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The MEF2 gene is essential for yeast longevity, with a dual role in cell respiration
and maintenance of mitochondrial membrane potential
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The Saccharomyces cerevisiae MEF2 gene is a mitochondrial protein translation factor. Formerly
believed to catalyze peptide elongation, evidence now suggests its involvement in ribosome recy-
cling. This study confirms the role of the MEF2 gene for cell respiration and further uncovers a slow
growth phenotype and reduced chronological lifespan. Furthermore, in comparison with cytoplas-
mic q0 strains, mef2D strains have a marked reduction of the inner mitochondrial membrane poten-
tial and mitochondria show a tendency to aggregate, suggesting an additional role for the MEF2
gene in maintenance of mitochondrial health, a role that may also be shared by other mitochondrial
protein synthesis factors.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The process of mitochondrial protein translation takes place in
four stages, initiation, elongation, termination and ribosome
recycling, with each stage carefully coordinated by various nuclear
encoded proteins known as mitochondrial translation factors [1,2].
The role of the mitochondrial protein translation factors in eukary-
otes is poorly defined. Based on sequence similarity with bacterial
elongation factors, the Saccharomyces cerevisiae MEF2 gene and its
human homolog, EFG2, were designated as mitochondrial elonga-
tion factors [3,4]. A recent study, however, predicts that these
genes in fact encode a mitochondrial ribosome recycling factor [5].

The role of the yeast Mef2p protein is further confounded by the
contradictory description of mef2D deletion mutants, with an ori-
ginal functional screen of the S. cerevisiae deletion library failing
to detect a phenotype [6]. This has been subsequently cited in a
number of papers, leading to a belief that the role of the yeast
MEF2 gene in mitochondrial translation is redundant [7–10]. More
recent genome-wide screens have identified the mef2D mutant as
a respiratory deficient yeast [11,12].
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In this study, a detailed functional characterization of the mef2D
deletion mutant is undertaken. Results confirm that the MEF2 gene
is required for respiratory growth and is essential for maintenance
of the mitochondrial genome. Moreover, in comparison to cyto-
plasmic q0 strains, which lack mitochondrial DNA (mtDNA), mef2D
mutants exhibit a significant slow growth phenotype under normal
growth conditions (in glucose) and a reduced chronological life-
span (CLS). Fluorescent staining results indicate that mef2D strains
are compromised in their maintenance of an inner mitochondrial
membrane potential (DW) and electron micrographs show a clus-
tered mitochondrial morphology, raising the possibility that the
MEF2 gene has a dual function, for mitochondrial protein transla-
tion and for maintenance of DW and mitochondrial organization.
2. Materials and methods

2.1. Strains and growth conditions

The haploid wild-type S. cerevisiae strain used was BY4742
(MATa his3D1 leu2D0 lys2D0 ura3D0). The mef2D/MEF2 hetero-
zygote deletion mutant was created by PCR amplifying the
KanMX marker plus an additional flanking 500 bp from an exist-
ing mef2D deletion mutant (EUROSCARF) [6]. The forward primer
used was 50-TCGTCTGTTTCAACTCTGAAGG-30 and reverse primer
was 50-TTGAAAAAGCAACGACCAGT-30. The KanMX cassette was
lsevier B.V. All rights reserved.
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Fig. 1. Growth of the wild-type, mef2D mutant, q0 strain and mef2D/MEF2
heterozygous mutant after 48 h on solid medium containing glucose or the non-
fermentable carbon source glycerol. Ten-fold serial dilutions ranging from 10�1 to
10�4 were spotted onto each plate.
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transformed into the BY4743 wild-type diploid (MATa/a his3D1/
his3D1 leu2D0/leu2D0 LYS2/lys2D0 MET15/met15D0 ura3D0/
ura3D0) and the resulting mef2D/MEF2 strain was sporulated
to obtain the haploid mef2D deletion mutant used in this study
(MATa his3D1 leu2D0 lys2D0 ura3D0; YJL102w.:KanMX4). PCR
was performed for deletion verification of all strains as previ-
ously described [6].

