
Computers and Mathematics with Applications 60 (2010) 2087–2098

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A novel meta-heuristic optimization algorithm inspired by group
hunting of animals: Hunting search
R. Oftadeh ∗, M.J. Mahjoob, M. Shariatpanahi
Center for Mechatronics and Automation, School of Mechanical Engineering, University of Tehran, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 17 September 2009
Received in revised form 23 June 2010
Accepted 27 July 2010

Keywords:
Meta-heuristic algorithm
Continuous optimization problems
Group hunting

a b s t r a c t

A novel optimization algorithm is presented, inspired by group hunting of animals such as
lions, wolves, and dolphins. Although these hunters have differences in theway of hunting,
they are common in that all of them look for a prey in a group. The hunters encircle the prey
and gradually tighten the ring of siege until they catch the prey. In addition, eachmember of
the group corrects its position based on its ownposition and the position of othermembers.
If the prey escapes from the ring, hunters reorganize the group to siege the prey again.
Several benchmark numerical optimization problems, constrained and unconstrained, are
presented here to demonstrate the effectiveness and robustness of the proposed Hunting
Search (HuS) algorithm. The results indicate that the proposedmethod is a powerful search
and optimization technique. It yields better solutions compared to those obtained by some
current algorithms when applied to continuous problems.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Classical methods often face great difficulties in solving optimization problems that abound in the real world. In order to
overcome the shortcomings of traditional mathematical techniques, nature-inspired soft computing algorithms have been
introduced.
Several evolutionary or meta-heuristic algorithms have since been developed which combine rules and randomness

mimicking natural phenomena. These phenomena include biological evolutionary processes (e.g., the evolutionary algo-
rithm proposed by Fogel et al. [1], De Jong [2], and Koza [3] and the genetic algorithm (GA) proposed by Holland [4] and
Goldberg [5]), animal behavior (e.g., the tabu search proposed by Glover [6]), the physical annealing process (e.g., simulated
annealing proposed by Kirkpatrick et al. [7]) and the musical process of searching for a perfect state of harmony (proposed
by Geem et al. [8], Lee and Geem [9] and Geem [10] and proceeded with other researchers [11,12]).
Many researchers have recently studied these meta-heuristic algorithms, especially GA-based methods, to solve vari-

ous optimization problems. However, new heuristic algorithms are needed to solve difficult and complicated real-world
problems.
The method introduced in this paper is a meta-heuristic algorithmwhich simulates the behavior of animals hunting in a

group (lions, wolves, etc.). Group hunters have certain strategies to encircle the prey and catch it. Wolves, for instance, rely
on this kind of hunt very much, so they can hunt animals bigger or faster than themselves. They choose one prey and the
group graduallymoves toward it. They do not stand in thewind such that the prey senses their smell.We employ this idea in
constrained problems to avoid forbidden areas. In our algorithm, each of the hunters indicates one solution for a particular
problem. Like real animals which hunt in a group, artificial hunters cooperate to find and catch the prey; i.e., the optimum
point in our work.

∗ Corresponding author.
E-mail addresses: roftadeh@me.ut.ac.ir, roftadeh@ut.ac.ir (R. Oftadeh).

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.07.049

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82016344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:roftadeh@me.ut.ac.ir
mailto:roftadeh@ut.ac.ir
http://dx.doi.org/10.1016/j.camwa.2010.07.049

2088 R. Oftadeh et al. / Computers and Mathematics with Applications 60 (2010) 2087–2098

2. Hunting search meta-heuristic algorithm

Meta-heuristic algorithms imitate natural phenomena, e.g. physical annealing in simulated annealing, human memory
in a tabu search, and evolution in evolutionary algorithms. A new Hunting Search (HuS) meta-heuristic algorithm is
conceptualized here using the hunt process in catching a prey in the group hunting. Cooperation of the members of the
group called hunters leads to encircling a prey and catching it (the group’s food), similar to the optimization process which
results in finding a global solution (a perfect state) as determined by an objective function. The position of each hunter
compared to the prey determines its chance of catching the prey. Similarly, the objective function value is determined by
the set of values assigned to each decision variable. The new HuS meta-heuristic algorithm is derived based on a model of
group hunting of animals when searching for food such as the way in which wolves hunt.
In continuous optimization problems, the estimation of a solution is carried out by putting values of decision variables

into the objective function or fitness function. This evaluates the function value, which includes cost, efficiency, and/or error.
Therefore, a model for a continuous optimization problem may be formally defined as follows.

Definition 2.1. A model of a continuous optimization problem, generally shown as Q = (S,�, f), has the following
features.

• A search space defined over a finite set of continuous decision variables (S).
• A set of constraints among the variables (�).
• An objective function to be minimized (f : S → R+0).

The search space (S) is defined as a set of N continuous variables (xi, i = 1, . . . ,N with values vi ∈ Di ⊆ R), where N is the
number of design variables. A solution s ∈ S which satisfies all the constraints in the set� is a feasible solution. Q is called
an unconstrained problem if the set � is empty; otherwise, it is called a constrained problem. A solution s∗ ∈ S is called a
global minimum if and only if f (s∗) ≤ f (s) ∀s ∈ S . Solving a continuous optimization problem requires at least one global
minimum.

