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Abstract 

Let r be a finite graph, and for each vertex i let Gi be a finitely presented group. Let G be the 
graph product of the Gi. That is, G is the group obtained from the free product of the Gi by 
factoring out by the smallest normal subgroup containing all [g, h] where g E Gi and h E Gj and 
there is an edge joining i andi. We show that G has an isoperimetric function of degree k > 1 (or 
an exponential isoperimetric function) if each vertex group has such an isoperimetric function. 

1. Graph products 

Let r be a finite graph; that is, r consists of a finite set of vertices and a finite set of 
edges, where each edge is an unordered pair of vertices. We call two vertices adjacent if 
there is an edge joining them. Let us be given a group Gi for each vertex i. Then the 
graph product G of the Gi is the group obtained from the free product of the Gi by 
factoring out by the smallest normal subgroup containing all [g, h] where g E Gi and 
h E Gj and i and j are adjacent. Note that if Gi has presentation (Ai; Ri), where the Ai 
are disjoint, then G has presentation ( UAi; URi u S), where S is the set of commuta- 
tors [a, b] for a E Ai, b E Aj, where i and j are adjacent. The free product and the direct 
product are examples of graph products (corresponding to graphs with no edges and 
complete graphs, respectively). All groups considered will be finitely presented. 

Gersten [3] defines an isoperimetric function for a finite presentation (Y; S) of 
a group H to be a functionfwithfo = 0 such that if w is a word of length at most n in 
the free group on Y and w equals 1 in H then w is the product of at most f(n) 

conjugates of elements of S and their inverses. Brick [2] shows that if we change to 
another finite presentation then there are positive constants a,b,c such that the new 
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presentation has an isoperimetric function g given by g(n) = uf(bn) + cn. (Gersten 
shows an equivalent result, but states it in a form which is at first sight weaker.) 

Consequently, we say that g if if there are positive constants a,b,c such that 
g(n) I af(bn) + cn for all n, and we call g equivalent tof if we have both g 5fand 
f5 g. This is Brick’s definition, which is slightly different from Gersten’s. I prefer this 
definition because it makes all polynomials of a given degree equivalent, and also 
makes all exponentials equivalent. 

Gersten also defines the functionf, to be an isodiametric function for the presenta- 
tion if a word w of length at most n which equals 1 in the group is, as before, the 
product of conjugates of the relators and their inverses with the conjugating elements 
having length at mostf, (n). We may also say thatfandf, are simultaneous isoperimet- 
ric and isodiametric functions if each such w can be expressed a product of conjugates 
satisfying both conditions (as distinct from having two different expressions, each 
satisfying one condition). 

When the free monoid Y* maps onto H (rather than just the free group on 
Y mapping onto H) we say that Y is a set of monoid generators of H. It is particularly 
useful if Y has the property that to each y E Y there is jj E Y such that yjj equals 1 in 
H; such a Y will be called a set of monoid generators in the stronger sense. When this 
happens, it is easy to see that we can find a set of defining relators containing all the 
elements yJ and lying in Y *. It is also easy to check that any finite presentation can be 
changed to a finite presentation of this sort, and that, in looking for an isoperimetric 
or isodiametric function, we need only consider elements of Y* and not general 
elements of the free group on Y. In this paper we prove the following theorem. 

Theorem. Zf each vertex group has an isoperimetric function which is polynomial of 
degree k > 1 (or an exponential isoperimetric function) then so does their graph product. 
It each vertex group has an isodiametric function which is polynomial of degree h z=- 0 (or 
an exponential isodiametric function) then so does their graph product. If the functions 
are simultaneous isoperimetric and isodiametric functions for the vertex groups then the 
same holds for the graph product. 

