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The homeodomain-containing transcription factor, NKX3.1, plays an important role in the suppression
of prostate tumorigenesis. Herein, we identify the receptor activityemodifying protein 1 (RAMP1) as
a direct NKX3.1 target gene through analysis of chromatin immunoprecipitation coupled to massively
parallel sequencing and gene expression data. RAMP1 is a coreceptor for certain G-proteinecoupled
receptors, such as the calcitonin gene-related peptide receptor, to the plasma membrane. We found that
RAMP1 expression is specifically elevated in human prostate cancer relative to other tumor types.
Furthermore, RAMP1 mRNA and protein levels are significantly higher in human prostate cancer
compared with benign glands. We identified multiple NKX3.1 binding sites in the RAMP1 locus in human
prostate cancer cells and in the normal mouse prostate. Analyses of Nkx3.1 knockout mice and human
prostate cancer cell lines indicate that NKX3.1 represses RAMP1 expression. Knockdown of RAMP1 by
shRNA decreased prostate cancer cell proliferation and tumorigenicity in vitro and in vivo. By using gene
expression profiling and pathway analyses, we identified several cancer-related pathways that are
significantly altered in RAMP1 knockdown cells, including the mitogen-activated protein kinase
signaling pathway. Further experiments confirmed a reduction in MAP2KI (MEK1) expression and
phosphorylated-extracellular signaleregulated kinase 1/2 levels in RAMP1 knockdown cells. These data
provide novel insights into the role of RAMP1 in promoting prostate tumorigenesis and support
the potential of RAMP1 as a novel biomarker and possible therapeutic target in prostate cancer.
(Am J Pathol 2013, 183: 951e963; http://dx.doi.org/10.1016/j.ajpath.2013.05.021)
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Receptor activityemodifying proteins (RAMPs) 1, 2, and 3
are a small family of single transmembrane spanning proteins
that were first identified during an attempt to clone the human
calcitonin gene-related peptide (CGRP) receptor.1 Since their
initial discovery, RAMPs have been shown to interact with
G-proteinecoupled receptors, such as calcitonin receptor-
like receptor, vasoactive intestinal peptide receptor (VIPR),
calcitonin receptor, calcium-sensing receptor, parathyroid
hormone receptor, glucagon receptor, and corticotrophin
releasing factor receptor 1, to regulate their trafficking,
pharmacological characteristics, and signaling capa-
bilities.1e5 Although the cellular biological and biochemical
characteristics of these G protein-coupled receptors and their
ligands are well studied, the functional significance and roles
of RAMPs in human diseases remain undefined.

RAMP1 is expressed in many tissues, including the heart,
uterus, bladder, brain, pancreas, skeletal muscle, and
stigative Pathology.

.

gastrointestinal tract.1 The expression of RAMP1 in these
various tissues indicates that it may have diverse physio-
logical functions. RAMP1mRNA is also expressed in human
adrenal tumors and meningiomas, and is up-regulated in
prostate tumors.6e8 However, neither the underlying mech-
anism for up-regulation of RAMP1 expression in these
tumors nor the functional significance of RAMP1 in tumor-
igenesis is fully understood.

NKX3.1 is an androgen-regulated, prostate-specific
homeodomain transcription factor that plays critical roles in
prostate development and in suppressing tumorigenesis.9e13
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Throughout development and adulthood, Nkx3.1 functions to
maintain prostate cellular homeostasis, and in mice, targeted
deletion of Nkx3.1 in the prostate leads to developmental
defects in ductal branching morphogenesis, secretory protein
production, and growth.11,14 In addition, conditional deletion of
one or both alleles of Nkx3.1 in the adult mouse prostate has
been shown to promote the formation of premalignant lesions
termed prostatic intraepithelial neoplasia.11e13 In humans, loss
of heterozygosity at the NKX3.1 locus has been observed in
a significant fraction of early-stage prostate cancer speci-
mens.15,16 Furthermore, loss of NKX3.1 protein has been
observed in approximately 20% of human prostatic intra-
epithelial neoplasia lesions and 40% of prostate tumors, which
correlate with prostate tumor progression.17 NKX3.1 function
can also be impaired by mutations in the NKX3.1 gene that can
decrease its expression or affect the stability of the homeo-
domain structure.18e21 Although loss of Nkx3.1 does not result
in invasive carcinoma, the introduction of additional mutations,
such as loss of the tumor suppressor Pten in the Nkx3.1mutant
mouse prostate, can lead to invasive adenocarcinoma and, in
some cases, metastatic disease.22,23 We and others have also
shown that loss of Nkx3.1 and Myc overexpression can
cooperate to promote prostate carcinogenesis.24e26 Further-
more, our laboratory showed that the cooperativity of these
oncogenic mutations was the result of coregulation of shared
target genes between Nkx3.1 and Myc that were observed in
patients with prostate cancer and in a mousemodel. Thus, a full
understanding of the role of NKX3.1 in tumorigenesis requires
the identification of genes directly regulated by NKX3.1 that
may play a role in transformation.

We have recently used chromatin immunoprecipitation
coupled to massively parallel sequencing (ChIP-Seq) to
identify genomic loci bound by NKX3.1 in the human and
mouse genomes.26 These data were integrated with gene
expression profiling data from Nkx3.1 mutant mouse pros-
tates27,28 to yield a core set of direct NKX3.1 target genes.26 In
the present study, we identified RAMP1 as a novel NKX3.1
target gene and, for the first time to our knowledge, have
characterized its functional role in prostate tumorigenesis.