Compared to group hunting, in a continuous optimization problem each ‘hunter’ is replaced with a ‘solution’ of the
problem (or as we call it an ‘artificial hunter’). Note that group hunting of animals and our meta-heuristic algorithm have
a primary difference. In group hunting of animals (our emphasis is on animals that hunt on land such as wolves and lions),
hunters can see the prey or when they hunt at night at least they can sense the smell of the prey and determine its position.
In contrast, in optimization problems we have no indication of the optimum solution/point. In group hunting of animals,
however, the solution (prey) is dynamic and the hunters (based on the current position of the prey) must correct their
position. In optimization problems instead, the optimum solution is static and does not change its position during the search
process. In fact, both real and artificial group hunting have their own difficulties. To resemble this dynamics of the hunting
process in our algorithm, artificial hunters move towards the leader. The leader is the hunter which has the best position at
the current stage (the optimum solution among current solutions at hand). In fact, we assume that the leader has found the
optimum point and other members move towards it. If any of them finds a point better than the current leader, it becomes
leader in the next stage.
Real animals not only gradually move toward the prey but also (based on the position of other hunters and the position

of the prey) correct their position. Therefore, in this algorithm, after moving toward the previous leader, the hunters correct
their position based on the position of othermembers. This is accomplished by introducing the ‘hunting group consideration
rate’ (HGCR), which is defined later.
In addition in the group hunting of real animals, if the prey escapes out of the ring, the hunters organize themselves to

encircle the prey again. In the HuS algorithm, the ability will be given to hunters, so they can search out of the ring of siege.
In the algorithm, if the positions of the hunters/solutions are too close to each other, the group is reorganized to find the

optimum point in the next effort.
Fig. 1 displays the procedure of the Hunting Search algorithm, which consists of the following steps.

Step 1. Specify the optimization problem and parameters of the algorithm.
Step 2. Initialize the hunting group (HG).
Step 3. Move toward the leader.
Step 4. Correct the positions (cooperation between members).
Step 5. Reorganize the hunting group.
Step 6. Repeat Steps 3, 4 and 5 until the termination criterion is satisfied.

The details follow.
Step 1. Initialize the optimization problem and algorithm parameters.
The problem is defined as the model that is presented in Definition 2.1. The HuS algorithm parameters that are required to
solve the optimization problem are also specified in this step: hunting group size (number of solution vectors in hunting
group HGS), maximum movement toward the leader (MML), and hunting group consideration rate (HGCR), which varies
between 0 and 1. The parameters MML and HGCR are parameters that are used to improvise the hunter position (solution
vector) that are defined in Steps 3 and 4.

R. Oftadeh et al. / Computers and Mathematics with Applications 60 (2010) 2087–2098 2089

Fig. 1. Optimization procedure of the Hunting Search algorithm.

Step 2. Initialize the hunting group (HG).
Based on the number of hunters (HGS), the hunting groupmatrix is filled with feasible randomly generated solution vectors.
The values of objective function are computed and the leader is defined based on the values of objective functions of the
hunters.
Step 3.Moving toward the leader.
The new hunters’ positions (new solution vectors) x′ = (x′1, x

′

2, . . . , x
′

N) are generated by moving toward the leader (the
hunter that has the best position in the group) as follows:

x′i = xi + rand×MML× (x
L
i − xi). (1)

The MML is the maximum movement toward the leader, rand is a uniform random number which varies between 0 and 1,
and xLi is the position value of the leader for the ith variable.
For each hunter, if the movement toward the leader is successful, the hunter stays in its new position. However, if the

movement is not successful (its previous position is better than its new position) it comes back to the previous position.
With this, we achieve some advantages. First, we do not compare the hunter with the worst hunter in the group, so we
allow the weak members to search for other solutions; they may find better solutions (as in a genetic algorithm). Secondly,
for prevention from rapid convergence of the group the hunter compares its current position with its previous position;
therefore, good positions will not be eliminated.
The value of parameter MML varies for different problems. It depends on the number of iterations in each epoch, which

will be defined in Step 5. The range between 0.05 (for epochs with large number of iterations) and 0.4 (for epochs with small
number of iterations) gives the best results, as is shown in the next examples.
Step 4. Position correction—cooperation between members.
In this step, the cooperation between hunters is modeled in order to conduct the ‘hunt’ more efficiently. After moving
toward the leader, hunters (based on other hunter positions and some random factors) choose another position to find
better solutions. Hunters do the position correction in two ways: (1) real value correction (2) digital value correction.
In real value correction, the new hunter’s position x′ = (x′1, x

′

2, . . . , x
′

N) is generated from HG, based on hunting group
considerations or position corrections. For instance, the value of the first design variable for the jth hunter (xj

′

1) for the
new vector (new hunter position) can be picked from any value (i.e. real number) in the specified HG (x1i , x

2
i , . . . , x

HGS
i) or

corrected using the HGCR parameter (chosen between 0 and 1). Updating the variable value is thus carried out as follows:

xj
′

i ←

{
xj
′

i ∈ {x
1
i , x

2
i , . . . , x

HGS
i } with probability HGCR

xj
′

i = x
j
i ± Ra with probability (1− HGCR)

i = 1, . . . ,N, j = 1, . . . ,HGS. (2)

The parameter HGCR is the probability of choosing one value from the hunting group stored in the HG, and (1 − HGCR) is
the probability of doing a position correction. For example, an HGCR of 0.3 indicates that the HuS algorithm will choose the