Cytoplasmic q0 strains were generated by growing BY4742 cells
in medium containing 10 lg/ml ethidium bromide for 48 h. Respi-
ratory deficient clones were selected for their inability to utilize
glycerol as a carbon source and absence of mtDNA was verified
by 40,6-diamidino-2-phenylindol (DAPI) staining.

For the majority of assays, medium used was liquid YEPD med-
ium (1% yeast extract, 2% peptone, 2% dextrose). Viability counts
were performed on solid YEPD medium (liquid YEPD plus 2% agar)
and YEPG medium (1% yeast extract, 2% peptone, 3% glycerol, 2%
agar) was used to assess respiratory deficiency. Erythromycin
treatment involved the addition of 2 mg/ml erythromycin (Sigma)
to wild-type cells [13]. Prior to experimentation, yeast strains were
cultured in YEPD medium for 24 h, subcultured and then grown to
exponential phase for subsequent studies. Incubation temperature
was 30 �C unless stated otherwise.

2.2. mtDNA restriction analysis

mtDNA was extracted as described elsewhere [14]. DNA was di-
gested with DdeI according to the manufacturer’s instructions
(New England Biolabs) and DNA fragments were separated on a
0.8% agarose gel containing ethidium bromide. Electrophoresis
was run at 80 V for 2 h and bands visualized using the Gel Doc
EQ system (Bio-Rad laboratories).

2.3. DAPI staining

Vital cell staining of mtDNA and nuclear DNA was performed by
adding DAPI as previously described [15].

2.4. Growth assay

Triplicate exponential phase cultures were diluted to an optical
density (OD595nm) of 0.2 and 50 ll of this culture was added to
150 ll of YEPD in wells of a 96-well plate. Cell growth was moni-
tored by measuring OD at 595 nm every hour for 15 h in a Tecan
Genios™ microplate reader [16]. Cell doubling time was calculated
using the formula ln 2/k where k is the maximal slope of the curve
when ln(OD595nm) is plotted against time.

2.5. CLS assay

CLS assay was performed in a 2 ml volume of water, essentially
as previously described [17]. The assay was continued for a period
of 13 days. Cell viability was monitored by plating various culture
dilutions onto solid YEPD every 3–4 days and colony forming units
were counted.

2.6. Visualization of mitochondrial membrane potential

MitoTracker Red CMXRos� (Molecular Probes�) was added di-
rectly to a 500 ll volume of exponential phase culture in YEPD to
a final concentration of 250 nM (1�), 750 nM (3�) or 2500 nM
(10�). Cells were incubated at 30 �C for 30 min, washed with fresh
medium and resuspended in YEPD medium. Cells were mounted
onto a glass slide and viewed immediately [18]. Fluorescent inten-
sity was quantified by measuring the ‘grey value’ within the cell
cytoplasm or mitochondria on the acquired digital photograph.
Measurements were made using the CellF software (Olympus).
Approximately 50 cells were used for each measurement.

2.7. Microscopy

Fluorescence images were viewed using an Olympus BX51
microscope equipped with a UV filter for DAPI and an intermediate
green filter for MitoTracker Red� stained cells. Photographs were
taken using Soft Imaging System’s Colorview III camera (Olympus),
controlled by the CellF software (Olympus).

2.8. Transmission electron microscopy (TEM)

Cells were harvested in early log phase, fixed and subjected to
0.15 mg/ml zymolyase (Seigaku) treatment to permeabilise the cell
wall as previously described [19]. Further cell fixation was carried
out in 2% OsO4, followed by dehydration and resin infiltration as
previously described [20]. Cells were then sectioned and viewed
on a Philips CM100 transmission electron microscope.

2.9. Statistical analysis

Statistical tests were carried out using the GraphPad Prism�

version 5.04 software for Windows (San Diego, CA).

3. Results

3.1. Deletion of the MEF2 gene results in a respiratory deficient q0

strain

Deletion of the MEF2 gene gives rise to small colonies on
glucose and growth on media containing a non-fermentable carbon
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source (glycerol) was absent, revealing a respiratory deficient phe-
notype (Fig. 1). Loss of respiratory ability in the mef2D deletion
mutant occurred rapidly following sporulation of a mef2D/MEF2
heterozygote. Respiratory deficiency does not extend to the
mef2D/MEF2 heterozygote, indicating that a single copy of the
MEF2 gene is sufficient to maintain respiratory function.

