . The NG(P )-contractibility follows from the fact that the two inequalities correspond to poset maps
which are NG(P )-equivariant, for example F (Q ) = Q P̂ .

To show that B̂ p(G) is G-homotopy equivalent to Ŝ p(G), we will use Theorem 2.2(1). Thus we have
to prove that for each P ∈ Ŝ p(G) \ B̂ p(G), the subcollection Ŝ p(G)>P is NG(P )-contractible. Denote
O N P = O p(NG(P )) and recall since P /∈ B p(G) that P < O N P . Let Q ∈ Ŝ p(G)>P , and consider the
string of poset maps Ŝ p(G)>P → Ŝ p(G)>P given by:

Q � N Q (P ) � N Q (P )O N P � O N P .

We have the poset maps F1(Q ) = N Q (P ), F2(R) = R · O N P for R in the image of F1, and
F3(R) = O N P for R in the image of F2. Since P < Q , it follows that P < N Q (P ) � NG(P ) and by
Lemma 3.3, the subgroup N Q (P ) is distinguished. As P is a distinguished p-subgroup, NG(P ) has
characteristic p, by Proposition 3.7(a). By Lemma 3.5, O N P is p-centric and distinguished. As noted
in 2.3, the collection of p-centric groups is closed under p-supergroups, and so N Q (P )O N P is also
p-centric and is distinguished by Proposition 3.4. �
Proposition 3.10. Assume that G has parabolic characteristic p; then the inclusion Ŝ p(G) ↪→ S̃ p(G) is a
G-homotopy equivalence.

Proof. We will show that the subcollection Ŝ p(G)�P is NG(P )-contractible for every P ∈ S̃ p(G) and
then apply Theorem 2.2(2). Denote by R P the radical closure of P defined in Section 2. Let Q ∈
Ŝ p(G)�P and consider the string of NG(P )-equivariant poset maps Ŝ p(G)�P → Ŝ p(G)�P given by:

Q � N Q (P ) � N Q (P )R P � R P .

We have P � N Q (P ) � Q and by Lemma 3.3, N Q (P ) is a distinguished p-subgroup. Note that
N Q (P )R P is a subgroup in NG(R P ) since N Q (P ) � NG(P ) � NG(R P ). We have P ∈ S̃ p(G), a collection
closed under p-overgroups (3.2), so that P � R P implies that R P ∈ S̃ p(G) also. By Proposition 3.7(a),
NG(R P ) has characteristic p and R P is p-centric. Thus (see 2.3) the p-overgroup N Q (P )R P is also
p-centric, and both R P and N Q (P )R P are distinguished, by Proposition 3.4. �
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Proposition 3.11. The fixed point set S̃ Z
p (G) is NG(Z)-contractible whenever Z = 〈z〉 with z a p-central

element in G.

Proof. First note that Z ∈ S̃ Z
p (G). If P ∈ S̃ Z

p (G) then P Z ∈ S̃ Z
p (G) since Z normalizes P Z . There is a

contracting homotopy P � P Z � Z via NG(Z)-equivariant maps. �
Remark 3.12. According to Propositions 3.9 and 3.10, Ŝ p(G), Â p(G), B̂ p(G) and S̃ p(G) are G-homo-
topy equivalent, for G of parabolic characteristic p, and so under this condition Ŝ Z

p (G), Â Z
p (G) and

B̂ Z
p (G) are NG(Z)-contractible as well.

Remark 3.13. If G is a group of Lie type in characteristic p, the building Δ is the simplicial complex
associated to the poset of parabolic subgroups of G (that is the overgroups of the Borel subgroups
of G). The building of G is equivariantly homotopy equivalent to the Quillen complex [13] and there-
fore to the Brown and the Bouc complexes as well; see [18] for example. Furthermore, it follows from
Quillen’s proof that the fixed point sets ΔP are contractible for any p-subgroup P of G . A group of Lie
type in characteristic p has local characteristic p (see 2.8) so by Proposition 3.6, Bcen

p (G) = B p(G) and

according to Proposition 3.7(b), Bcen
p (G) = B̂ p(G) = B̃ p(G). Finally, using Proposition 3.9, we conclude

that the building Δ is also G-homotopy equivalent to Ŝ p(G).