Materials and Methods

Cell Lines and Constructs

Human prostate cancer cell lines, PC-3 and LNCaP, were
obtained from ATCC (Manassas, VA). Cells were cultured in
RPMI 1640medium or Dulbecco’s modified Eagle’s medium/
F-12 medium supplemented with 10% fetal bovine serum.
Lentiviral-mediated gene transfer was used to generate
stable knockdown of RAMP1 in PC-3 and LNCaP cells. The
293FT packaging cells were transfected with shRAMP1
(V2LHS_196808 or VLHS_180867) or pGIPZ vector control
(RHS4346), provided by the Vanderbilt Genome Sciences
Resource (Vanderbilt University Medical Center, Nashville,
TN), along with D8.9 and vesicular stomatitis virus-G
(provided by Dr. David Baltimore, Caltech, Pasadena, CA) to
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produce lentivirus as described.29 At 2 days after transfection,
medium containing viral particles was collected and added to
PC-3 cells for infection with15 mg/mL polybrene. At 48 hours
after infection, medium was changed and 6 mg/mL puromycin
or 800 mg/mL G418 was added for selection of stable clones.
Transient transfection of PC-3 and DU145 was performed
using polyethylenimine, with FUGW-GFP or FUGW-Nkx3.1
plasmid (a kind gift from Dr. Hong Wu, University of Cal-
ifornia, Los Angeles).

Human Tissue Arrays

Histological slides of radical prostatectomy specimens from
patients with prostatic carcinoma were reviewed to identify
areas of prostatic carcinoma of various grades and areas with
benign prostatic glands remote from site(s) of carcinoma. The
corresponding paraffin blocks were used to generate a TMA
containing 38 foci of benign prostatic tissue and 23 foci of
prostatic adenocarcinoma with different Gleason scores. The
TMAwas produced using a manual tissue microarrayer model
MTA-1 from Beecher Instruments, Inc. (Sun Prairie, WI). An
additional TMA (PR483a) was obtained from US Biomax
(Rockville, MD) and contained 16 foci of benign prostatic
tissue and 37 foci of prostatic adenocarcinoma. RAMP1
staining in each focus on the TMAs was scored semi-
quantitatively using theH-score, as previously described.30 The
H-score was determined as the intensity of expression (0, none;
1, weak; 2, moderate; 3, strong) multiplied by the percentage of
cells (0% to 100%) stained at each intensity level to provide
a score ranging from 0 to 300. Anti-RAMP1 staining was
evaluated between the individual cores, and within the same
core, because some cores contained both benign and malignant
tissues. Two pathologists (S.T.S. and O.H.) evaluated the
TMAs for RAMP1 staining, and any potential discrepancies
were resolved by joint review on a double-headed microscope.

Oncomine Database Analysis

We used the Oncomine (Compendia Bioscience, Ann
Arbor, MI) Cancer Microarray database31 to query the
profile of RAMP1 expression in multicancer data sets and in
prostate cancer data sets.

Cell Cycle Analysis

Cell cycle analysis was performed as previously
described.32 Cells were harvested, washed thoroughly with
PBS, fixed with cold 70% ethanol, and stained with propi-
dium iodide (0.05 mg/mL) in a solution containing 0.1%
Triton X-100 and 0.005 mg/mL RNase A. DNA content was
analyzed by flow cytometry.

ChIP-qPCR

ChIP was performed using the ChIP Assay kit (Millipore,
Billerica, MA), as described by the manufacturer, with the
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 RAMP1 is up-regulated in human prostate cancer. A: RAMP1 mRNA expression in various human cancers in a multicancer data set from the
Oncomine cancer microarray database shows significantly higher RAMP1 levels in prostate relative to other tumors. Bl, bladder; Br, breast; Cl, colon; Ki, kidney;
Li, liver; Lu, lung; Ov, ovarian; Pan, pancreatic; Pro, prostate. B: RAMP1 mRNA expression in normal prostate versus prostate cancer from four different
prostate cancer microarray data sets from the Oncomine database. C: Examples of immunostaining for anti-RAMP1 in benign prostate, primary prostate cancer,
and bone metastasis from a human prostate TMA. Original magnifications: �10 (left panel); �40 (right panel). Scale bar Z 0.1 mm. D: H-score analysis of
anti-RAMP1 staining of samples from two independent human prostate TMAs. The expression levels of RAMP1 in benign and malignant prostatic tissue were
compared using the unpaired Student’s t-test. *P < 0.05.