2090 R. Oftadeh et al. / Computers and Mathematics with Applications 60 (2010) 2087–2098

Fig. 2. Ra reduction: (a) constant reduction; (b), (c) exponential decay; (d) Ra begins to reduce after a certain number of searches.

design variable value from hunting group values in the HG with a 30% probability, and doing a position correction with a
70% probability. An HGCR in the range between 0.1 and 0.4 gives better results, as is shown in the examples.
Ra is an arbitrary distance radius for the continuous design variable, and rand is a uniform number which varies between 0
and 1. Ra can be fixed or reduced during optimization process. Many functions can be chosen for reducing Ra. Some useful
functions are plotted in Fig. 2. The first function uses a fixed decremental amount, which is subtracted from the search Ra
after each iteration. This results in a constant rate of Ra reduction. The second function uses a fixed Ra reduction factor
(some value less than 1), by which the Ra is multiplied after each generation. This option allows hunters to narrow down
their search more rapidly initially, and to spend longer in detailed local solution exploration. The third function uses a
similar approach, but instead is more biased towards global exploration. This approach leaves the hunters with more time
to investigate the properties of the entire search space, and undergoes rapid convergence on solutions towards the end of
the algorithm’s life. In the fourth function, the Ra only begins to contract after a certain number of iterations.
In this paper, an exponential function is used for Ra reduction as follows:

Ra(it) = Ramin(max(xi)−min(xi)) exp

Ln
(
Ramin
Ramax

)
× it

itm

 , (3)

where it is the iteration number, max(xi) and min(xi) are the maximum or minimum possible value of variable xi, respec-
tively, Ramax and Ramin are the maximum and minimum of relative search radius of the hunter, respectively, and itm is the
maximum number of iterations in the optimization process.
In digital value correction, instead of using real values of each variable, the hunters communicate with each other by the
digits of each solution variable. For example, the solution variable with the value of 23.4356 has six meaningful digits. For
this solution variable, the hunter chooses a value for the first digit (i.e. 2) based on hunting group considerations or position
correction. For HGCR = 0.3, it chooses a digit from the hunting group with a 30% probability and does a position correction
with 70% probability. The values for other digits in this solution variable and other variables can be selected in the same
manner. Therefore, the kth digit of the ith solution variable is chosen as follows:

dj
′

ik ←

{
dj
′

ik ∈ {d
1
ik, d

2
ik, . . . , d

HGS
ik } with probability HGCR

dj
′

ik = d
j
ik ± a with probability (1− HGCR)

i = 1, . . . ,N, j = 1, . . . ,HGS,
k = 1, . . . ,M (number of digits in each variable). (4)

The value of a can be any number between 1 and 9 or a random variable that generates numbers between 1 and 9. In the
numerical examples we set the value of a to 1.
There are some points that should be considered in digital position correction. In the group consideration, there is a chance
that a digit chooses another digit that is invalid (or void) andmakes the value of solution variable inadmissible. For example,
if the second digit of 423.3423 chooses the similar digit in 2.5678 that is void, this makes the value of solution variable
inadmissible. Also, in the position correction, if the kth digit of solution variable is 9 or 0 and then added to or decreased by
1, this makes the value of the solution variable inadmissible (10 or −1). In such cases, the digit simply restores its original
value.
Note that in digital position correction the algorithm must restore a certain number of digits for each solution variable. In
the present study, for all numerical examples, the algorithm restores up to eight decimal figures.
The algorithm can use real value correction, digital value correction or both for cooperation between members. We have
used both here. The presented numerical examples showed the effectiveness of this choice.
After the quality of the new hunter position is determined by evaluating the objective function, the hunter moves to this
new position; otherwise it keeps its previous position (similar to the previous step).
Step 5. Reorganizing the hunting group.
As the search process continues, there is a chance for the hunters to be trapped in a local minimum (or a local maximum
once our goal is to find the maximum). If this happens, the hunters must reorganize themselves to get another opportunity
to find the optimum point. The algorithm does this in two independent conditions. If the difference between the values of
the objective function for the leader and the worst hunter in the group becomes smaller than a preset constant (ε1) and

R. Oftadeh et al. / Computers and Mathematics with Applications 60 (2010) 2087–2098 2091

Table 1
HuS parameter values for constrained minimization problem Eq. (6).

Parameter Value

Number of epochs (NE) 2
Iteration per epoch (IE) 30
Hunting group size (HGS) 10
Maximummovement toward leader (MML) 0.3
Hunting group consideration rate (HGCR) 0.3
Ramax, Ramin 1e−2, 1e−7
Reorganization parameters−α, β 0.1,−1

the termination criterion is not satisfied, then the algorithm reorganizes the hunting group for each hunter. Alternatively,
after a certain number of searches the hunters reorganize themselves. We have used the second condition in the examples
for reorganization. The sequence of searches that end with trapping the group in a local minimum or the certain number
of searches is called one epoch. They reorganize as follows. The leader keeps its position and the other hunters randomly
choose their positions in the design space by

x′i = x
L
i ± rand× (max(xi)−min(xi))× α exp(−β × EN), (5)