To test whether the absence of respiratory ability observed in
the mef2D strain is a consequence of mtDNA damage, a restriction
fragment length polymorphism (RFLP) was performed [14]. There
are four distinct high molecular weight bands (greater than 6 kb)
visible in DNA extracted from the wild-type yeast, however, no dis-
tinct bands are present in a cytoplasmic q0 control strain, or the
mef2D mutant (Fig. 2A). This signifies either the complete absence
of mtDNA (q0) in the mef2D mutant, or severe mtDNA rearrange-
ments that result in a q� strain, comprising of small repetitive frag-
ments of mtDNA.

To decipher between a q0 and a q� genotype, cells were stained
with DAPI. Microscopic observation showed that while mitochon-
drial nuclei were clearly visible in the wild-type strain as small
round dots positioned around the cell periphery, these nuclei were
absent from the mef2D mutant and the q0 control (Fig. 2B). Further
confirmation of the q0 nature of the mef2D strain was obtained by
performing genetic crosses with a wild-type q+ strain. Whereas q�

mutants are frequently suppressive [21], producing respiratory
deficient progeny, mef2D mating with the wild-type q+ strain re-
stored respiratory competence to the resulting crosses, verifying
that the mef2D mutant is q0 (results not shown).

3.2. The mef2D mutant has a slow growth phenotype and reduced
chronological life span

It was noticed that colonies produced by the mef2D mutant are
much smaller than those that arise from the wild-type and from
Fig. 2. mtDNA RFLP, cut using Dde1. Lane 1 contains the BY4742 wild-type strain (q+), w
and 5 contain the mef2D deletion mutant and cytoplasmic q0 strain, respectively (A). DA
(lower panel). Mitochondrial nucleoids are visible in the wild-type strain as small
magnification. Scale bar = 10 lM.
the corresponding cytoplasmic q0 strains (Fig. 1). A quantification
of growth rate in glucose rich medium shows that mef2D strains
have a considerably reduced growth rate, with a doubling time of
3.59 h, compared with 2.79 h for the q0 strain and 2.43 h for the
q+ wild-type yeast (Fig. 3A). Several mef2D strains, each derived
separately from sporulation of a mef2D/MEF2 heterozygote, were
investigated and each displayed the same growth defect. As a con-
trol, the growth rate of erythromycin treated wild-type cells, which
are blocked in their ability to translate mitochondrial proteins, was
also compared. Although these cells grew slower than the wild-
type, both the q0 strains and mef2D strains exhibited a significantly
slower growth rate (data not shown).

CLS is a measure of cell survival in a population of non-dividing
cells and has been shown to be closely linked with mitochondrial
function [22–24]. To investigate the effect of deleting the MEF2
gene on CLS, viability of cells grown to stationary phase was mon-
itored for 13 days [17]. Results show that the mef2D deletion mu-
tant has a reduced CLS compared with both wild-type and
cytoplasmic q0 strains (Fig. 3B). The q0 strain took nine days for
viability to fall below 50%, whereas viability of the wild-type re-
mained above 50% until approximately day 11 (Fig. 3B). In contrast,
the mef2D mutant took only 5 days to fall below 50% viability. So,
whereas the reduction in CLS of the mef2D strain can be partially
attributed to the absence of mtDNA [25], it does not solely account
for the severely reduced CLS of strains devoid of MEF2 gene
function.

3.3. The MEF2 gene has a role in maintenance of mitochondrial
membrane potential

Although mtDNA is dispensable for cell viability in S. cerevisiae,
the mitochondrial organelle is the location of several essential cel-
lular processes. These processes are reliant upon the maintenance
hile lanes 2 and 3 show restriction digests from two other wild-type strains. Lanes 4
PI staining of wild-type (top panel), mef2D mutant (middle panel) and a q0 control