NKX3.1 Regulates RAMP1 in Prostate Cancer
following modifications. LNCaP cells were grown in RPMI
1640 medium supplemented with 10% fetal bovine serum,
100 U/mL penicillin and streptomycin, and 1 nmol/L
dihydrotestosterone (Sigma, St. Louis, MO) for 48 hours.
Cells were fixed in 1% formaldehyde at room temperature
for 10 minutes to cross-link protein-DNA complexes. Next,
cells were thoroughly washed with ice-cold PBS, pelleted,
and resuspended in SDS lysis buffer (1% SDS, 10 mmol/L
EDTA, and 50 mmol/L Tris at pH 8.1). Chromatin was
sheared to a size of approximately 300 to 500 bp and diluted
1:10 with ChIP dilution buffer. An aliquot of the diluted
sample (1%) was saved as input. Samples were precleared
and precipitated overnight at 4�C with anti-NKX3.1 (Santa
Cruz Biotechnology, Santa Cruz, CA) or normal goat IgG
(Santa Cruz Biotechnology) antibodies. Antibody complexes
were collected with Protein A Agarose/Salmon Sperm DNA
(Millipore, Billerica, MA) for 2 hours and washed
The American Journal of Pathology - ajp.amjpathol.org
extensively, per manufacturer’s instructions. Samples were
reverse cross-linked at 65�C overnight with 0.3 mol/L NaCl
and 30 mg of RNase A (Qiagen, Germantown, MD). Input
and bound DNAs were purified with a PCR Purification kit
(Qiagen) and analyzed by quantitative PCR (qPCR; model
7300; Applied Biosystems, Grand Island, NY) using SYBR
Green (Applied Biosystems). Primers were designed to flank
the three NKX3.1 binding sites in the RAMP1 gene in
LNCaP cells. The following primers were used for qPCR:
RAMP1 (site 1), 50-ACGATCACATATAAAGACCTTC-
CTTGT-30 (forward) and 50-AGGCCACTCAAAATAAC-
GTTAAAATT-30 (reverse); RAMP1 (site 2), 50-ATTTCA-
GGGCCTCCTTTTCTAAG-30 (forward) and 50-AATGA-
CTCAGCTGTGGCAGAAG-30 (reverse); and RAMP1 (site
3), 50-CACTCACCCGTAGGAGTTCCA-30 (forward) and
50-ATGAAAAGCACTTCAGCACACTGT-30 (reverse).
Immuno-precipitated DNA was normalized to 1% input.
953
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Figure 2 NKX3.1 binds to the RAMP1 gene in human and mouse
prostate cells. Integrated Genome Browser screenshots of NKX3.1
binding sites in the mouse (A) and human (LNCaP) (B) genomes.
Binding of NKX3.1 is indicated by arrows. IgG and Nkx3.1 knockout
tissue served as a negative control. C: ChIP-qPCR confirmation of the
three NKX3.1 binding sites in the RAMP1 gene in LNCaP cells. An
androgen receptor (AR) promoter region known to bind NKX3.1 was
used as a positive control, whereas IgG served as a negative control.

Logan et al
Real-Time RT-qPCR Analyses

RNA isolation, reverse transcription, and subsequent RT-
qPCR (TaqMan; Applied Biosystems) using SYBRGreen dye
were performed as described previously.33 All RT-qPCRs
were performed in triplicate. The following primers were
used: 18S forward, 50-CGCCGCTAGAGGTGAAATTCT-30;
18S reverse, 50-CGAACCTCCGACTTTCGTTCT-30; Ramp1
forward, 50-CGCACACGATTGGCTGTTT-30; Ramp1
reverse, 50-TGGACAGCGATGAAGAATCTGT-30;GAPDH
forward, 50-ATGGAAATCCCATCACCATCTT-30; GAPDH
reverse, 50-CGCCCCACTTGATTTTGG-30; RAMP1 forward,
50-CCTCACCCAGTTCCAGGTAG-30; RAMP1 reverse,
50-CATGTGCCAGGTGCAGTC-30; RAMP2 forward, 50-
CCTTATAGCACCCTGCGAGATT-30; RAMP2 reverse,
50-GGGAAGCCCAGGTCAAACA-30; RAMP3 forward,
50-GGAAGGCTTTCGCAGACATG-30; RAMP3 reverse,
50-CGGACAGGTTGCACCACTT-30; MAP2K1 forward,
50-TTCTTGCTGGGCATACTTTCTCT-30; and MAP2K1
reverse, 50-CATGCACTGCCTGTGAAGGA-30.
954
Western Blot Analyses

Western blot analysis was performed, as described previ-
ously,34 using the following antibodies: anti-Ramp1 (rabbit,
1:1000; Santa Cruz Biotechnology), antieb-actin (goat,
1:1000; Santa Cruz Biotechnology), anti-Nkx3.1 (rabbit,
1:2000; provided by Dr. Charles Bieberich, University of
Maryland, Baltimore County, Baltimore), and antie
phosphorylated-extracellular signal regulated kinase (ERK)
1/2 (rabbit, 1:2000; Cell Signaling, Boston, MA).

IHC and Immunocytochemistry

Immunohistochemistry (IHC) was performed as previously
described.35 For antigen retrieval, slides were steamed for
15 minutes in Tris-EDTA buffer (pH 9.0). Slides were
incubated overnight at 4�C with the following antibodies:
anti-RAMP1 (rabbit, 1:150; Santa Cruz Biotechnology) for
mouse tissue or 1:40 for human prostate TMAs; antieKi-67
(rabbit, 1:1000; Abcam, Cambridge, MA), phosphorylated-
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 NKX3.1 represses RAMP1 expression in
mouse and human prostate cells. A: Real-time RT-
qPCR analysis of Ramp1 expression in the Nkx3.1-
deficient mouse prostate. Total RNA was isolated
from anterior prostates of 16eweek-old Nkx3.1þ/þ

