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Abstract 

This work presents a computerized lesion segmentation technique on breast ultrasound images. There were applied known 
techniques such as morphological filtering, Watershed transformation and average radial derivative function. To evaluate the 
performance of the proposed method, two protocols were established. For the first, the resulting segmentation contours were 
compared with those of 24 gold standard simulated ultrasound-like images, and, for second, with 36 breast US images manually 
delineated by two senior radiologists. Further, two evaluation parameters were used: the percentage of coincidence (CP) and 
the proportional distance (PD). The former indicates the similarity between contours, while the latter express the dissimilarity.
The accuracy of the proposed method was evaluated by considering images with CP > 80 % and PD < 10 % as adequately 
delineated. It was higher than 80% for real images and higher than 88% for simulated images. 
PACS: 87.57.nm; 87.57.-s; 07.05.Pj
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1. Introduction 

Mammography is currently the best available screening modality for early detection and diagnosis of breast 
cancer. Periodic screening mammography evaluates asymptomatic women with the goal of discovering early signs 
of malignant lesions, more specifically microcalcifications. Nevertheless, it is well known that mammography is 
unable to explore some internal aspects of suspected lesions. Thus, when appropriate, ultrasonographic screening is 
indicated [1]. Nowadays, breast ultrasound (US) is accepted as the most important adjunct to mammography for 
patients with palpable masses and normal or inconclusive mammograms. It is particularly useful in distinguishing 
cystic from non-cystic (solid) breast lesions [2].

Malignant tumors generally infiltrate the surrounding tissue and they present several morphological features 
associated to malignancy such as: (i) spiculation, a distortion caused by the intrusion of the breast cancer into the 
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surrounding tissue [3]; (ii) angular margins, obtuse or acute pointed junctions between the mass and surrounding
tissue; and (iii) microlobulation, that is frequently associated with angular margins and is characterized by greater
than three lobulations of the mass surface [4]. Therefore, analyzing the lesion contour morphology one can provide a 
diagnostic hypothesis about the tumor malignancy.

However, due to the large overlap in the sonographic appearance of breast lesions, it has been difficult to
diagnose them as benign or malignant only by visual inspection of a specialist [5]. To improve diagnosis, a number
of researchers have been attempting to develop quantitative methods to build computer-aided diagnosis (CAD)
systems.

In a CAD system, the accurate segmentation of breast lesions in ultrasonographies is a difficult task, because of a 
number of factors like speckle noise and shadows, low or non-uniform contrast of certain structures, and the
echogenicity variability of nodules [6]. Thus, to obtain a segmentation method to be used for diagnosis depends on 
two main aspects: image pre-processing and gray-level threshold selection. 

Mathematical Morphology (MM) is a branch of image processing which is useful for analyzing shapes in images.
The Morphological Operators (MO) could simplify the image information data, preserving the essential
characteristics and removing irrelevant structures. Numerous methods have been developed to segment breast 
lesions in US images using MO [7] [9].

In this study, it is proposed a semiautomatic segmentation technique that combines different MO to preprocess
the breast US image and the maximization of the average radial derivative (ARD) function to select the optimal
gray level threshold that corresponds to the lesion contour.

2. Material and Methods

2.1. Simulated ultrasound images

To evaluate the segmentation technique performance, simulated ultrasound images were used as a gold standard,
containing eight kinds of classical lesion shapes, classified by their cross section. Lesion shapes can be described by
the presence, or absence, of “constriction” and “angularity”. The former means convex or indented characteristics, 
and the latter indicates concave or projecting characteristics (Table 1) [10].

Table1. Lesion classification according to its shape.

Shape A B Constriction Angularity

Round/Oval No No

Polygonal No Yes

Lobulated Yes No

Irregular Yes Yes

If a typical B-scan US image is examined it could be observed two main patterns. Firstly, on a microscopic scale
and within a homogeneous region of tissue, the speckle pattern behaves in a pseudo-random way pixel-to-pixel
correlation, which can be viewed as a reflectivity function of identically distributed uncorrelated random variables.
On the other hand, on a macroscopic scale, the local average amplitude of the speckle varies piecewise smoothly,
remaining uniform or changing slowly in regions of homogeneous tissue but varying sharply at structural or tissue
boundaries [11]. Then, a simple way to simulate these different macroscopic and microscopic behaviors of the
reflectivity function is to model it as the product of an echogenicity map and a speckle random field with Rayleigh
distribution [12], as illustrated in Fig. 1.
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Fig.1 Simulated ultrasound image for a hypothetic anechoic cyst.
Multiplying the echogenicity map by a random field with Rayleigh
distribution yields a reflectivity function, which, after blurring and
adding noise, resembles a typical B-scan image. The gray scales in all 
of the images represent logarithmically compressed amplitudes.