where xLi is the position value of the leader for the ith variable. rand is a uniform random number which varies between
0 and 1. max(xi) and min(xi) are the maximum and minimum possible values of variable xi, respectively. EN counts the
number of times that the group has been trapped until this step (i.e. number of epochs until this step). As the algorithm goes
on, the solution gradually converges to the optimum point. Parameters α and β are positive real values. They determine the
global convergence rate of the algorithm. Large values of α and small values of β cause the algorithm to converge slowly.
This is recommended for large optimization problems or for problemswith several local optimums. In contrast, setting small
values of α and large values of β makes the algorithm converge more rapidly. This is recommended for small optimization
problems with a small number of design variables.
By this practice, hunters benefits in four ways. First, they give themselves another opportunity to search the design space.
Second, because the leader saves its position, other hunters have a direction to better areas after reorganizing and they do
not have to search the whole design space blindly. Third, because the leader saves its position after each epoch, hunters
do not miss the best solution they have found during search process. Fourth, and most importantly, as EN increases during
search process, the hunters search the design space more locally to find the optimum point.
As the algorithm proceeds, the solution gradually converges into the optimum point.
Step 6. Repeat Steps 3–5 until the termination criterion is satisfied.
In Step 6, the computations are terminatedwhen the termination criterion is satisfied. If not, Steps 3–5 are then repeated.

The termination criterion can be defined as the maximum number of searches. Alternatively, if after reorganizing the
function for the leader and the worst hunter in the group remains smaller than a preset constant (ε1), the search process
ends.
To further elaborate on the HuS meta-heuristic algorithm, consider the following constrained minimization problem:

f (x) = (x21 + x2 − 11)
2
+ (x1 + x22 − 7)

2

subject to

g1(x) = 4.84− (x1 − 0.05)− (x2 − 2.5)2 ≥ 0

g2(x) = x21 + (x2 − 2.5)
2
− 4.84 ≥ 0

0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 6.

(6)

This problem, introduced by Deb [13], is a minimization problem with two design variables and two inequality constraints,
as shown in Fig. 3. The unconstrained objective function f (x) has aminimum solution at (3, 2) with a corresponding function
value equal to 0. The constrainedminimumsolution is located in a narrowcrescent-shaped region. TheHuSparameter values
used in this problem are summarized in Table 1 (step 1).
The HG was initially structured with randomly generated solution vectors within the bounds prescribed for this example
(i.e., 0 to 6.0) and the leader is defined (Step 2). Next, based on Eq. (1), the hunters move toward the leader, and if their
new positions are better than the previous positions, they stay there. Otherwise, they come back to their previous positions
(Step 3).
Then the hunters cooperate with each other to find better positions based on group considerations with a 30% probability
and position corrections with a 70% probability (Step 4). After 30 iterations based on Eq. (6), the hunters reorganize
themselves (Step 5). In this example, the group can find theminimumpoint in two epochs. After 60 iterations (1800 function
evaluations), the HuS algorithm improvised an optimal solution vector x = (2.246826212191825 2.381870437963585),
which has a function value of 13.590841693489994, as shown in Fig. 4.
Fig. 4 shows the minimum value convergence history for this constrained function. The HuS best solution was compared to
the previous solutions reported in the literature in Table 2. The optimal design obtained using the HuS algorithm showed a
very good agreement with the previous solutions reported in the literature.

2092 R. Oftadeh et al. / Computers and Mathematics with Applications 60 (2010) 2087–2098

Table 2
Optimal results of the constrained function represented by Eq. (5).

Methods Optimal design variables (x) Constraints Objective function value f (x)
x1 x2 g1 g2

Deb [13] – – – – 13.59085
Lee and Geem [9] 2.246840 2.382136 0.00002 0.22218 13.590845
Mahdavi [11] 2.2468258 2.381863 0.0000 0.22218 13.590841
Present study 2.2468262121 2. 3818704379 2.21003× 10−15 0.2221826212 13.5908416934

Fig. 3. Constrained function represented by Eq. (5). Green circles indicate hunters’ initial positions. Blue circles indicate hunters’ positions after epoch 1.
The leader in each of these stages is represented by a triangle. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 4. Minimum value convergence history for the constrained function represented by Eq. (5).

The HuS algorithm includes the structure of present meta-heuristic optimization algorithms. It preserves the history of
past vectors (HG) similar to the tabu search and the harmony search, and is able to vary the adaptation rate (HGCR) from
the beginning to the end of the computations, which resembles simulated annealing. It also considers several vectors
simultaneously in a manner similar to the harmony search. However, the difference between the harmony search and the
developed HuS algorithm is that in the latter hunters compare their positions only with their previous positions; therefore
weak hunters have a chance to find better locations in subsequent iterations, while the harmony search compares each
generated solution with all existing solutions and removes the worst solution from harmony memory.

R. Oftadeh et al. / Computers and Mathematics with Applications 60 (2010) 2087–2098 2093

200

600

600

400

400

200

200

0

0

–200

–200

Y

X

–400

–400
–600

–600

150

100

50

0

2

3

0
40

40

20

20

0

0

Y

X

–20

–20–40
–40

1

Fig. 5. Schematic of a Griewank function with different resolutions represented by Eq. (7). Left: the full definition range of the function. Right: range
around the optimum point.

Table 3
HuS parameter values for the Griewank function Eq. (7).