The theorem will also hold for other classes of isoperimetric functions (this follows 
immediately from the proof), but the precise condition is messy and these two cases 
are the most important. One requirement is that the function is at least quadratic. 
When this holds, it is sufficient that the equivalence class contains a function f such 
that f(m + n) I f(m) + f (n) for all m and n (Brick calls such a function subnegatiue, and 
he remarks, without giving an example, that there are equivalence classes which 
contain no subnegative function). Ol’shankii [9] has proved that groups whose 
isoperimetric function is subquadratic are hyperbolic and hence have linear 
isoperimetric function. Note that the graph product of groups with a linear 
isoperimetric function usually does not have a linear isoperimetric function. 

For an isodiametric functionfi the only restriction is thatf, is of order of magnitude 
at least n. 
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The inspiration for this paper came from work on graph products by Hermiller and 
Meier [S]. Their discussion of normal forms in graph products, and a similar 
discussion by Laurence [7], led me to the approach given here. The same theorem has 
been proved by Meier [8] by different methods. 

In proving the theorem we may take any finite presentations of the vertex groups. It 
will be convenient to take the Ai to be disjoint finite sets which are monoid generators 
(in the stronger sense) of Gi, so that there is a homomorphism ni:AT + Gi. 

A non-trivial element of AT will be called an i-word. To each i-word u we take 
a symbol [u]. Let X be the set of all such symbols. Then there is a homomorphism 
p from X* onto G which sends [u] to ~iU when u is an i-word. An element of X* will 
just be called a word. We say that [u] is in the Eink ofi if u is aj-word where i and j are 
adjacent. We say that the word W is in the link of i if W is [uJ ... [u,] with each of 

c41, ... , [u,] in the link of i. 
A sequence of words WI, . . . , W, = E, where E is the empty word, will be called 

a reduction sequence if, for all m < n, Wm+l is obtained from W, by one of the 
following moves: 

(1) replace P[u][v]Q by P[uv]Q, for any words P,Q and, for any i, any i-words 
u and v; 

(2) replace P[u]Q [v] T by P[uu] QT for any words P, T, any i-words u,v, any i, and 
any word Q in the link of i; 

(3) replace P[u]Q by PQ for any words P,Q, any i, and any i-word u such that 
7CiU = 1. 

We refer to i-moves if there is a need to mention i explicitly. 
The following lemma will be proved in Section 2. 

Lemma. If pW = 1 then there is a reduction sequence starting with W. 

Let W = WI, . . . , W, = E be a reduction sequence. We show how to replace it by 
another reduction sequence with nice properties. 

Since the sequence ends with E, a move of type 3 must be used at some point. Let the 
first such move be an i-move, going from W, to W,+ 1. Since all earlier moves are of 
types 1 and 2, it is easy to check that, in the sequence WI, . . . , W,+ 1, a j-move 
followed by an i-move can be replaced by an i-move followed by a j-move. Thus we 
may assume that each of the first m moves is an i-move. 

We can now see easily (by induction, looking at the reduction sequence beginning 
with W,) that W must be of the form P[ul]Q1[uz] . . . Q,-l[ul]P’ for some r, where 

Ul, ... , u, are i-words, Q1, . . . , Q,_ 1 are (possibly empty) words in the link of i, and 
7iZi(Ul **. U,) = 1. 

For an arbitrary word I/ = [vJ ... [us], define (I V 11 to be Iv1 ) + ... + (us), where IvJ 
is the length of v. We define the weight of a move of type 1 to be 0, the weight of a move 
of type 2 to be 1) Q II.IvI, and the weight of a move of type 3 to bef(lul), wherefis an 
isoperimetric function for all of the groups Gi. We define the weight of a reduction 
sequence to be the sum of the weights of its moves, and we define the weight of a word 
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W for which p W = 1 to be the minimum weight of the reduction sequences beginning 
with W. 