bright spots, typically around the cell periphery (B). Cells are shown at �1000



Fig. 3. Growth curves and cell doubling times for wild-type, cytoplasmic q0 and the
mef2D mutant. Cells were grown in YEPD medium for 15 h and OD(595nm) was
measured at hourly intervals. Cell doubling times are tabled as the means ± S.E.M.
(n = 3). A Student’s t-test was used to compare the mean cell doubling times for the
wild-type and cytoplasmic q0 strains to the mef2D deletion mutant (A). Chrono-
logical lifespan of the wild-type, cytoplasmic q0 strain and the mef2D deletion
mutant (B). Values plotted are the mean from three biological replicates and error
bars represent S.E.M. ⁄⁄P < 0.01 and ⁄⁄⁄P < 0.001.
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of an electrochemical gradient across the inner mitochondrial
membrane for the import of proteins into the mitochondria. Up-
take of the MitoTracker Red CMXRos� dye into the mitochondrial
matrix is dependent on DW, and so to analyze the integrity of
DW in mef2D mutants, cells were stained with MitoTracker Red�

[18]. In wild-type cells, where the DW is maintained through the
activity of the electron transport chain, the q+ mitochondria stain
brightly and appear as a network of tubular structures within the
cell (Fig. 4). In q0 cells, the DW is maintained via a mechanism that
involves the exchange of ATP and ADP across the inner mitochon-
drial membrane by the adenine nucleotide translocator and F1 ATP
synthase [26]. The DW generated by this alternative mechanism
lacks in magnitude but, following a period of adaptation that
may involve genomic alterations, the DW is sufficient to enable
essential mitochondrial processes to function [27]. As a result of
this adaptation process, the extent of DW in q0 strains has been
found to vary (Gottschling, personal communication; [27]) and in-
deed there was some variation in mitochondrial staining between
several q0 strains tested. Nevertheless, all q0 strains, revealed
punctate fluorescent structures in each cell, indicative of frag-
mented mitochondria and typical of cells that have lost their
mtDNA (Fig. 4) [12]. Erythromycin treated wild-type cells, while
showing an expected reduction in DW, still maintained a greater
DW than q0 cells (results not shown).
In contrast, mitochondria of the mef2D deletion mutants consis-
tently stained poorly, with mitochondrial fluorescence, barely vis-
ible in a 1� concentration of MitoTracker� (Fig. 4). It was observed
that cytoplasmic staining in the q0 and mef2D cells was lower than
that of wild-type cells. To overcome this reduction in intracellular
MitoTracker� concentration and to improve visibility of mitochon-
drial morphology, q0 and mef2D cells were stained with increasing
concentrations of MitoTracker Red�. The results clearly show that
even when cytoplasmic fluorescence of the mef2D mutant is great-
er than that of wild-type cells (cytoplasmic grey values for mef2D
(10�) = 109; q0 (3�) = 95 and wild-type (1�) = 88), the mitochon-
drial staining is notably reduced in mef2D cells. In some cells
(approximately 30–40%), there is an increase in visibility of inter-
nal spherical structures, although these structures still do not stain
as brightly as those in q0 cells, appearing smaller and fewer (gen-
erally only one per cell) than those of q0 cells. Furthermore, for the
majority of mef2D cells (60–70%), an obvious mitochondrial struc-
ture is not visible (Fig. 4). It therefore appears that mef2D deletion
mutants may have a decreased mitochondrial content, with frag-
mented mitochondria showing a tendency to aggregate, typically
in a single cluster per cell.

3.4. The mef2D mutant has aggregated mitochondria

To further investigate the mitochondrial morphology of the
mef2D strain, cell ultrastructure was visualized using TEM
(Fig. 5). There were no obvious abnormalities in the mitochondrial
content of mef2D cells, however, in several mef2D cells, mitochon-
dria appeared clustered, supporting the observations made during
fluorescence staining of the mitochondria. This phenotype was not
observed in the q0 cells where mitochondria were fragmented, but
did not aggregate (Fig. 5). Based on these observations, the MEF2
gene appears to have an essential role for mitochondrial health,
impacting on maintenance of DW and altering mitochondrial
organization.