Parameter Value

Problem dimension (d) 10, 20, 50, 100
Number of epochs (NE) 3 (d = 10, 20), 5 (d = 50), 10 (d = 100)
Iteration per epoch (IE) 50
Hunting group size (HGS) 10
Maximummovement toward leader (MML) 0.3
Hunting group consideration rate (HGCR) 0.3
Ramax, Ramin 10−2, 5× 10−6
Reorganization parameters−α, β 0.05,−0.5

3. Examples

The computational procedures described above have been implemented in a MATLAB computer program on a Pentium4
2.4 GHz computer. In this study, different unconstrained and constrained standard benchmark examples from the literature
are presented to demonstrate the efficiency and robustness of the proposed HuS meta-heuristic algorithm. Unconstrained
optimization problems are presented in two sets. In these sets, the performance of HuS is compared with five famous
evolutionary algorithms through minimization of a high-dimensional Griewank function and other standard benchmark
problems available in the literature. Three constrained optimization problems are also included to test the efficiency of the
presented algorithm in the optimization of this type of problem.

3.1. Unconstrained function minimization examples—set one

In this section, the performance of HuS is comparedwith that of four famous evolutionary algorithms. Genetic Algorithms
(GAs) are inspired by biological system’s improved fitness through evolution [4]. Memetic Algorithms (MAs) are inspired by
Dawkins’ notion of a meme [14]. Particle Swarm Optimization (PSO) is inspired by the social behavior of a flock of migrating
birds trying to reach an unknown destination [15]. The Shuffled Frog Leaping (SFL) algorithm is inspired by a frog population
searching for food and passing their ideas through a shuffling process [16]. The results are compared with those reported
in [17].
To have a reasonable comparison between HuS and the mentioned optimization algorithms, the simulations are performed
for a high-dimension Griewank function (d = 10, 20, 50, and 100). The function is represented by

fGR(Ex) =
d∑
i=1

x2i
4000

−

n∏
i=1

cos
(
xi
√
i

)
+ 1 − 511 ≤ xi ≤ 512 (d = 10, 20, 50, 100). (7)

A schematic of a two-dimensionalGriewank function is given in Fig. 5. As canbeobserved, this functionhasmanywidespread
local minima but it has only one global minimum at xi = 0, i = 1 : nwith f (x) = 0. The HuS parameter values used in this
problem are summarized in Table 3.
As in [17], 20 trial runs were performed for each dimension with the two (following) stopping criteria: (1) the value of the
best objective function found by HuS reached a target value of 0.05 or less; (2) the objective function value did not improve
in ten consecutive iterations.
Fig. 6 shows the best and the worst history convergence for each dimension. Surprisingly, the HuS can found the optimum
point for d = 20 in a lower number of iterations than for d = 10. Table 4 presents results obtained by HuS and other

2094 R. Oftadeh et al. / Computers and Mathematics with Applications 60 (2010) 2087–2098

Table 4
Comparative results of a high-dimensional Griewank function Eq. (7).

Algorithm d = 10 d = 20
% Success Mean S Mean NF Time (s) % Success Mean S Mean NF Time (s)

HuS 100 0.0471 3166 0.8 100 0.0486 2959 1.3
GAs (Evolver) [17] 50 0.06 – 312 30 0.097 – ∼1000
MAs [17] 90 0.014 – ∼40 100 0.013 – ∼100
PSO [17] 30 0.093 – ∼11 80 0.081 – ∼20
SFL [17] 50 0.08 – ∼3 70 0.063 – ∼11

Algorithm d = 50 d = 100
% Success Mean S Mean NF Time (s) % Success Mean S Mean NF Time (s)

HuS 100 0.0480 5515 3.7 100 0.0481 10029 11.5
GAs (Evolver) [17] 10 0.161 – ∼2100 0 0.432 – 2427
MAs [17] 100 0.011 – ∼180 100 0.009 – 428
PSO [17] 100 0.011 – ∼40 100 0.011 – ∼300
SFL [17] 90 0.049 – ∼30 100 0.019 – ∼70

Fig. 6. Best/worst convergence history of a high-dimensional Griewank function (d = 10, 20, 50, 100).

compared algorithms. Reported is the percentage of success (% Success), mean solution (Mean S), mean number of function
evaluations (Mean NF) and Processing time to reach the optimum (Time). Note that, for the compared algorithms, the mean
number of function evaluation values are not available.
Obviously, HuS outperforms the other compared algorithms in terms of percentage of success and mean solution. The
comparison of processing time may not be a fair comparison because the processor/hardware used in this study is different
from that used in [17]. Unfortunately, the authors in [17] did not mention the number of function evaluations for further
comparison.

3.2. Unconstrained function minimization examples—set two

The list of test functions on which we ran HuS, together with the number of dimensions used and the initialization
interval, is presented in Table 5. Figures of the test functions used can be found in [18].
Following the test set-up described in the literature, we performed 100 independent runs, with the following stopping

criterion (as used by the other algorithms in this comparison):

|f − f ∗| < ε1f + ε2, (8)

where f is the value of the best solution found by HuS, f ∗ is the optimal value for the given test problem, and ε1 and ε2 are
respectively the relative and absolute errors. For all the test simulations we have used ε1 = ε2 = 10−4 following the values
reported in the literature.
In this section, we compare our method with four other meta-heuristic optimization algorithms. These methods have

some kind of cooperation betweenmembers similar to our method. They are optimization algorithms inspired by the forag-
ing behavior of ants: ACO extended to continuous domains (ACOR) [19], continuous ACO (CACO) [20], the API algorithm [21],
and Continuous Interacting Ant Colony (CIAC) [18].