Let g(n) be the maximum off(nl) + ... +f(nJ over all s and all positive integers 

nl, . . . , n, whose sum is n. Note that iffis polynomial of degree k (or exponential) then 
so is g. Brick calls g the subnegative closure off; it is easy to see that it is the smallest 
subnegative function which is an upper bound forf: 

We next show that the weight of a word W with pW = 1 is at most (1 W 11’ + 

g( (1 W 11). As already remarked, we can write W as P[u1]Q1[u2] . . . Q,._ 1 [u,]P’, where 

al, ..’ > u, are i-words, Qi, . . . ,Qrelare (possibly empty) words in the link of i, and 
7&i . . . u,.) = 1. Then there is a reduction sequence beginning with 

K PC~I~QIQ~CUJ . ..CO”. . . . ,~YuI . ..urlQ~ . . . Qr-I, W’, 

where W’ is PQ, es. Qr_ 1P’. Since the sum of the weights of the moves from W to W’ is 

atmost (I W ll$lull + .a. + lu,l) +f(lul ... u,I), the required result holds by induction. 
Finally, we use this result to obtain an isoperimetric function for G. We use the set 

;f(“ci:oJIX generators UA,. There are homomorphisms Z:(UAi)* + G, 
*, and /?:X* +(UAJ*, defined by rra = nia for a~&, eta = [a], and 

b;u] =’ u. Plainly, for any W E(UAi)*y we have @w = w and puw = zw. Also 

lwl = II cw II. 
It is easy to see that if W’ is obtained from W by a move of weight k then /3 W is the 

product of /?W’ and k conjugates of the defining relators (and their inverses) of the 
finite presentation of G. By induction on the length of the reduction sequence, if 
pW = 1 then PW is the product of at most weight (W) conjugates of the definig 
relators and their inverses. 

Applying this to aw, where xw = 1, and using the formula for the weight, we see that 
g(n) + n2 is an isoperimetric function for our presentation of G, proving the theorem 
for the isoperimetric case. The result for the isodiametric case is similar but simpler, 
and the details will be left to the reader. 

2. Semi-Thue-systems 

Let X be an arbitrary set. A semi-Thue system, or rewriting system on X is a subset 
S of X* xX*. Such a system induces an equivalence relation on X*; namely, the 
smallest equivalence relation such that ulu = urv for all words u,u and all pairs (I, r) in 
S. The quotient of X* by this equivalence is called the monoid presented by (X; S). 

When we look for normal forms for the equivalence classes, there are two ways to 
proceed. One treats all members of S alike, and compares the equivalence relation with 
the non-symmetric relation in which we can replace ulu by uru but not vice versa. We 
then endeavour to see if this terminates, and whether it provides a unique normal form. 

The other approach, which is more convenient in our situation, begins by assuming 
that S consists only of pairs for which 111 2 1 r ( and that, for any (1, I) in S with 111 = (r I 
we also have (r, 1) in S. This can be done without loss of generality, since we get the 
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same equivalence relation if we replace a pair (I, r) by (r, 1) and also if we add pairs (r, 1) 
for which (I, r) are already in S. 

If we do this, then, when we consider replacing ulv by uro but not viceversa, if 
(II = 11-1 we can use the further pair (r, I) to return from urv to ulv. Consequently, we 
treat such pairs differently from those pairs for which I I( > Irl. It is quite common in 
computer science to distinguish between the two approaches by using the phrase 
‘rewriting system’ for the first one and the phrase ‘semi-Thue system’ for the second. 

We write ulv + uru for a pair (I, r) with JEJ > Irl, and ulv N urv for a pair with 

III = Irl. We let * and x be the transitive reflexive closures of these. 

We say that the pair U, v is almost conjiuent if there are ul, v1 such that u *ul, 

v *vl, and u1 2 vl. Plainly, almost confluent words are equivalent, and we call 

S almost confluent if every pair of equivalent words is almost confluent. In searching 
for nice representatives of the equivalence classes, it is particularly helpful if S is 

almost confluent. Clearly, when this holds, if u is equivalent to E then u-% 

This situation is very familiar to computer scientists. A sufficient condition for the 
property to hold can be given in terms of the behaviour of certain critical pairs of 
words, which arise from certain words in which two of the elements of S may be used. 
The situation is less well- known to group theorists, but results sometimes referred to 
as ‘Peak Reduction Lemmas’ are essentially of this form. 