Fig.2  Topographic view of Watershed transformation.

For each lesion shape shown in Table 1, a binary image (used as gold standard) and an ultrasound image were 
created. The background contrast of the echogenicity map was fixed in 1 dB, and the internal contrast of the 
simulated lesion was varied 6 dB, 8 dB and 10 dB. The speckle random field has Rayleigh distribution with
variance 1. The combination of all controlled characteristics (eight shapes and three contrasts) derived in 24 kinds of
ultrasound images. These images were simulated with the purpose of assessing the ability of the segmentation
technique to follow the real boundary with controlled levels of irregularity, contrast and speckle noise.

2.2. Breast US image database

In this study, images were acquired with a 7.5 MHz linear array B-mode 40 mm ultrasound probe (Sonoline–
Sienna® Siemens) with axial and lateral resolutions of 0.45 mm and 0.49 mm, respectively. Thirty-six US images of
breast lesion were acquired at the Cancer National Institute (Rio de Janeiro, Brazil). For each image, two 
experienced radiologists delineated manually the lesion contours using software designed for that purpose.

2.3. Morphological operators

2.3.1. Morphological Filtering

Three basic requirements are needed when filtering medical images: (i) it should preserve lesion boundaries and
structure details; (ii) it should suppress noise in homogenous regions; and (iii) it should enhance edge information
[13].

As previously mentioned, US images are characterized by speckle artifact, which degrades the image by
concealing fine structures and reducing the signal to noise ratio (SNR) [14]. Moreover, in many cases, it is harder to
locate the edges of different elements due to the low contrast between the structures to be segmented and the
background. Therefore, it is necessary to remove speckle and enhance the edges between distinct regions before the
segmentation procedure.

The basic morphological filters are the morphological opening  and the morphological closing  with a given
structuring element (SE) , and they are defined as:

 (1)f ˆ f

ˆ
 (2)f ˆ f

where  is the transposed SE, and  and  are the operations of erosion and dilation, respectively [15].
Another class of filters is composed by the opening and closing by reconstruction. When filters by reconstruction

are built, the basic geodesic transformation, the geodesic dilation and the geodesic erosion, are iterated until
idempotence is reached. Where the geodesic dilation and geodesic erosion are given by f (g) = f (g) with g f
and f (g) = f (g) with g f, respectively. When the function g is equal to the erosion or the dilation of the original
function, it is obtained the opening and closing by reconstruction:
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Therefore, the opening by reconstruction ˜ of an image f with SE = , is defined as the erosion of f with the
SE = B followed by the geodesic dilation iterated until stability is reached, where  is the point wise minimum. The
effect of ˜ is to remove all structures in an image that are both smaller than the SE and brighter than the
surroundings.

On the other hand, the closing by reconstruction  of an image f, with SE = , is defined as the dilation of f with
SE = B, followed by the geodesic erosion iterated until idempotence is reached, where  is the point-wise maximum.
The result of  is to remove all structures that are both smaller than the SE and darker than the surroundings.

2.3.2. Watershed transform

The Watershed transform is the method of choice for image segmentation in the field of MM, and can be
considered as a region-based segmentation approach.

The intuitive idea underlying this method comes from Geography. Imagine that a landscape or topographic relief 
is being immersed in a lake, with holes pierced in local minima. Basins (also called “catchment basins”) will be 
filled up with water starting at these local minima, and, at points where water coming from different basins meets,
dams are built. When the water level has reached the highest peak in the landscape, the process is stopped. As a 
result, the landscape is partitioned into regions or basins separated by dams, called watershed lines or simply
watersheds (see Fig. 2) [16]. In agreement with this concept, the Watershed transform could be used to separate
modal regions in an image histogram.

2.3.3. Minima imposition

The minima imposition is a kind of morphological filtering that requires a set of markers that are related to dark
objects. In the case of the semiautomatic segmentation algorithm, the user defines manually this marker at the lesion
center.

To perform the minima imposition, firstly, it is computed the point wise minimum between the input image, f,
and the marker image, fm: f fm. By doing so, minima are created at locations corresponding to the markers, assuring
that the resulting image is lower or equal to marker image. The last step consists in a morphological reconstruction
by erosion of f fm from the marker image fm [15].