R. Oftadeh et al. / Computers and Mathematics with Applications 60 (2010) 2087–2098 2095

Table 5
Test functions used for comparing HuS to other mentioned algorithms Section 3.2.

Function Formula

B2 Ex ∈ [−100, 100]d, n = d fB2(Ex) = x21 + 2x
2
2 −

3
10 cos(3πx1)−

2
5 cos(4πx2)+

7
10

Goldstein and Price (GP) Ex ∈ [−2, 2]d, d = 2 fGP(Ex) = (1+ (x1 + x2 + 1)2(19− 14x1 + 13x21 − 14x2 + 6x1x2 + 3x
2
2)) · (30+ (2x1 − 3x2)

2(18−
32x1 + 12x21 − 48x2 − 36x1x2 + 27x

2
2))

Martin and Gaddy (MG) Ex ∈ [−20, 20]d, d = 2 fMG(Ex) = (x1 − x2)2 +
(
x1+x2−10

3

)2
Rosenbrock (Rn) Ex ∈ [−5, 10]d, d = 2 fRn (Ex) =

∑d−1
i=1 100(x

2
i − xi+1)+ (xi − 1)

2

Griewangk (GRd) Ex ∈ [−5.12, 5.12]d, d = 10 fGRd (Ex) =
(
1
10 +

(∑d
i=1

x2i
4000 −

∏n
i=1 cos

(
xi√
i

)
+ 1

))−1
Sphere model (SM) Ex ∈ [−5.12, 5.12]d, d = 6 fSM(Ex) =

∑d
i=1 x

2
i

Table 6
HuS parameter values for unconstrained problems of Section 3.2.

Parameter Value
Rosenbrock
(R2)

Griewangk
(GR10)

Goldstein and
Price

Martin and
Gaddy

B2 Sphere

Maximum number of epochs (NE) 8 6 10 5 10 10
Iteration per epoch (IE) 10 25 15 20 10 10
Hunting group size (HGS) 12 10 2 2 2 2
Maximummovement toward leader
(MML)

0.4 0.4 0.3 0.3 0.3 0.3

Hunting group consideration rate
(HGCR)

0.2 0.3 0.3 0.3 0.3 0.3

Ramax, Ramin 0.25, 10−5 0.005, 10−6 0.25, 10−5 0.2, 5× 10−6 10−2 , 5× 10−4 10−2, 5× 10−5
Reorganization parameters−α, β 0.2,−0.5 0.2,−1 0.01,−0.05 0.05,−0.05 0.005,−0.05 0.01,−0.5

Table 7
Simulation results of the unconstrained problems of Section 3.2.

Algorithm Rosenbrock (R2) Griewangk (GR10) Goldstein and Price
% Success Mean NF % Success Mean NF % Success Mean NF

HuS 100 1423 84 1328 100 368
ACOR [19] 100 820 61 1390 100 384
CIAC [18] 100 11480 52 50000 56 23420
API [21] 100 9840 – – – –
CACO [20] 100 6800 100 50000 100 5370

Algorithm Martin and Gaddy B2 Sphere
% Success Mean NF % Success Mean NF % Success Mean NF

HuS 100 315 100 327 100 323
ACOR [19] 100 345 100 544 100 781
CIAC [18] 20 11730 100 11960 100 50000
API [21] – – – – 100 10150
CACO [20] 100 1725 – – 100 21860

Table 6 summarizes the HuS parameter values used in this problem. Table 7 presents the results obtained by HuS and
other compared algorithms. Reported is the percentage of success (% Success) and mean number of function evaluations
(Mean NF).
When compared with other algorithms, HuS is the winner in almost all cases in respect of percentage of success and

mean number of function evaluations. In fact, HuS has proved to be more effective. Only for the Rosenbrock function does
ACOR perform better in respect of mean number of function evaluations.

3.3. Constrained function minimization examples

In this section, three constrained optimization problems from the literature are presented to show the efficiency of the
HuS in handling this type of problem. Table 8 summarizes the HuS parameter values used in this section.

2096 R. Oftadeh et al. / Computers and Mathematics with Applications 60 (2010) 2087–2098

Table 8
HuS parameter values for constrained problems of Section 3.3.

Parameter Value
Constrained function 1 Constrained function 2 Constrained function 3

Number of epochs (NE) 5 8 12
Iteration per epoch (IE) 25 100 150
Hunting group size (HGS) 10 10 10
Maximummovement toward leader (MML) 0.3 0.3 0.2
Hunting group consideration rate (HGCR) 0.3 0.3 0.3
Ramax, Ramin 10−2, 10−4 10−2, 10−5 10−2, 10−4
Reorganization parameters−α, β 0.01,−1 0.01,−0.5 0.05,−0.05

3.3.1. Constrained function 1

fx = (x1 − 2)2 + (x2 − 1)2

subject to,
g1(x) = x1 − 2x2 + 1 = 0

g2(x) = −x21/4− x
2
2 + 1 ≥ 0

−10 ≤ x1 ≤ 10 − 10 ≤ x2 ≤ 10.