(nZ 6), Nkx3.1þ/� (nZ 3), and Nkx3.1�/� (nZ 3)
mice. Expression levels were normalized to 18S. The
results shown are representative of two independent
experiments performed in triplicate. Data are re-
ported as means � SD. B: Immunostaining for anti-
Ramp1 in the anterior prostate of 16eweek-old
Nkx3.1þ/þ, Nkx3.1þ/�, and Nkx3.1�/� mice shows
up-regulation of Ramp1 (brown) in Nkx3.1þ/� and
Nkx3.1�/� mouse prostates. Images from two
different mice are shown for each genotype. Original
magnification, �40. C and D: Lentiviral-mediated
expression of Nkx3.1 represses RAMP1 mRNA and
protein levels in PC-3 and DU145 cells. RT-qPCR for
RAMP1 and Western blot analyses for NKX3.1,
RAMP1, and ACTIN control are shown. Results are
representative of two independent experiments. RT-
qPCR data are reported as means � SD, with RAMP1
expression levels normalized to GAPDH. *P < 0.05.
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histone H3 (pHH3; rabbit, 1:500; Millipore), and activated
caspase-3 (rabbit, 1:100; Cell Signaling). Slides were
stained with 3,30-diaminobenzidine tablets (Sigma) and
counterstained with hematoxylin. For immunocytochem-
istry, cells were plated on coverslips and incubated over-
night at 4�C with anti-RAMP1 (1:50), pHH3 (rabbit, 1:500;
Millipore), and activated caspase-3 (rabbit, 1:100; Cell
Signaling). Slides were counterstained with DAPI (Vector
Labs, Burlingame, CA). The number of cells staining
positive for pHH3 and caspase-3, of a total of 500 cells in
three independent fields, was recorded. For cell block
preparation, cells were grown to 80% confluency, harvested,
and washed thoroughly with PBS. Cells were fixed for 5
minutes in 10% neutral-buffered formalin. Cell block was
processed by the Vanderbilt Translational Pathology Shared
Resource, and slides were stained for anti-RAMP1 (1:50).

Cell Growth Assay

Cell growth was determined by cell count. A total of 1 �
104 cells were plated in a 6-well plate in triplicate in
complete medium and counted at the indicated time points.

Soft Agar Assay

A soft agar colony formation assay was performed as
previously described.36 Briefly, 1.5 � 104 PC-3 or LNCaP
The American Journal of Pathology - ajp.amjpathol.org
cells, stably expressing shControl or shRAMP1, were mixed
with 0.35% soft agar and plated on top of a 0.5% bottom
agar in a 6-well plate. Cells were incubated at 37�C for 2 to
3 weeks to allow colony formation. Each cell line was
plated in triplicate. Three random low-power view fields
were chosen, and the total number of colonies (cutoff sizes
or more) was counted.

Xenograft Studies

Xenograft studies were performed as previously
described.37 Male nude (nu/nu) mice were obtained from
Charles River Laboratories (Wilmington, MA). A total of
8 � 106 PC-3 cells stably expressing shControl or
shRAMP1 were injected s.c. in both flanks of nude mice.
Tumor volumes were calculated as previously described.37

Animal care and experiments were performed according to
protocols approved by the Institutional Animal Care and
Use Committee at Vanderbilt University.

Gene Expression Profiling and Analysis

Total RNA was extracted from PC-3 cells stably expressing
shControl or shRAMP1, according to the TRIzol manufac-
turer’s protocol (Invitrogen, Grand Island, NY). Three inde-
pendent sample preparations for shControl and shRAMP1
cells were performed. RNAwas treated with DNase I (Qiagen,
955
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Figure 4 RAMP1 promotes prostate cancer cell proliferation and tumorigenicity in PC-3 cells. A: RT-qPCR analysis of RAMP1, RAMP2, and RAMP3 expression
in PC-3 cells stably expressing shControl and shRAMP1 confirms specificity of RAMP1 knockdown. B: Western blot (top panel) and immunocytochemical
(bottom panel) analyses confirm knockdown of RAMP1 in PC-3 cells. C: Cell growth was determined by cell count. D: Cell cycle analysis of RAMP1 knockdown
PC-3 cells by flow cytometry. E: Quantitation of proliferation and apoptosis in shControl and shRAMP1 cells after staining for pHH3 and caspase 3, respectively.
Data are reported as percentage of cells positive for the marker. F: Analysis of in vitro tumorigenicity by soft agar assay. Results are representative of at least
two independent experiments performed in triplicate. Data are reported as means � SEM. *P < 0.05.
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Gaithersburg, MD), according to the manufacturer’s protocol,
followed by purification using the RNA Clean Up protocol
from the RNeasy Mini Kit (Qiagen). RNA processing
and microarray analysis were performed by the Vanderbilt
Genome Sciences Resource Core, as previously described.38

cDNA was hybridized to the GeneChip PrimeView Human
Gene Expression Array (Affymetrix, Santa Clara, CA). CEL
files were imported to R, version 2.15.0 (http://www.r-project.
org), for quality control and preprocessing. Quality control
was implemented in Bioconductor with affyPLM, version
1.32, and simpleaffy, version 2.32, packages. Arrays for three
independent shControl and shRAMP1 samples passed quality
control tests. By using the Affy package, version 1.34.0,39 raw
intensity scores were normalized by quartiles, background
corrected with robust multi-array average,40 and summarized
by mean polish using perfect match-only probes. The C2
(curated) and C6 (oncogenic signatures) gene sets of Molec-
ular Signatures Database, version 3.1 (Broad Institute, Cam-
bridge, MA), were queried using Gene Set Enrichment
Analysis (GSEA) (Broad Institute), version 2.07,41 to test for
956
differences between shControl and shRAMP1 cells. All
microarray and GSEA analyses were performed on a node
running Debian Linux Squeeze, version 6.0.6 (http://www.
debian.org/releases).