2.4. Breast US image preprocessing by MO

In order to remove speckle in the US image while preserving important information from lesion boundaries, an
Alternating Sequential Filter (ASF) is applied to the breast US image. The ASF performs a closing by reconstruction
followed by an opening by reconstruction using a disk (5 pixel radius) SE [see Fig. 3(a)]:

ffASF RB
~~  (5)

Then, it is performed a morphological opening after closing (vertical line SE with 3 pixels) on the histogram of 
the filtered image with the purpose of removing irrelevant peaks [see Fig. 3(b)]. In addition, the filtered histogram is 
inverted to find the regional minimum [see Fig. 3(c)], and the Watershed transform is used to define modal regions
of the inverted filtered histogram [see Fig. 3(d)].

Each region is numerically labeled and sorted in crescent order to reconstruct a new image characterized by a
small number of gray levels [see Fig. 3(e)]. Then, to enhance the lesion from its background, a minima imposition
operator is applied [see Fig. 3(f)]. 
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To assure that pixels inside the lesion have smaller values than the background, all of them should be marked as 
belonging to the lesion. Note that this marked point is the only information defined manually for the semiautomatic
segmentation algorithm.

(a) (b) (c)

(d) (e) (f)

Fig.3 Morphological pre-processing procedure of the breast US image. (a) Alternating Sequential Filtering - ASF, (b) histogram of the filtered
image (gray line) and filtered histogram (black line), (c) inverted filtered histogram, (d) modal regions defined by Watershed transform (gray
line) and sorted modal regions (black line), (e) reconstructed image with small number of gray levels, and (f) minima imposition, the marker is a
point manually defined inside the lesion. 

2.5. Lesion segmentation

The main idea is to obtain potential lesion margins that will be used in the evaluation of a gradient-base utility
function to find the definitive lesion contour.

By observing the gray-levels related to the lesion, it is possible to make an analogy with the jigsaw puzzle, where
the gray-levels represent different shapes or pieces that have to be fitted together to assemble the lesion. If these 
pieces are iteratively combined, new shapes will be formed and each one represents an approximation of the
definitive shape. To do this, a thresholding process is performed on the imposed image to create binary subsets that
represent potential lesion margins (region growing scheme) [Fig. 4(a)].

The utility function used in the segmentation algorithm is the Average Radial Derivative (ARD), which gives the
average directional derivative in the radial direction along the contour, and it is defined as [17]:

eP

PrPI
N

ARD
ˆ

ˆ.ˆ~1

˜

 (6)

where  is the discretized potential lesion margin, N is the number of points in , I  is the gradient of the
preprocessed image by MO,  is the unit vector in the radial direction from the point defined manually inside the
lesion to the point , and  is the dot product between vectors. The potential margin that maximizes the
ARD function defines the definitive lesion contour [see Fig. 4(b) and 4(c)].

r̂ ( P̂ )
ˆ y )P ( x ,
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(a) (b) (c)

Fig.4 (a) Potential lesion margins (white lines) derived from the region growing scheme. (b) ARD curve maximized at the partition number 6 and
(c) the respective detected lesion contour (white line).

2.6. Performance evaluation

In order to evaluate the accuracy of the segmentation method (SM), a set of 36 breast US images was used. All
the lesions had their contour manually delineated by two specialists. Moreover, the SM was also applied to a set of 
24 simulated ultrasound-like images (with known contours). Both human manually delineated and simulated
contours were used as gold standards for the sake of comparison.

Two parameters were used to evaluate the SM performance. The first one is the coincidence percentage (CP),
which measures the similarity between the proposed segmentation technique and the gold standard, that is:

CP S1,S2

Area S1 S2

Area S1 S2

100  (7)

where S1 and S2 are the two segmentations to be compared, and the symbols  and  indicate the areas intersection
and union (in pixels), respectively. When S1 and S2 have the same geometrical characteristics and position CP is 
equal to 100 % [6].

The second parameter is the proportional distance (PD), which expresses not only if two contours differ in the
number of pixels but rather how far their pixels are. Hence, PD can be seen as a measure of dissimilarity. Let S1 and 
S2 be the two segmentations to be compared, and C1 and C2 their respective contours, the proportional distance
between them is given by [6]:

PD S1 , S2

d xi ,C2
xi C1

C1

d xi ,C1
xi C2

C2

2 Area RS
100  (8)

where the numerator calculates the mean distance from all the pixels of C1 to the contour C2, and vice-versa. d(xi,C)
is the geometrical distance (in points) from a point xi to the contour C, which has a number of points denoted as C .
The denominator is a normalized factor which turns this parameter independent on scale changes, being RS the
segmentation reference. With such a definition, if C1 and C2 are congruent, PD = 0 %.