4. Fixed point sets for noncentral elements

We shall investigate the fixed point set of an element of order p of noncentral type; these are
elements of order p in G which are not conjugate to any element in the center of a Sylow p-subgroup
of G . Under certain hypotheses, we will prove that the fixed point set is equivariantly homotopy
equivalent to the complex for a quotient of the centralizer. This will require a combination of nine
homotopy equivalences.

Notation 4.1. Throughout this section, T will be a subgroup of order p of noncentral type in G .
We will use the shorthand notations C = CG(T ) and O C = O p(C). The quotient group C/O C will be
denoted by C ; the quotient map is q : C → C . For H � C , let H = q(H). For Q � C , denote O Q =
O p(NC (Q )); for Q � C , denote O Q = O p(NC (Q )). Let ST ∈ Sylp(C), and extend it to S ∈ Sylp(G).

Since T � ST � S , we have Z(S) � C ; thus Z(S) � ST and in fact Z(S) � Z(ST ). Note that ST =
q(ST ) ∈ Sylp(C).

Remark 4.2. The proof of our main result, Theorem 4.14 will require the following hypotheses:

(1) G is a finite group of parabolic characteristic p;
(2) C = CG(T ) does not have characteristic p;
(3) The quotient group C = CG(T )/O p(CG (T )) has parabolic characteristic p.

But most of our preliminary results will only specify a subset of these three hypotheses.
We first recall a result which is due to Grodal [9, pp. 420–421], see also Sawabe [15, Theorem 1].

For completeness we provide a proof.

Proposition 4.3. (See proof of [9, Theorem 1.1].) Let C be a collection of nontrivial p-subgroups of G, which
is closed under passage to p-overgroups. Let Q ∈ S p(G). If C′ is a collection satisfying: C ∩ B p(G) ⊆ C′ ⊆ C
then C>Q is NG(Q )-homotopy equivalent to C′

>Q .

Proof. To simplify the notation, we shall denote by X = C>Q and by Y = C′
>Q . We will prove that

X>P is NG(P )-contractible for all P ∈ X \ Y . Then, an application of Theorem 2.2(1) will give the



878 J. Maginnis, S. Onofrei / Journal of Combinatorial Theory, Series A 117 (2010) 872–883
result. Note that X>P = {R ∈ C | P < R}. Denote O N P = O p(NG(P )); since P is not p-radical, P < O N P .
Let R ∈ X>P and consider the string of poset maps:

R � NR(P ) � NR(P )O N P � O N P .

By elementary group theory, for P < R , we have P < NR(P ) � R . Since C is closed under passage to
p-overgroups, the subgroups NR(P ), NR(P )O N P and O N P are also in X>P . In this way, we obtain a
contracting homotopy given by the above string of NG(P )-equivariant poset maps X>P → X>P . Hence
X>P is NG(P )-contractible. �
Proposition 4.4. Let G be a finite group of parabolic characteristic p. The inclusion Ŝ p(G)

�C
>T ↪→ Ŝ T

p (G) is a
NG(T )-homotopy equivalence.

Proof. We verify the following chain of NG(T )-homotopy equivalences:

Ŝ T
p (G) � S̃ T

p (G) � S̃ p(G)�T = S̃ p(G)>T � Ŝ p(G)>T � Ŝ p(G)
�NG (T )
>T = Ŝ p(G)

�C
>T .

The subcollections Ŝ T
p (G) and S̃ T

p (G) are NG(T )-homotopy equivalent because S̃ p(G) and Ŝ p(G)

are G-homotopy equivalent, as proved in Proposition 3.10. The next step follows by an application of
Theorem 2.2(4), whose hypothesis is fulfilled by 3.2; the inclusion S̃ p(G)�T ↪→ S̃ T

p (G) is a homotopy

equivalence. Next, since T /∈ S̃ p(G) it follows that S̃ p(G)�T = S̃ p(G)>T . The homotopy equivalence
between S̃ p(G)>T and Ŝ p(G)>T follows from an application of Proposition 4.3 with C = S̃ p(G) and
C′ = Ŝ p(G); note that Proposition 3.7(b) provides the necessary hypothesis C ∩ B p(G) ⊆ C′ . To see that

Ŝ p(G)
�NG (T )
>T ↪→ Ŝ p(G)>T is a homotopy equivalence, consider the poset map Ŝ p(G)>T → Ŝ p(G)>T

given by Q �→ N Q (T ) whose image lies in Ŝ p(G)
�NG (T )
>T by Lemma 3.3, and apply Theorem 2.2(3).