Statistical Analysis

To compare groups, we used the unpaired Student’s t-test.
Data are expressed as means � SD or SEM for each group.
Data were considered statistically significant at P < 0.05.

Results

RAMP1 Is Overexpressed in Human Prostate Cancer

A previous study identified RAMP1 mRNA as one of several
mRNAswith potential to be a biomarker in prostate cancer.8 To
determine whether RAMP1 is up-regulated in prostate or other
cancers, we queried the Oncomine database for a comprehen-
sive evaluation of RAMP1 expression in human cancers.
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Knockdown of RAMP1 in LNCaP cells decreases cell prolifer-
ation and tumorigenicity in vitro. A: IHC analysis of cell blocks shows
reduced RAMP1 expression (reddish brown staining) in LNCaP cells
expressing shRAMP1 compared with shControl cells. B: Cell growth was
determined by cell count. C: Analysis of in vitro tumorigenicity by soft agar
assay. Results are representative of at least two independent experiments
performed in triplicate. Data are reported as means � SEM. *P < 0.05.

NKX3.1 Regulates RAMP1 in Prostate Cancer
Oncomine is a cancer-specific database that identifies genes,
pathways, and networks deregulated across gene expression
microarrays.31 Notably, RAMP1 was specifically up-regulated
in prostate cancer (P Z 6.36 � 10�47) compared with other
human cancers that include bladder, breast, colorectal, kidney,
liver, lung, ovarian, and pancreatic in the Su Multicancer
data set42 (Figure 1A). Next, we examined the expression of
RAMP1 in normal prostate versus prostate carcinoma.RAMP1
was significantly up-regulated in prostate carcinoma compared
with normal prostate in multiple data sets43e46 (Figure 1B). To
determine whether RAMP1 protein expression is also altered
during prostate tumorigenesis, we performed RAMP1 IHC on
The American Journal of Pathology - ajp.amjpathol.org
two independent human prostate cancer TMAs. RAMP1
expression was detected in the cytoplasm and membrane of
prostatic epithelial cells with limited expression in the stroma
(Figure 1C). RAMP1 protein expression was also significantly
up-regulated in human prostate cancer compared with benign
glands (Figure 1D). Overall, these findings show that RAMP1
is specifically up-regulated in prostate cancer and may be
relevant for prostate tumorigenesis.

RAMP1 Is a Direct NKX3.1 Target Gene

We have previously used ChIP-Seq to identify genomic loci
bound by NKX3.1 in the prostate cancer cell line, LNCaP
(M.L., P.D.A., and S.A.A., unpublished data) and in the
normal mouse prostate.26 Analysis of data from these ChIP-
Seq studies showed that Nkx3.1 binds Ramp1 downstream
of the transcription start site and within the gene in the
mouse prostate (Figure 2A). In LNCaP cells, NKX3.1 binds
the RAMP1 locus at three different sites (Figure 2B).
NKX3.1 binding to the RAMP1 gene was confirmed by
ChIP, followed by qPCR, using primers flanking the three
NKX3.1 binding sites within the RAMP1 gene in LNCaP
cells (Figure 2C). An androgen receptor promoter region
containing a consensus NKX3.1 binding site was used as
a positive control. All three binding sites exhibited signifi-
cant enrichment for NKX3.1 compared with IgG control.
These results suggest that the prostate tumor suppressor
NKX3.1 might be involved in the regulation of RAMP1
expression in the prostate.

To explore the functional significance of Nkx3.1 binding
to the Ramp1 gene, we examined the expression of Ramp1
in Nkx3.1 knockout mice. RT-qPCR analysis of the pros-
tates of Nkx3.1 mutant mice showed a dose-dependent
increase in Ramp1 mRNA in Nkx3.1þ/� and Nkx3.1�/�

mouse prostates (Figure 3A). We observed a similar effect
of loss of Nkx3.1 on Ramp1 protein expression in the
prostate by IHC (Figure 3B). Nkx3.1 knockout mice
expressed high levels of Ramp1 protein in the prostatic
epithelium with limited expression in the stroma, consistent
with the known cellular localization of Nkx3.1 protein in the
prostate.12 These results indicate that Nkx3.1 represses
Ramp1 expression in a dose-dependent manner in the
mouse prostate. We extended these mouse results to human
prostate cells by assessing the effect of exogenous NKX3.1
expression in PC-3 and DU145 cells on RAMP1 expression.
We used lentiviral-mediated gene transfer to express mouse
Nkx3.1 in PC-3 and DU145 cells, which normally lack
NKX3.1 expression (Figure 3, C and D). The levels of
exogenous Nkx3.1 expression achieved are comparable to
the endogenous NKX3.1 levels in LNCaP cells (data not
shown). In both PC-3 and DU145 cells, Nkx3.1 expression
repressed RAMP1 mRNA and protein expression, as
determined by RT-qPCR and Western blot analyses,
respectively (Figure 3, C and D). The results presented,
when taken together, indicate that NKX3.1 binds to and
represses the RAMP1 gene in the prostate.
957
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Figure 6 Depletion of RAMP1 reduces tumorigenicity and proliferation in vivo. AeC: Xenografts of shRAMP1 1 PC3 cells grown s.c. in nude mice show reduced
tumor growth (A) and final tumor weight (B) and size (C). D: Representative images of H&E-stained sections of tumor grafts. E: Ki-67 proliferation index. F: pHH3,
phosphorylated-histone H3 serine 10 index. G: Apoptotic index by activated caspase-3 staining. The total number of cells staining positive for either Ki-67, pHH3,
or activated caspase-3 in five random high-power field (HPFs) were counted for each graft section. Data are reported as means � SEM. *P < 0.05.