3.5. Nuclear encoded genes with a dual role for respiratory function
and cell growth

To determine how universal a mef2D-like growth defect is
amongst other nuclear encoded genes that are essential for respi-
ration, a literature analysis was conducted. A recent study by Merz
and Westermann (2009) compiled a list of 163 deletion mutants
that exhibit respiratory deficiency based on three published gen-
ome-wide screens for respiratory deficiency [11,12,28]. This data-
set was correlated with that of another genome-wide screen in
which homozygous S. cerevisiae knockout mutants were profiled
for growth defects in YEPD medium [29]. To correct for fermenta-
tive slowing of cell growth normally observed in cytoplasmic q0

strains, only strains with a fitness score <0.830 in the Deutschbauer
et al. (2005) study were considered. This cut-off selects for strains
with a fitness defect similar or less than that of mef2D (fitness
score = 0.808). Of the 163 respiratory deficient deletion mutants
reported by Merz and Westermann (2009), 48 (29%) have a growth
defect that is likely to extend beyond that imposed simply by fer-
mentative growth. An overwhelming proportion of the 48 genes
(61%), have a role in mitochondrial protein synthesis (Fig. 6). This
mitochondrial protein synthesis category constituted only 40% of
the original 163 genes [11] and so there appears to be a consider-
able enrichment for mitochondrial protein synthesis genes among
the subset of respiratory deficient, growth defective strains. It is
not known to date whether these mitochondrial protein synthesis
genes, of which the MEF2 gene is a part, also have a reduced CLS or
DW, but these results suggest that a number of nuclear encoded
mitochondrial genes may have a dual function which, at least for
the MEF2 gene, is essential for DW maintenance. Also categorically



Fig. 4. MitoTracker Red CMXRos� staining of wild-type, q0 and mef2D strains. To better resolve mitochondrial structure, q0 and mef2D strains were stained with increasing
concentrations of MitoTracker�. Scale bar = 10 lM.

Fig. 5. TEM micrographs showing ultrastructure of the wild-type (A), q0 (B) and mef2D (C) strains. Cell nucleus (N), vacuoles (V) and mitochondria (M) are labeled. Scale
bar = 500 nm.

Fig. 6. Functional distribution of genes essential for cell respiration as determined in the Merz and Westermann (2009) study based on overlapping data from three published
genome-wide screens for respiratory deficiency [11,12,28]. The 13 questionable ORFs included in the Merz and Westermann data-set were omitted from this analysis (A).
Functional distribution of genes with a dual role for respiratory function and cell growth as determined in this study, based on the dataset compiled by Merz and Westermann
[11] and results from the fitness profiling study for growth defects by Deutschbauer et al. (2005) [29] (B). Functional annotations are those used in the Merz and Westermann
(2009) study [11].
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enriched are genes encoding mitochondrial proteases and pepti-
dases (6%, compared with 2% in the original study [11]).

4. Discussion

The MEF2 gene encodes a mitochondrial translation factor, with
a predicted involvement in mitochondrial ribosome recycling [5].
Yeast cells lacking components of the mitochondrial translation
apparatus generally become q0, likely due to the inhibition of
translation of mitochondrial proteins necessary for mtDNA replica-
tion and repair [30]. However, as there have been some discrepan-
cies in the literature [6,11,12], a number of reports continue to
maintain that the role of the MEF2 gene in mitochondrial transla-
tion is redundant [7–10]. This study presents the first detailed
functional characterization of mef2D and findings confirm that
the Mef2p protein is indispensable for the maintenance of mtDNA.
Deletion of the MEF2 gene leads to rapid respiratory deficiency and
a detailed analysis of the mtDNA content of the mef2D deletion
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mutant shows that there is a complete loss of mtDNA. This demon-
strates that the Mef2p protein plays an essential role in mitochon-
drial protein translation.

In addition to respiratory deficiency, deletion of the MEF2 gene
confers a significant growth defect and a reduction in CLS. A slow
growth phenotype for q0 cells is expected as cells are forced to pro-
duce energy via the less efficient fermentative pathways [31]. The
shortened CLS of the mef2D deletion mutant can also, in part, be
attributed to lack of respiratory function, with cytoplasmic q0 cells
having previously been shown to have a reduced CLS, although the
mechanism for this is not clear [25]. However, both the growth and
lifespan defects of the mef2D deletion strain extend beyond what is
observed for a cytoplasmic q0 strain. These observations raise the
possibility that the MEF2 gene also has a non-respiratory related
function; at least in cells that have no mtDNA, and that this func-
tion is necessary for normal growth and viability.