The final equality follows from T � P � NG(T ) if and only if T � P � C , since T of order p normal in
P implies that T � Z(P ). �
Proposition 4.5. Let G be a finite group of parabolic characteristic p. The inclusion X = Ŝ p(G)

�C
>H ↪→ Y =

S̃ p(G)
�C
>H is a NG(T )-homotopy equivalence, where H satisfies T � H � C and NG(T ) � NG(H).

Proof. Let P ∈ Y ; we will show that X�P is equivariantly contractible and apply Theorem 2.2(2). Let
R P be the radical closure of P and let Q ∈ X�P . Now consider the string of poset maps given by:

Q � N Q (P ) � N Q (P )Z(R P ) � P · Z(R P ).

Note that T < P � R P , so that Z(R P ) � C . By Proposition 3.7(b), R P is p-centric and distin-
guished. This implies that Z(R P ) is distinguished, and also P · Z(R P ) is distinguished, since Z(R P ) �
Z(P · Z(R P )). Next, Lemma 3.3 implies that N Q (P ) is distinguished. Observe that N Q (P ) � NG(P ) �
NG(R P ), implying N Q (P )Z(R P ) is a group. Choose S R ∈ Sylp(NG(R P )) satisfying N Q (P ) � S R , and ex-
tend it to S ∈ Sylp(G). Note R P � S R � S . Then Z(S) � CG (N Q (P )) and Z(S) � CG(R P ) = Z(R P ), by
Proposition 3.7(a). This implies that Z(S) � Z(N Q (P )Z(R P )), so that N Q (P )Z(R P ) is distinguished.
Thus the above is a string of equivariant poset maps X�P → X�P , which proves the equivariant
contractibility of the subcollection X�P . �
Lemma 4.6. Let G be a finite group of parabolic characteristic p. Then O C ∈ S̃ p(G) if and only if C has char-
acteristic p.

Proof. If O C ∈ S̃ p(G) then NG(O C ) has characteristic p, by Proposition 3.7(a). As T � O C � C �
NG(O C ), it follows that CNG (O C )(T ) = CG(T ) = C and so C = T · CNG (O C )(T ). Thus C has characteristic
p, by Proposition 2.5. Conversely, assume that C has characteristic p. Note T � O C , so CG(O C ) �
C . Thus CG(O C ) = CC (O C ) � O C , and so O C is p-centric. Thus O C ∈ Ŝ p(G) ⊆ S̃ p(G), according to
Proposition 3.4. �
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Note that if O C ∈ S̃ p(G), then O C ∈ Ŝ p(G). This may be compared with 3.8 concerning p-radical
subgroups of a group G having parabolic characteristic p.

Proposition 4.7. Let G be a finite group of parabolic characteristic p, and assume that O C ∈ S̃ p(G). Then the
fixed point set Ŝ p(G)T is contractible.

Proof. Consider the poset map ϕ : S̃ p(G)
�C
>T → S̃ p(G)

�C
>T given by ϕ(P ) = P · O C . By hypothesis, O C

contains p-central elements and the poset map ϕ has image equal to S̃ p(G)
�C
�O C

; this is contractible,

a cone on O C . Apply Theorem 2.2(3) to conclude S̃ p(G)
�C
>T is contractible. Apply Proposition 4.5, with

T in the role of H , to conclude that also Ŝ p(G)
�C
>T is contractible. Finally, apply Proposition 4.4 to

conclude that Ŝ T
p (G) is contractible. �

Proposition 4.8. Let G be a finite group of parabolic characteristic p, and assume that O C contains no p-
central elements. The inclusion S̃ p(G)

�C
>O C

↪→ S̃ p(G)
�C
>T is a NG(T )-homotopy equivalence.

Proof. The poset map ϕ : S̃ p(G)
�C
>T → S̃ p(G)

�C
>T given by ϕ(P ) = P · O C now has image in S̃ p(G)

�C
>O C

,
using 3.2 and that O C is purely noncentral. The result follows by an application of Theorem 2.2(3). �

There is no obvious relationship among those elements which are p-central in G , or in C , or in C .
In order to overcome this difficulty, we define a subcollection S of Ŝ p(G)

�C
>O C

as follows:

Definition 4.9. Assume the notation from 4.1 and set:

S = {
P ∈ Ŝ p(G)

�C
>O C

∣∣ Z(P ) ∩ Z(S) 	= 1, for some ST and S with P � ST � S
}
.