Huet [6] showed that S is almost confluent whenever almost confluence holds for 
all pairs u, v such that there is some w with w + u and either w --, v or w N v. It is not 
difficult to prove this directly using peak reduction arguments. (If readers want to look 

at [6], they should note that Huet’s N is our z .) 

Huet also showed that we do not even have to consider all such pairs. It is enough to 
consider those w of form abc for some words a,b,c such that S either has elements (ub, q) 
and (bc, r2) or has elements (ubc, rl) and (b, rz), with u and v (or u and u) obtained from 
w by applying these two elements; we refer to the first case as an overlap ambiguity and 
to the second case as an inclusion ambiguity (for an overlap ambiguity we require u,b,c 
to be non-empty; for an inclusion ambiguity, either a or c or both may be empty, but rl 
and r2 must be distinct if a and c are both empty). These pairs u, u of words are called the 
critical pairs. Huet’s proof applies in much more generality, and it is quite easy to prove 
this directly in our situation. A proof can also be found in [l] section 3.6. 

We now return to graph products, with the set X as in Section 1. We shall prove the 
lemma by applying this theory of semi-Thue systems. The set S will consist of the 
following pairs: 

(1) ([u][v], [uv]), where u and v are i-words for some i; 
(2) ([u]P[v], [uv]P), where u and v are i-words for some i and P is in the link of i; 
(3) ([u], E), where u is an i-word such that ~iU = 1; 
(4) ([u],[v]), where u and v are i-words for some i and niu = ~iv; 
(5) ([u] [v], [v][u]), where ZJ is an i-word, v is a j-word, and i and j are adjacent. 
It is clear that the set of i-words for a given i, together with the corresponding pairs 

of types 1,3, and 4, form a monoid presentation for Gi; this is just a variant of the 
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multiplication table presentation. If we take all pairs of types 1,3,4, and 5 we then 
clearly obtain a monoid presentation for G. We can then add the pairs of type 2 and 
still get a monoid presentation for G, since the two elements of a pair of type 2 clearly 
give the same element of G. 

To prove the lemma, we need only show that the criterion mentioned above is satisfied. 
First look at the inclusion ambiguities. The simplest cases occur when u is an i-word 

such that rciu = 1, and w is an i-word such that rciw = rciu. Then [u] + E and [u] - [w], 
and we also have [w] + E. Further, let v be a j-word, where i andj are adjacent. Then 
we have [u] [v] - [v] [u] and also [u] [v] - [v]. Here we have [v] [u] - [v]. A similar 
argument holds when we have ZjU = 1 instead of rCiM = 1. 

For the remaining cases, let u and v be i-words for some i, and let P be a (possibly 
empty) word in the link of i. Thus [u]P[v] - [uv]P. 

Suppose that some pair can be applied to P, giving P’. For notational convenience, 
suppose P - P' (the case where P + P' is obtained by replacing - by + throughout). 
Then we also have [uP[v] N [u] P'[v]. It is easy to check that P’ is still in the link of i, 
and so we have both [uv] P - [uv] P' and [u] P’[v] + [uv] P'. 

Let w be an i-word such that niw = 71iu. Then [u] P[u] + [uv]P and 
[u] P[v] - [w]P{v]. We then have [w] P[v]-+[wv]P and [uv] P N [wv]P. A similar 
argument works when, instead of 7Ciw = ~iu, we have rciw = niv. 

Next, suppose that ~iv = 1. Then [u] P[v] --f [uv]P and also [u] P[v] + [u] P. Since 
rrXuv) = niu, we have [uu] P - [u] P, using a pair of type 4. If we have rriu = 1 instead 
ofniv = l,then [u]P[v]+[uv]P and [u]P[v] +P[v]. Here we have [uv]P - [VIP, 
using a pair of type 4, and [v] P - P[v], using pairs of type 5 (since P is in the link of i). 