The use of fluorescent staining as an indicator of DW has re-
vealed a severely diminished DW in mef2D cells. It was also ob-
served that mef2D cells have a reduced cellular uptake of the
MitoTracker� stain when compared with the q0 strain. This possi-
bly indicates a hyperactive retrograde response, which increases
the activity of multidrug resistance pumps [32]. Further investiga-
tions of the retrograde response in the mef2D strain are required to
establish this. Nevertheless, using increased concentrations of
MitoTracker�, it was possible to standardize intracellular Mito-
Tracker� concentrations with that of q0 cells and still mitochon-
drial incorporation of the probe remained low, signifying a
reduction in DW of mef2D mutants. The role of DW for cell func-
tion is critical. In addition to ATP production, the mitochondria
are home to a number of important conserved cellular processes
including iron metabolism, apoptosis, heme synthesis and fatty
acid and steroid synthesis [33–35]. The majority of proteins in-
volved in these processes are encoded in the nuclear genome and
must be imported into the mitochondria, an action that is reliant
on the existence of an electrochemical potential across the inner
mitochondrial membrane [36]. Arguably the most significant mito-
chondrial process for cell viability is that of iron metabolism, which
is responsible for the synthesis of iron–sulfur clusters. Iron–sulfur
clusters can bestow catalytic or structural properties on a protein,
or can serve as electron carriers or regulatory sensors. A wide vari-
ety of cell proteins rely on iron–sulfur clusters, from those that are
required for nuclear DNA synthesis and repair, as well as proteins
involved in cytoplasmic protein translation [33]. The inhibition of
the synthesis of iron–sulfur clusters is believed to be the underly-
ing mechanism for why lack of DW is lethal to cells [33].

The DW also enables the import and post-translational process-
ing of nuclear encoded proteins that are responsible for mitochon-
drial fusion and the tubular mitochondrial morphology observed in
wild-type cells [37]. Dissipation of DW causes mitochondrial frag-
mentation as seen in q0 cells [37], but further defects in mitochon-
drial import through mutation of mitochondrial import proteins,
such as Hsp70p has been shown to cause mitochondrial aggrega-
tion [38]. TEM ultrastructure analysis shows numerous cells with
aggregated mitochondria. It is possible that the abnormally low
DW in mef2D mutants compromises mitochondrial protein import
and this may be a factor in the aberrant mitochondrial morphology
of the mef2D mutant. However, additional studies are required to
establish a link between the dissipated DW and mitochondrial
clustering phenotype of mef2D cells.

Phenotypes similar to that of mef2D, which have been linked to
loss of DW, have also been observed in other nuclear encoded
mitochondrial proteins. Perturbation of a yeast transposon, HsTnII,
gives rise to respiratory deficient cells that have a reduced CLS.
These cells also have fragmented mitochondria and a reduced
DW [23]. Additionally, mutations that impinge on the mitochon-
drial F1–F0 ATP synthase have been found to confer a q0 phenotype
with a significant growth defect [39]. The F1–F0 ATP synthase com-
plex catalyzes ATP synthesis, but in the absence of mtDNA, the F1

portion is believed to contribute to the maintenance of the DW.
These results point to a very strong link between DW and cell
growth rate and viability.

This study has revealed the importance of the Mef2p protein for
mtDNA maintenance and, in addition, results have further uncov-
ered an unexpected bi-functional nature of the Mef2p protein, with
a likely role in the maintenance of the DW and mitochondrial orga-
nization. Further investigations are needed to establish the precise
role of the MEF2 gene in maintenance of the DW, but an analysis of
existing literature has identified many genes essential for cell res-
piration that also confer a significant growth defect when deleted.
A great proportion of these genes are involved in mitochondrial
protein synthesis. It is expected that the role of these genes in cell
growth is separate from their function for mitochondrial protein
synthesis as the majority of deletion mutants for these genes are
devoid of mtDNA. It is not known whether DW is a factor in the
growth phenotype of these genes, but considering the close associ-
ation of the mitochondrial translation apparatus with the inner
mitochondrial membrane [40], it is plausible to speculate that per-
haps some aspect of the mitochondrial protein synthesis system, of
which the Mef2p protein is a part, could play a role in maintenance
of DW in q0 cells.
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