Note that the condition for S is stronger than “distinguished”, so that the definition can equiva-
lently be stated for any p-subgroup P with O C < P � C .

4.10. The subcollection S is also contained in Ŝ p(C), and it contains all subgroups P of C which are
p-centric in G and properly contain O C .

The above is true since if P � ST � S , then Z(S) � CG(P ), implying Z(S) � Z(P ).
The following fact can be shown to be true by an underlying argument similar to the one used in

Lemma 3.3:

4.11. Let P be in S and let Q � P . Then N P (Q ) is in S.

Proposition 4.12. Let G be a finite group of parabolic characteristic p. The inclusion S ↪→ Ŝ p(G)
�C
>O C

is an
NG(T )-homotopy equivalence.

Proof. We will apply Theorem 2.2(2) once again. We need to show that S�Q is equivariantly con-

tractible whenever Q ∈ Ŝ p(G)
�C
>O C

. Set O Q = O p(NC (Q )), assume that P ∈ S�Q and consider the
contracting homotopy given by the following string of equivariant poset maps:

P � N P (Q ) � N P (Q )O Q � O Q .

It remains to show that each of these subgroups lies in S�Q . Since Q is a distinguished p-subgroup
of G , NG(Q ) has characteristic p, by Proposition 3.7(a). Also Q CG(Q ) � NC (Q ) � NG(Q ) since T <

Q � C ; by Proposition 2.5, it follows that NC (Q ) has characteristic p. Next, according to Lemma 3.5,
with C in the role of G , it follows that O Q is p-centric in C . Now just observe that CG(O Q ) �
CG(T ) = C so that O Q is then also p-centric in G . For P � C , N P (Q )O Q is a group which is also
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p-centric, according to 2.3. Thus O Q and N P (Q )O Q lie in S, according to 4.10. Finally, by 4.11, it
follows that N P (Q ) lies in S�Q . This concludes the proof of the proposition. �
Proposition 4.13. Let G be a finite group of parabolic characteristic p, and assume that C does not have
characteristic p. Also assume that C has parabolic characteristic p. Then the map q∗ : S → Ŝ p(C) induced by
the quotient map q : C → C is a homotopy equivalence.

Proof. To see that q∗(S) ⊆ Ŝ p(C), let P ∈ S. Recall that Z(S) � Z(ST ) and ST ∈ Sylp(C). Thus Z(S) �
Z(ST ) � Z(ST ). Since O C is purely noncentral (Lemma 4.6), the map q : C → C is injective on the
elements of Z(S) as they are p-central. Therefore Z(S) ∩ Z(P ) 	= 1 implies Z(ST ) ∩ Z(P ) 	= 1, and we
have q∗(P ) = P ∈ Ŝ p(C).

According to a result of Thévenaz and Webb [18, Theorem 1], the poset map q∗ : S → Ŝ p(C) is an
equivariant homotopy equivalence if q−1∗ (Ŝ p(C)�Q ) is equivariantly contractible for any Q ∈ Ŝ p(C).

Define Q = q−1(Q ). Then q−1∗ (Ŝ p(C)�Q ) = {P ∈ S | Q � P } = {P ∈ S | Q � P }, since O C � P . This
latter set is just S�Q . Given P ∈ S�Q , consider the string of equivariant poset maps S�Q → S�Q
given by:

P � N P (Q ) � N P (Q )O Q � O Q .

We need to show that all of these terms lie in S�Q . Note that N P (Q ) ∈ S, by 4.11. Next, we have
NC (Q ) = q−1(NC (Q )), using O C � Q . Thus O Q := O p(NC (Q )) is equal to q−1(O Q ) by the correspon-

dence theorem for normal subgroups applied to NC (Q ) → NC (Q ). Since Q ∈ Ŝ p(C), NC (Q ) has char-
acteristic p, by Proposition 3.7(a). Then CC (O Q ) � O Q . Since T � Q � O Q , CG (O Q ) � CG (T ) = C and

so CG(O Q ) = CC (O Q ). Therefore CG(O Q ) = CC (O Q ) � q−1(CC (O Q )) � q−1(O Q ) = O Q . The group
O Q is p-centric in G . According to 4.10, S contains all the subgroups of C , properly containing O C ,
which are p-centric in G . The p-overgroup N P (Q )O Q is also p-centric, by 2.3 and similarly by 4.10
lies in S. �

We can now state the main result of this section.