For a simulated image, PD (or CP) was taken as an average of 30 values calculated from simulations carried out
with the same characteristics (e.g. irregular shape and 10 dB internal contrast), but with random speckle
distribution.
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3. Results

Examples of the proposed segmentation method applied to simulated and real images are depicted in Fig. 5 in
which the corresponding reference segmentations (contours) are also shown. As one can note in these examples, the
contours are almost the same for the simulated images and there is a slightly difference for real images.

(a) (b)

(c) (d) (a) (b)

Fig.5 Comparison of the computerized segmentations (gray line)
and the reference delineations (white line) obtained from
simulated ultrasound images (a) CP = 97.18 %, PD = 1.28 %, 
and (b) CP = 96.05 %, PD = 1.59 %; and manually delineated
contours by the specialists (c) CP = 92.53 %, PD = 3.35 % and
(d) CP = 87.50 %, PD = 4.74 %.

Fig.6 Performance curves for the parameters (a) CP and (b) PD applied
to the segmentation method for 36 breast US images and 24 simulated
images. It can be seen the percentage of the simulated and real images at
different CP and PD values with SM and the radiologists manually
contours.

Also from the curves of Fig. 6, it is possible to establish a threshold from which the segmentation technique could
be considered as adequate. Table 2 summarizes the results of considering the proposed segmentation method as 
successful if both CP is higher than 80 % and PD lower than 10 %. 

Table 2. Percentage of images that follow the established thresholds for CP > 80 % and PD < 10 %.

Percentage of images
Test*

CP PD
R1  SM 67 81
R2  SM 81 83
R1  R2 92 92

Sim  SM 88 96
*SM = Segmentation Method, R1 = Radiologist-1, R2 = Radiologist-2 and
Sim = Simulated.

These findings indicate that there exist little variations between the contours delineated by the radiologists. This
statement is also valid when comparing those contours with the computerized segmentation here proposed.
Moreover, for the ultrasound-like images, it is observed a high agreement between the SM contours and the
simulated patterns.

4. Discussion and Conclusion

It was presented a semiautomatic segmentation method for breast US lesions. It was used known techniques such
as morphological filtering, Watershed transform, minima imposition or average radial derivative function. The
combination of these techniques provides quite satisfactory results in the segmentation of very complex data such as 
US images (as can be seen from the percentages of Table 2). 

In this work, the simulated images were created with ultrasonic characteristics to evaluate the accuracy of the
computerized segmentation technique to follow the real boundary of the lesion. The noise added to the images is 
multiplicative Rayleigh distributed, which is similar to the speckle pattern presented is US images. Also, the
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simulated lesions have typical shapes classified by their cross section as regular, polygonal, lobulated or irregular. 
This kind of US images approach has been previously proposed by Alvarenga et al. [7] to assess the segmentation 
algorithms. In these works the authors developed simulated images based in gears with 8 and 16 teeth, varying both 
contrast ratio and noise power between the gear and its background. However, these images did not adequately 
simulate the typical US characteristics. First, the noise added to the images is uniform speckle, which is not well 
fitted for this application; second, the shapes simulated are not classical lesion shapes; and third, the images are not 
logarithmically compressed. In this sense, our simulated images presented an improvement because there were 
simulated variables that depict real ultrasonographies. 

Mathematical Morphology provides powerful tools to analyze the shape and sizes of the objects, and its concepts 
can be applied in medical images. In this work the segmentation technique steps are: (i) morphological filtering, 
(ii) reducing the number of gray-levels of the image applying MO to the image histogram, (iii) minima imposition to 
enhance the lesion, (iv) region growing scheme and (v) selection of the gray-level threshold for lesion segmentation 
by the maximization of the ARD function.  

The SM time processing was assessed using the 36 breast US data set. The segmentation time depends directly 
on image size and also on the shape and size of the lesion. All images in database have 378 374 pixels. The average 
time processing was 6.42 2.24 seconds. Therefore, the segmentation technique based in MO is fast enough to be 
implemented in real time, and it is capable of delineating lesion with a good level of accuracy, according to the 
performance evaluation parameters we used. Encouraged by these results, our current efforts are to include this 
technique as part of the development of a CAD system to detect and diagnose breast lesion on US images. 
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