(9)

This problem was originally introduced by Braken and McCormick [22]. The optimum solution using the HuS algorithm
is obtained at x∗ = (0.82288, 0.91144)with an objective function value equal to f ∗(x) = 1.3935. Homaifar et al. [23] solved
the problem using GA. Fogel [24] also solved it using evolutionary programming. Lee and Geem [9] used the harmony search
algorithm to find the optimumpoint. After 3750 searches (5 epoch and 125movement toward the leader), theHuS algorithm
found the optimumvector. Table 9 shows the best solution vector from the HuS algorithm and also the results obtained from
the compared algorithms. The best vector found using the HuS meta-heuristic algorithm was x = (0.8228 0.9114), and the
corresponding objective function value was 1.3935. As can be observed, the HuS algorithm has reached a better solution
compared to the other three in terms of the objective function values and the constraint accuracy.

3.3.2. Constrained function 2

f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)
2
+ 10x65 + 7x

2
6 + x

4
7 − 4x6x7 − 10x6 − 8x7

subject to,

g1(x) = 127− 2x21 − 3x
4
2 − x3 − 4x

2
4 − 5x5 ≥ 0

g2(x) = 282− 7x1 − 3x2 − 10x23 − x4 + x5 ≥ 0

g3(x) = 196− 23x1 − x22 − 6x
2
6 + 8x7 ≥ 0

g4(x) = −4x21 − x
2
2 + 3x1x2 − 2x

2
3 − 5x6 + 11x7 ≥ 0

−10 ≤ xi ≤ 10 (i = 1− 7).

(10)

This constrained problemhas seven design variables, and four constraint functions. After 8 epochs (approximately 22000
searches) the optimal solutionwas obtained at x∗ = (2.330875, 1.951370, −0.474593, 4.365553, −0.037936, 1.594065)
with the objective function value equal to f (x∗) = 680.6300771. For this problem, no constraints were violated. Table 10
presents the results obtained by HuS and other compared algorithms. The solution obtained by the HuS algorithm is
comparable with the previous solution reported in the literature and it take a smaller number of function evaluations to
find the optimum point.

3.3.3. Constrained function 3

f (x) = x1 + x2 + x3
subject to,
g1(x) = 1− 0.0025(x4 + x6) ≥ 0
g2(x) = 1− 0.0025(x5 + x7 − x4) ≥ 0
g3(x) = 1− 0.01(x8 − x5) ≥ 0
g4(x) = x1x6 − 833.33252x4 − 100x1 + 83333.333 ≥ 0
g5(x) = x2x7 − 1250x5 − x2x4 + 1250x4 ≥ 0
g6(x) = x3x8 − x3x5 − 2500x5 − 11250000 ≥ 0
100 ≤ x1 ≤ 10000, 1000 ≤ x2 x3 ≤ 10000, 10 ≤ xi ≤ 1000 (i = 4− 8).

(11)

R. Oftadeh et al. / Computers and Mathematics with Applications 60 (2010) 2087–2098 2097

Table 9
Optimal results for constrained function 1 Eq. (9).

Methods Optimal design variables (x) Constraints Objective function value f (x)
x1 x2 g1 g2

Homaifar et al. [23] 0.8080 0.8854 3.7× 10−2 5.2× 10−2 1.4339
Fogel [25] 0.8350 0.9125 1.0× 10−2 −7.0× 10−2 1.3772
Lee and Geem [9] 0.8343 0.9121 5.0× 10−3 5.4× 10−3 1.3770
HuS (present study) 0.8228 0.9114 1.0× 10−6 4.9× 10−6 1.3935

Table 10
Optimal results for constrained function 2 Eq. (10).

Optimal design variables x, f (x∗) and number of
searches

Michalewicz [25] Deb [13] Lee and
Geem [9]

Fesanghary [26] HuS (present study)

x1 – – 2.32345617 2.33047 2.33087488
x2 – – 1.951242 1.95137 1.95136990
x3 – – −0.448467 −0.47772 −0.47459349
x4 – – 4.3619199 4.36574 4.36555341
x5 – – −0.630075 −0.62448 −0.62452549
x6 – – 1.03866 1.03794 1.03793634
x7 – – 1.605384 1.59414 1.59406525
f (x∗) 680.642 680.63446 680.6413574 680.6300577 680.6300771
Number of searches – 350070 160000 42000 22000

Table 11
Optimal results for constrained function 3 Eq. (11).

Optimal design variables x, f (x∗) and number of searches Michalewicz [25] Deb [13] Lee and Geem [9] HuS (present study)

x1 – – 500.0038 522.80683779
x2 – – 1359.3110 1380.64447162
x3 – – 5197.9595 5147.87099665
x4 – – 174.7263 177.10111645
x5 – – 292.0817 294.08520721
x6 – – 224.7054 222.89828045
x7 – – 282.6446 283.01588927
x8 – – 392.0817 394.08520715
f (x∗) 7377.976 7060.221 7057.274414 7051.322306
Number of searches N/A 320080 150000 52000

In this problem there are eight design variables, six nonlinear constraints and 14 boundary conditions. The optimal so-
lution is obtained at x∗ = (522.806838, 1380.644472, 5147.870997, 177.101116, 294.085207, 222.898280, 283.015889,
394.085207), with corresponding objective function value equal to f (x∗) = 7051.322306 after approximately 52000 func-
tion evaluations (12 epochs). Table 11 compares the best solution of constrained function 3 obtained using theHuS algorithm
with the previous best solution reported in the literature. It can be seen from Table 11 that the result obtained using the HuS
algorithm is better than feasible solutions previously reported with respect to the objective function value and the number
of function evaluations.