Theorem 4.14. Maintain the notation in 4.1 and the hypotheses in 4.2. There is an NG(T )-equivariant homo-
topy equivalence Ŝ T

p (G) � Ŝ p(C).

Proof. We have the chain of NG(T )-homotopy equivalences:

Ŝ T
p (G) � Ŝ p(G)

�C
>T � S̃ p(G)

�C
>T � S̃ p(G)

�C
>O C

� Ŝ p(G)
�C
>O C

� S � Ŝ p(C).

The first step is Proposition 4.4; then apply Proposition 4.5 with H = T . Next, use Proposition 4.8 (and
Lemma 4.6), and then Proposition 4.5 again with H = O C . Finally, a combination of Propositions 4.12
and 4.13 completes the proof of the theorem. �
5. Examples and Lefschetz modules

We will discuss three examples, and give an application to modular representation theory. Recall
that if a group G acts on a simplicial complex Δ, we can construct the virtual Lefschetz module by
taking the alternating sum of the vector spaces (over a field of characteristic p) spanned by the chains.
To obtain the reduced Lefschetz module L̃G(Δ), subtract the trivial one-dimensional representation.
Information about fixed point sets leads to details about the vertices of irreducible summands of this
module.

A theorem due to Burry and Carlson [3, Theorem 5] and to Puig [12] was applied by Robinson [14,
in Corollary 3.2] to Lefschetz modules to obtain the following result.

Lemma 5.1. The number of indecomposable summands of L̃G(Δ) with vertex Q is equal to the number of
indecomposable summands of L̃NG (Q )(Δ

Q ) with the same vertex Q .
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This result, also see [15, Lemma 1], reproves the Green correspondence, and the relationship to
the Brauer correspondence permits a conclusion regarding the blocks in which the summands lie.

The Fischer group Fi22 and p = 2
We begin with the sporadic simple Fischer group Fi22, which has parabolic characteristic 2 and

has three conjugacy classes of involutions, denoted 2A,2B and 2C in the Atlas [4]. The class 2B is
2-central. Their centralizers are CFi22 (2A) = 2U6(2), CFi22(2B) = (2 × 21+8+ : U4(2)) : 2 and CFi22 (2C) =
25+8 : (S3 × 32 : 4).

Let Δ be the 2-local geometry studied in [2, Sections 7.16 and 8.4] for the Fischer group Fi22. The
vertex stabilizers are the following maximal 2-local subgroups of Fi22:

H1 = (
2 × 21+8+ : U4(2)

) : 2, H2 = 25+8 : (S3 × A6),

H3 = 26 : Sp6(2), H4 = 210 : M22.

The flag stabilizers are listed below:

H1,2 = 25+8 : (S3 × S4), H1,2,3 = 26 : 25 : (2 × S4),

H1,3 = 26 : 25 : S6, H1,2,4 = 25+8 : (2 × S4),

H1,4 = 210 : 24 : S5, H1,3,4 = 26 : 25 : (2 × S4),

H2,3 = 26 : 21+6 : (S3 × S3), H2,3,4 = 26 : 21+6 : (S3 × 2),

H2,4 = 25+8 : (2 × A6), H1,2,3,4 = 26 : 21+6 : 22,

H3,4 = 26 : 26 : L3(2).

The geometry Δ is G-homotopy equivalent to Bcen
2 (Fi22), and since Fi22 has parabolic characteristic

2 and using Proposition 3.7(b), this is equal to the distinguished collection B̂2(Fi22); for details we
refer the reader to Benson and Smith [2, Sections 7.16 and 8.4].

We shall use the notation from the Modular Atlas homepage [7], where ϕi denotes an irreducible
module of Fi22 and PFi22 (ϕi) is its corresponding projective cover.

Proposition 5.2. Let Δ be the 2-local geometry for the Fischer group Fi22 .

(a) The reduced Lefschetz module, as an element of the Green ring, is

L̃Fi22(Δ) = −PFi22(ϕ12) − PFi22(ϕ13) − 6ϕ15 − 12PFi22(ϕ16) − ϕ16.