The remaining inclusion ambiguity occurs by writing P as Q[w] or as [w]Q, and 
applying a pair of type 5 to [w] [v] or to [u] [w]. This case is almost the same as the 
next one, so the details will be left to the reader. 

Our first case of an overlap ambiguity is when w is a j-word, where i and 
j are adjacent. Then [u]P[v][w]+[uv]P[w] and [u]P[v][w] -[u]P[w][v]. 
Since P[w] is in the link of i, we have [u]P[w] [v] + [uv] P[w]. Also, we 
have [w] [u] P[v] --f [w] [uu] P and [w] [u] P[v] N [u] [w] P[u]. We then have 
[u][w] P[v]-[uv][w]P and [w][uu] P - [uv][w]P. 

Next, look at [u] P[v]Q [w], where u, v, and w are i-words for some i, and P and 
Q are (possibly empty) words in the link of i. We have [u] P [II] Q [w] + [uv] PQ[w] 
andalso [u]P[v]Q[w]-[u]P[vw]Q. H ere we find that [uv] PQ[w] + [uvw] PQ and 
also [u] P[vw]Q +[uvw]PQ. 

The final case is notationally the most complicated. Consider [u] P[z] Q [o] R[t], 
where u and v are i-words for some i, z and t are j-words for some j adjacent to i, P is 
in the link of i, R is in the link of j, and Q is in both links. We then 
have [u]P[z]Q[v]R[t]+[uv]P[z]QR[t] and [u]P[z]Q[v]R[t]-t[u]P[zt]Q[v]R. 
We find, as required, that CuvlPCzlQNtl+ Cuvlf’CztlQR and 
[u]P[zt]Q[v]R+[uv]P[zt]QR. 

We have now shown that all critical pairs satisfy the required criterion, and the 
lemma is proved. 
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Green, in her thesis [4], proves a normal form theorem for graph products. An 
easier proof can be obtained by the current methods. (This is not surprsing. The 
easiest proof of the normal form theorem for free products uses the similar results for 
length-reducing semi-Thue systems.) 

The free product *Gi of the vertex groups maps onto G. An element of the free 
product is in normal form if it is g1 . . . gn, where each g, is in a vertex group, g,. # 1 for 

rSnandg,,g,+l in different vertex groups for r < n. An element in normal form is 
called graphically reduced if for any p, q with p < q such that gp and gq are in the same 
vertex group Gi there is some r with p < r < q such that gV is in a vertex group Gj with 
j not adjacent to i. 

If, for some s, gS and gS+ 1 are in vertex groups at adjacent vertices, we say that 

gl~~~gs-lgs+lgsgs+2 ... gn is a shufJle of g1 . . . g.. It is easy to see that a shuffle of 
a graphically reduced element is graphically reduced, but an element in normal form 
which is not graphically reduced will be transformed to an element not in normal form 
by a suitable sequence of shuffles. 

There is a homomorphism 8 from X* onto *Gi defined by f3[u] = nia for u E Gi. 
Plainly, NJ is in normal form iff no rules of types 1 and 3 can be applied to U, and BU 
will be graphically reduced iff no rules of types 1, 2, or 3 can be applied to U. 

If V comes from U by application of a rule of type 4 then W = NJ, while if V comes 
from U by application of a rule of types 5 then W is a shuffle of NJ. Since our 
semi-Thue system presents the graph product, we immediately get the following 
theorem of Green from the almost-confluence property by using 8. 

Normal form theorem for graph products. Every element of the graph product is the 
image of a graphically reduced element of the free product. Two graphically reduced 
element of the free product give the same element of the graph product ifSone comes from 
the other by a sequence of shujjles. 
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