4. Conclusion

A new meta-heuristic algorithm has been developed. The Hunting Search (HuS) meta-heuristic optimization algorithm
was conceptualized using the strategy of group hunters in catching their prey. Compared to gradient-based mathematical
optimization algorithms, the HuS algorithm imposes fewer mathematical requirements and does not require initial value
settings of the decision variables. In addition, the HuS algorithm uses stochastic searches; therefore, derivative information
is unnecessary.
Selected benchmark optimization problems were solved to demonstrate the effectiveness and robustness of the new

algorithm compared to other optimization methods. The test cases showed that the HuS algorithm is a global search
algorithm that can be easily applied to various optimization problems. The results obtained using the HuS algorithm would
yield better solutions than those obtained using other algorithms. In addition, in constrained optimization problems, hunters
have power of orientation in the design space (movement toward leader); therefore, they can escape from forbidden areas
and find feasible areas quickly, as real hunters do.
Further work is still needed to solve more complex and real optimization problems such as engineering problems.

The algorithm can also be generalized for solving discrete and combinatorial optimization problems such as the traveling
salesman problem and timetabling.

2098 R. Oftadeh et al. / Computers and Mathematics with Applications 60 (2010) 2087–2098

References

[1] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence through Simulated Evolution, John Wiley, Chichester, UK, 1966.
[2] K. De Jong, Analysis of the behavior of a class of genetic adaptive systems, Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1975.
[3] J.R. Koza, Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems, Rep. No. STAN-CS-90-1314,
Stanford University, CA, 1990.

[4] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.
[5] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, Boston, MA, 1989.
[6] F. Glover, Heuristic for integer programming using surrogate constraints, Decis. Sci. 8 (1) (1977) 156–166.
[7] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing, Science 220 (4598) (1983) 671–680.
[8] Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation 76 (2) (2001) 60–68.
[9] K.S. Lee, Z.W. Geem, A newmeta-heuristic algorithm for continues engineering optimization: harmony search theory and practice, Comput. Methods
Appl. Mech. Engrg. 194 (2004) 3902–3933.

[10] Zong Woo Geem, Novel derivative of harmony search algorithm for discrete design variables, Appl. Math. Comput. 199 (2008) 223–230.
[11] M.Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput. 188 (2007)

1567–1579.
[12] Mahamed G.H. Omran, Mehrdad Mahdavi, Global-best harmony search, Appl. Math. Comput. 198 (2008) 643–656.
[13] K. Deb, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Engrg. 186 (2000) 311–338.
[14] R. Dawkins, The Selfish Gene, Oxford University Press, Oxford, 1976.
[15] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, IEEE

Service Center, Piscataway, NJ, 1995, pp. 1942–1948.
[16] S.-Y. Liong, Md. Atiquzzaman, Optimal design of water distribution network using shuffled complex evolution, J. Inst. Eng. Singap. 44 (1) (2004)

93–107.
[17] Emad Elbeltagia, Tarek Hegazyb, Donald Griersonb, Comparison among five evolutionary-based optimization algorithms, Adv. Eng. Inf. 19 (2005)

43–53.
[18] J. Dréo, P. Siarry, Continuous interacting ant colony algorithm based on dense hierarchy, Future Gener. Comput. Syst. 20 (5) (2004) 841–856.
[19] Krzysztof Socha, Marco Dorigo, Ant colony optimization for continuous domains, European J. Oper. Res. 185 (2008) 1155–1173.
[20] B. Bilchev, I.C. Parmee, The ant colony metaphor for searching continuous design spaces, in: T.C. Fogarty (Ed.), Proceedings of the AISB Workshop on

Evolutionary Computation, in: Lecture Notes in Comput. Sci., vol. 993, Springer, Berlin, 1995, pp. 25–39.
[21] N. Monmarché, G. Venturini, M. Slimane, On how pachycondyla apicalis ants suggest a new search algorithm, Future Gener. Comput. Syst. 16 (2000)

937–946.
[22] J. Bracken, G.P. McCormick, Selected Applications of Nonlinear Programming, John Wiley & Sons, New York, 1968.
[23] A. Homaifar, S.H.-V. Lai, X. Qi, Constrained optimization via genetic algorithms, Simulation 62 (4) (1994) 242–254.
[24] D.B. Fogel, A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems, Simulation 64 (6)

(1995) 399–406.
[25] Z. Michalewicz, Genetic algorithms, numerical optimization, and constraints, in: L. Esheman (Ed.), Proceedings of the Sixth International Conference

on Genetic Algorithms, Morgan Kauffman, San Mateo, 1995, pp. 151–158.
[26] M. Fesanghary, M. Mahdavi, M. Minary-Jolandan, Y. Alizadeh, Hybridizing harmony search algorithm with sequential quadratic programming for

engineering optimization problems, Comput. Methods Appl. Mech. Engrg. 197 (2008) 3080–3091.

	A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search
	Introduction
	Hunting search meta-heuristic algorithm
	Examples
	Unconstrained function minimization examples---set one
	Unconstrained function minimization examples---set two
	Constrained function minimization examples
	Constrained function 1
	Constrained function 2
	Constrained function 3

	Conclusion
	References