(b) The fixed point sets Δ2B and Δ2C are contractible.
(c) The fixed point set Δ2A is equivariantly homotopy equivalent to the building for the Lie group U6(2).
(d) There is precisely one nonprojective summand of the reduced Lefschetz module, it has vertex 〈2A〉 and lies

in a block with the same group as defect group.

Proof. (a) The alternating sum of the induced characters was computed using GAP [6], and the char-
acter corresponding to the formula for L̃Fi22 (Δ) given above was obtained. The eight terms lying in
H3 = 26 : Sp6(2) can be combined to yield the character of the inflation of the Steinberg module for
the symplectic group.

The first two terms of the reduced Lefschetz module, the projective covers of ϕ12 and ϕ13, lie
in the principal block. Also ϕ15 is projective and lies in block 2, with defect zero. Next, ϕ16 is not
projective, and lies in block 3 with defect one. This formula will be shown to be valid at the level of
the Green ring of virtual modules, and not just the Grothendieck ring of characters.

(b) Recall that Δ � B̂2(Fi22), and by Proposition 3.9 the latter is equivariantly homotopy equivalent
to Ŝ2(Fi22). Thus we may apply to Δ the results 3.11, 4.7 and 4.14 about fixed points of Ŝ2(Fi22).
Proposition 3.11 (also see Remark 3.13) tells us that the fixed point set Δ2B is contractible. The
contractibility of Δ2B implies that ΔQ is mod 2 acyclic for any 2-group Q containing an involution
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of type 2B (by Smith theory), and thus the reduced Lefschetz module L̃NG (Q )(Δ
Q ) = 0. Lemma 5.1

implies that the vertices of the indecomposable summands of L̃Fi22 (Δ) do not contain any 2-central
involutions.

Proposition 4.7 applies to the element 2C since the subgroup O C = O 2(CFi22 (2C)) contains 2-cen-
tral elements. The elementary abelian 25 � 25+8 is of the type 25 = 2A6 B15C10, containing 6 invo-
lutions in the conjugacy class A, 15 involutions of type B , and 10 involutions of type C . There is a
purely 2-central 24 � 25. Note that Δ2C being contractible implies that no vertex of a summand of
L̃Fi22 (Δ) contains an involution of type 2C .

(c) Theorem 4.14 applies to the fixed point set Δ2A , since the quotient group of the centralizer
CFi22 (2A)/O 2(CFi22 (2A)) = U6(2) is a Lie group defined over a field of characteristic 2. Therefore Δ2A

is homotopy equivalent to the building for U6(2) (recall 3.13). It is a consequence of the Solomon–Tits
theorem that the reduced Lefschetz module associated to this action on the building is the irreducible
Steinberg module. The vertex under the action of 2U6(2) is 〈2A〉. Thus there exists one indecompos-
able summand of the Lefschetz module with vertex 2 = 〈2A〉, lying in a block with the same group as
defect group (block 3 with defect one). Note that since this block has cyclic defect group of order two,
there is only one nonprojective indecomposable module lying in this block, namely the irreducible
module ϕ16. Also note that since Δ2A is homotopy equivalent to a building, ΔQ will be contractible
for any 2-group Q (again recall 3.13) of order at least four which contains an involution of type 2A.
This implies that such a group Q cannot be a vertex of a summand of L̃Fi22 (Δ).

(d) It follows from the previous steps that there is precisely one nonprojective summand of the re-
duced Lefschetz module; it has vertex 〈2A〉 and it lies in a block with the same group as defect group.
The remaining summands are projective and are determined by their characters, and so the formula
for L̃Fi22 (Δ) is valid at the level of the Green ring of virtual modules, and not just the Grothendieck
ring of characters. �
The Conway group Co3 and p = 3

The group Co3 has parabolic characteristic 3, and it has three conjugacy classes of elements of
order three, denoted 3A, 3B and 3C , with the 3-central elements being those of type 3A. The nor-
malizers are NCo3 (〈3A〉) = 31+4+ : 4S6, NCo3 (〈3B〉) = 35(2 × S5) and NCo3 (〈3C〉) = S3 × L2(8) : 3. Note
that L2(8) : 3 = Ree(3) = 2G2(3) is a twisted group of Lie type having local characteristic 3.