Logan et al
Down-Regulation of RAMP1 Suppresses Cell
Proliferation and in Vitro Tumorigenicity in PC-3 and
LNCaP Cells

To examine the functional significance of the RAMP1 up-
regulation in human prostate cancer, we stably knocked
down RAMP1 in PC-3 cells using two independent shRNAs,
shRAMP1 1 and shRAMP1 2 (Figure 4, A and B). Knock-
down efficiency was evaluated by RT-qPCR, Western blot,
and immunocytochemistry analyses (Figure 4, A and B). To
further confirm specificity of the shRAMP1 constructs, we
evaluated the expression of RAMP2 and RAMP3 and found
these to be expressed at low levels in these cells without
being affected by RAMP1 knockdown (Figure 4A). Func-
tionally, knockdown of RAMP1 significantly decreased cell
proliferation in both shRAMP1 1 and shRAMP1 2 PC-3
cells, as determined by cell counting and the pHH3 index
(Figure 4, C and E). Similarly, we observed a decrease in the
percentage of cells in the S phase of the cell cycle in RAMP1-
deficient cells compared with shControl cells (Figure 4D).
There was no significant change in apoptosis, as determined
by staining for activated caspase-3 (Figure 4E). We next
examined the effect of RAMP1 depletion in prostate cancer
cells on in vitro tumorigenicity using the soft agar colony
formation assay. Consistent with the proliferation assays,
a significant decrease in colony formation was observed in
PC-3 cells with stable knockdown of RAMP1 (Figure 4F).
These findings were replicated in LNCaP prostate carcinoma
cells with stable depletion of RAMP1 by shRNA, which also
showed significant reductions in proliferation and tumori-
genicity (Figure 5, AeC). These results establish a functional
role for RAMP1 in promoting the proliferation and in vitro
tumorigenicity of prostate cancer cells.
958
Knockdown of RAMP1 Decreases Prostate Cancer Cell
Tumorigenicity in Vivo

Next, we performed xenograft studies in nude mice using
PC-3/shControl 1 and PC-3/shRAMP1 1 cells to access the
effect of RAMP1 knockdown in vivo. Tumors in mice
injected with shRAMP1-expressing cells grew at a slower
rate and were smaller in size and weight at the end of the
experiment compared with tumors in mice injected with
shControl cells (Figure 6, AeC). We analyzed proliferation
in these tumors by IHC staining for Ki-67 and pHH3.
Proliferation was significantly reduced in RAMP1-depleted
tumors relative to the control tumors (Figure 6, DeF).
Staining for activated caspase-3 showed a trend for
increased apoptosis that did not achieve statistical signifi-
cance (Figure 6G). These results are consistent with our
in vitro data showing that RAMP1 knockdown mainly
affects prostate cancer cell proliferation.

Down-Regulation of RAMP1 Modulates MAPK Signaling
in Prostate Carcinoma Cells

To explore possible molecular pathways by which RAMP1
down-regulation modulates the tumorigenicity of prostate
cancer cells, we performed gene expression profiling using
a GeneChip PrimeView Human Gene Expression Array
(Affymetrix). We found 936 genes to be significantly altered
(a Z 0.05) before a multiple testing penalty in RAMP1
knockdown cells. By using these genes to interrogate
WebGestalt, we identified several significantly altered
pathways, including the epidermal growth factor receptor 1
(EGFR1), mitogen-activated protein kinase (MAPK), and
IL-6 signaling pathways (Table 1). Notable among the
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Pathway Analysis of Genes Dysregulated in RAMP1 Knockdown PC3 Cells

Variable No. of genes Expected Enriched Adjusted P value

KEGG

Pathways in cancer 23 5.62 4.09 1.37 � 10�6

MAPK signaling pathway 14 4.58 3.06 0.0016
Endocytosis 16 3.18 5.02 6.52 � 10�6

Spliceosome 11 2.18 5.05 0.0004
Neurotrophin signaling pathway 10 2.15 4.66 0.001

Prostate cancer 8 1.52 5.28 0.001
Small-cell lung cancer 8 1.43 5.59 0.001
Chronic myeloid leukemia 8 1.28 6.26 0.0009
Pancreatic cancer 7 1.23 5.71 0.0016
Glioma 7 1.11 6.32 0.001

WIKI Pathways

EGFR1 signaling pathway 20 3.03 6.6 1.95 � 10�9

Insulin signaling 10 2.72 3.67 0.0024
B-cell receptor signaling pathway 12 2.69 4.46 0.0002
Regulation of actin cytoskeleton 10 2.43 4.11 0.0013
mRNA processing 11 2.32 4.75 0.0002
Adipogenesis 9 2.26 3.97 0.0027
Androgen receptor signaling pathway 11 1.96 5.62 8.22 � 10�5