Proposition 5.3. Let Δ be the subgroup complex associated to the distinguished 3-radical collection B̂3(Co3).

(a) The fixed point sets Δ3A and Δ3B are contractible, and Δ3C is equivariantly homotopy equivalent to the
building for 2G2(3).

(b) The reduced Lefschetz module L̃Co3 (Δ) has precisely one nonprojective irreducible summand, which has
vertex 〈3C〉 and lies in a block with the same group as defect group.

Proof. As in the previous example, by Proposition 3.9 we may apply to Δ = B̂3(Co3) the fixed point
results in 3.11, 4.7 and 4.14 stated for Ŝ3(Co3). Proposition 3.11 (and Remark 3.13) implies that
the fixed point set Δ3A of the 3-central element is contractible. Proposition 4.7 implies that Δ3B

is contractible since O C = O 3(CCo3 (3B)) = 35 = 3A55 B66 contains 3-central elements. The elementary
abelian group 3A55 B66 contains 55 cyclic subgroups of order three with both nonidentity elements
of type A, and 66 cyclic subgroups with both nonidentity elements of type B . The reduced Lefschetz
module L̃Co3 (Δ) has no summands with a vertex containing either an element of type 3A or an
element of type 3B , by a similar argument to the one in part (b) of the previous proposition.

Theorem 4.14 applies to Δ3C . The reduced Lefschetz module for the 2G2(3) building is the irre-
ducible Steinberg module (recall 3.13), and under the action of NCo3 (〈3C〉), the vertex is 〈3C〉. Also,
since Δ3C is equivariantly homotopy equivalent to a building, ΔQ will be contractible for any 3-
group Q of order at least nine which contains an element of type 3C . This implies that such a group
Q cannot be a vertex of a summand of L̃Co3 (Δ). Lemma 5.1 implies now the result of part (b). �
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The Harada–Norton group HN and p = 5
The group HN has parabolic characteristic 5 and has five conjugacy classes of elements of order 5,

denoted 5A, 5B , 5C , 5D and 5E; see [4]. The elements of type 5B are 5-central. An element of type
5D is the square of an element of type 5C , so either one generates the same group of order 5 denoted
5C D . The centralizers are CHN(5A) = 5 × U3(5), CHN(5B) = 51+4.21+4.5, CHN(5C D) = 53.SL2(5) and
CHN(5E) = 5 × 51+2 : 22.

Proposition 5.4. Let Δ be the subgroup complex associated to the distinguished 5-radical collection B̂5(HN).

(a) The fixed point sets Δ5B , Δ5C D and Δ5E are contractible, and Δ5A is equivariantly homotopy equivalent
to the building for U3(5).

(b) The reduced Lefschetz module L̃HN(Δ) has precisely one nonprojective summand, which has vertex 〈5A〉
and lies in a block with the same group as defect group.

Proof. By Proposition 3.9 we may apply 3.11, 4.7 and 4.14 to Δ; by 3.13, the collection in 4.14 trans-
lates to the building of C . Proposition 3.11 (and Remark 3.13) applies to the 5-central elements of
type 5B , so that the fixed point set Δ5B is contractible. The two groups 53 = B6(C D)25 and 5 × 51+2

contain 5-central elements; the center Z(51+2) = 〈5B〉, and B6(C D)25 contains 6 cyclic subgroups of
order five with all nonidentity elements of type B (and 25 cyclic subgroups with two elements of
type C and two elements of type D). According to Proposition 4.7 the fixed point sets Δ5C D and Δ5E

are both contractible. Thus the reduced Lefschetz module L̃HN(Δ) has no summands with a vertex
containing elements of type 5B , 5C , 5D or 5E .

Theorem 4.14 applies to the elements of type 5A, so that Δ5A is equivariantly homotopy equiv-
alent to the building for U3(5). The reduced Lefschetz module for this building is the irreducible
Steinberg module, and under the action of NHN(〈5A〉), the vertex is 〈5A〉. Thus L̃HN(Δ) has one sum-
mand with vertex 〈5A〉 lying in a block with the same group as defect group. Since Δ5A is homotopy
equivalent to a building, ΔQ will be contractible for any 5-group Q of order at least 25 which con-
tains an element of type 5A. This implies that such a group Q cannot be a vertex of a summand of
L̃HN(Δ). �
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