IL-6 signaling pathway 10 1.67 5.99 9.31 � 10�5

Senescence and autophagy 10 1.02 9.79 1.79 � 10�6

Id signaling pathway 6 0.87 6.91 0.0013

Pathway Commons

Glypican pathway 23 7.42 3.1 0.0001
Glypican 1 network 23 6.88 3.34 4.95 � 10�5

IFN-g pathway 19 5.82 3.26 0.0004
TRAIL signaling pathway 17 5.06 3.36 0.0006
Signaling by GPCR 13 3.32 3.92 0.0008
EGFR1 14 2.45 5.71 2.33 � 10�5

Sphingosine 1-phosphate pathway 10 1.92 5.2 0.0007
Signaling by EGFR 10 1.12 8.9 2.33 � 10�5

Synaptic transmission 7 0.92 7.61 0.0008
IL-6emediated signaling events 7 0.77 9.14 0.0004

GPCR, G protein-coupled receptor; Id, inhibitor of DNA binding; IFN, interferon; KEGG, Kyoto Encyclopedia of Genes and Genomes; TRAIL, TNF-related
apoptosis-inducing ligand.

NKX3.1 Regulates RAMP1 in Prostate Cancer
genes altered in the EGFR1 and MAPK signaling pathways
is the MAPK signaling pathway regulator, MAP2K1
(MEK1) (Supplemental Table S1). Some of the IL-6
signaling pathway genes identified as altered in RAMP1-
depleted cells include CCND, JAK1, IL6, IL6R, and SOS2.

We next performed GSEA to define gene sets significantly
enriched or depleted in RAMP1 knockdown cells. GSEA is
a comprehensive database of genes, pathways, and regulatory
and functional networks activated and repressed in human
cancer.31,47 We interrogated the curated cancer-relevant
database C6 of the Molecular Signatures Database, a collec-
tion of gene sets curated from gene expression profiles in
cancer-relevant experiments, to identify possible cancer-
relevant pathways altered in shRAMP1 cells. Interestingly,
among the top gene sets enriched in control relative
to shRAMP1 cells is MEK_UP.V1_UP, a gene set found to
be activated in cells with enhanced MAPK signaling
(Figure 7A and Supplemental Table S2). This gene set
The American Journal of Pathology - ajp.amjpathol.org
consists of genes up-regulated in MCF-7 breast cancer
cells stably overexpressing constitutively active MAP2K1
(MEK1).48 Other gene sets identified in this analysis were
proangiogenic genes, VEGF-A and TBK1 (Figure 7A). The
VEGF-A gene set consists of genes that were found to be
up-regulated on vascular endothelial growth factor (VEGF)-A
treatment, whereas the TBK1 gene set is composed of genes
that were up-regulated after overexpression of the RAS
oncogene.

Because MEK encodes a protein that phosphorylates and
activates ERK1/2, we hypothesized that depletion of
RAMP1 may inhibit prostate cell tumorigenicity by sup-
pressing the MAPK signaling pathway. We confirmed
reduced expression of MAP2K1 (MEK1) in prostate cells
depleted of RAMP1 using both shRAMP1 1 and shRAMP1
2 (Figure 7, B and C). Next, we performed Western blot
analysis to determine the effect of RAMP1 knockdown on
ERK1/2 activation. As expected, RAMP1 knockdown
959
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Figure 7 Down-regulation of RAMP1-altered
gene expression and MAPK signaling in PC-3 cells.
A: GSEA shows a list of selected gene sets enriched
in shControl relative to shRAMP1 cells (top panel).
GSEA enrichment score plots for selected gene sets
(bottom panel). Normalized enrichment score
(NES), nominal P value (statistical significance of
enrichment), and false-discovery rate (FDR) are
presented. B and C: RT-qPCR analysis of MAP2K1
expression in RAMP1 knockdown cells. Results are
representative of at least two independent experi-
ments performed in triplicate. Data are reported as
means � SEM. *P < 0.05. D: Western blot analysis
of ERK1/2 activation in shControl and shRAMP1
cells. Cells were serum starved for 24 hours, induced
with 10% fetal bovine serum, and harvested at
0-, 15-, 30-, and 60-minute time points. Results
are representative of at least two independent
experiments.

Logan et al
suppressed activation of ERK1/2 in PC3 cells, as revealed
by reduced ERK1/2 phosphorylation (Figure 7D). These
results suggest suppression of MAPK signaling as a mech-
anism for the reduced prostate tumorigenicity observed in
RAMP1-deficient cells.

Discussion

Loss of NKX3.1 expression is often associated with the
initiation of prostate tumorigenesis. In this study, we iden-
tified RAMP1 as a direct NKX3.1 target gene involved in
promoting prostate tumorigenesis and have, for the first time
to our knowledge, reported a functional role for RAMP1 in
this disease. NKX3.1 binds multiple sites in the RAMP1
locus in both the human and mouse genomes. Furthermore,
deletion of the Nkx3.1 gene in mice led to the up-regulation
of Ramp1 in a dose-dependent manner, whereas exogenous
Nkx3.1 suppressed RAMP1 expression in human prostate
cancer cells. Our studies suggest that loss of NKX3.1 during
human prostate tumorigenesis may be a key factor in the up-
regulation of RAMP1 in tumors.

RAMP1 is well known for regulating the trafficking and
pharmacological features of G protein-coupled receptors.
In addition, overexpression of RAMP1 has been shown to
play a protective role in cardiovascular disease by atten-
uating angiotensin IIeinduced hypertension and vascular
dysfunction.49,50 Herein, we described another function-
ally significant role for RAMP1 in human prostate cancer.
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Previously, RAMP1 mRNA was shown to be up-regulated
in human prostate tumors, and it was considered to be
a novel potential biomarker for prostate cancer.8 We
observed up-regulation of RAMP1 protein in prostate
tumors, and that depletion of RAMP1 decreased cell
proliferation and tumorigenicity in prostate cancer cells.
These findings indicate that RAMP1 may play a pivotal
role in prostate tumorigenesis.
RAMP1 has been shown to interact with VIPR1 and

CALCRL, two receptors that bind ligands that have been
shown to promote tumorigenesis.1,4 RAMP1 interaction with
the CALCRL receptor yields the CGRP receptor, which has
high affinity for the neuropeptide, CGRP.1 CGRP has been
shown to increase the invasiveness and migration of human
prostate cancer cells, and angiogenesis and tumor growth in
a xenograft model.51e53 Equally important, CGRP has been
reported to be elevated in the serum of untreated patients with
prostate cancer.54 It has previously been reported that CGRP
can regulate VEGF expression in human HaCaT keratinocytes
by activation of ERK1/2.55 VEGF is a proangiogenic gene that
is overexpressed in prostate cancer and in NKX3.1-deficient
cells.56e58 Interestingly, our GSEA analysis shows VEGF-A
as the top gene altered in RAMP1-deficient cells. TANK-
binding kinase-1 (TBK1) is another proangiogenic gene that
is altered in RAMP1-knockdown cells. TBK1 has been shown
to induce cell proliferation and secretion of angiogenesis-
associated factors,59 possibly by mediating insulin and AKT
signaling pathways.60 Taken together, our data suggest that
ajp.amjpathol.org - The American Journal of Pathology
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NKX3.1 Regulates RAMP1 in Prostate Cancer
RAMP1 may regulate tumor growth and tumor-associated
angiogenesis by modulating cell survival pathways.

Likewise, VIPR1 binds the neuropeptide, VIP. In vitro, VIP
induced the malignant transformation of nontumorigenic
prostate epithelial cells and increased migration of LNCaP
cells, an androgen-sensitive human prostate cancer cell.52,61

VIP has also been shown to enhance angiogenesis and
tumor growth in in vivomodels of human prostate cancer.61e63

These studies are important considering that the prostate gland
contains autonomic and sensory neurons and neuroendocrine
cells that secrete these neuropeptides. In fact, it has been re-
ported that, in prostatic adenocarcinomas, neuroendocrine
cells tend to occur in close proximity to proliferating cells.64

Thus, this may explain why both CGRP and VIP may cause
prostate tumor growth. However, it is possible that there are
other unknown RAMP1-interacting partners that may also
promote prostate tumorigenesis.

Our gene expression profiling data indicated that altered
MAPK signaling is one of the functional consequences of
RAMP1 depletion. We identified MAP2K1, an upstream
kinase in the MAPK signaling pathway as a gene whose
expression is impaired in RAMP1-depleted cells. Previous
studies have shown that both activation of CGRP and VIP can
induce ERK1/2 activation,55,65 suggesting that lack of
RAMP1 leads to reduced MAPK signaling by attenuating
signal transduction via RAMP1 coreceptors. Another pathway
altered in RAMP1-deficient cells is the EGFR1 signaling
pathway. EGFR1 is frequently overexpressed in hormone-
refractory and metastatic prostate cancer.66,67 EGFR1
signaling can also lead to activation of downstream cell
survival pathways, MAPK, and phosphatidylinositol 3-
kinase.68 In addition, activation of IL-6 signaling was also
suppressed in RAMP1-depleted cells. IL-6 is a pleiotropic
cytokine with diverse roles in immune and inflammatory
responses and in mediating growth of normal and tumor
cells.69 It mediates its effects through activation of the MAPK,
phosphatidylinositol 3-kinase, and Janus activated-kinase/
signal transducers and activators of transcription signaling
pathways that promote survival of cancer cells.70e72 Several
studies have observed elevated IL-6 in the sera of patients with
castration-resistant prostate cancer compared with men with
a normal-functioning prostate, benign prostatic hyperplasia,
prostatitis, and localized or recurrent disease.73e76 Also, IL-6
is expressed inmetastatic prostate cancer cells, PC-3, which do
not express NKX3.1.71 Interestingly, IL-6 is undetectable in
LNCaP cells that express NKX3.1.71,77 Our studies suggest
that loss ofNKX3.1 results in dysregulation of RAMP1,which
leads to activation of cell survival pathways.

RAMP1 has been proposed as a potential biomarker in
prostate cancer.8 Because RAMP1 presents G protein-coupled
receptors that bind ligands known to promote prostate tumori-
genesis to the cellmembrane, it could potentially be amolecular
target for the diagnosis and treatment of prostate cancer. The use
of a monoclonal antibody to therapeutically target RAMP1-
expressing cells may prove beneficial in treating patients with
prostate cancer, or may be ideal for imaging prostate lesions.
The American Journal of Pathology - ajp.amjpathol.org
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