
ELSEVIER Discrete Mathematics 176 (1997) 263-271 

DISCRETE 
MATHEMATICS 

Multiplicativity of acyclic digraphs 

Huishan Zhou 
Department of Mathematics and Computer Science, Georgia State University, 

Atlanta, GA 30303-3083, USA 

Received 13 April 1993; revised 21 February 1996 

Abstract 

A homomorphism of a digraph to another digraph is an edge preserving vertex mapping. 
A digraph W is said to be multiplicative if the set of digraphs which cannot be homomorphi- 
cally mapped to W is closed under categorical product. We discuss the necessary conditions for 
a digraph to be multiplicative. Our main result is that almost all acyclic digraphs which have 
a Hamiltonian path are nonmultiplicative. We conjecture that almost all digraphs are nonmulti- 
plicative. 

I.  Introduction 

The notion of multiplicativity was first introduced in [4], and analyzed in detail 
in [18]. This notion can be traced back to the conjecture of Hedetniemi [7] which 
states that the chromatic number of the categorical product (product for brief) of two 
n-chromatic graphs is n. An equivalent statement of the conjecture is that the class 

of graphs which are not homomorphic to Kn is closed under taking the product, i.e., 
Kn is multiplicative. See [18] for details. For undirected graphs, some results can be 
found in [1-5,7,12,15]. The principal results are that K3 is multiplicative, and that 
all odd cycles are multiplicative. (The multiplicativity of K1 and any bipartite graph is 
obvious). For directed graphs, some results can be found in [4,8,10,12,17-20,22,23]. 
The main results are as follows. All transitive tournaments are multiplicative [4,12]. 
An oriented path are multiplicative if and only if it is hom-equivalent to a directed path 
(the research on this was initiated in [4, 12] and was completed in [19]). A directed 
cycle C of length n is multiplicative if and only if n is a prime power [4,17,23]. 
An oriented cycle C is multiplicative if and only if C is a Cg-cycle (research on this 
was initiated in [20] and was completed in [8,9]). 

We only consider digraphs without loops and multiple edges in this paper. A homo- 
morphism of a digraph G to a digraph H is a mapping f :  V(G) ~ V(H) such that g9' E 
E(G) implies f(o)f(gP)EE(H). If such a homomorphism exists, we say G is homo- 
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morphic to H and write G--* H. Otherwise we write G 74 H. Two digraphs, G and H,  
are horn-equivalent if G---* H and H ~ G. The product G x H of two digraphs G 
and H has the vertex set V(G) × V(H) and has the (directed) edges (g,h)(g',h') if  

gg' E E(G) and hh' E E(H). A digraph D is multiplicative if  for any two digraphs 
G and H, G 74 D and H 74 D implies that G × H 74 D. 

An oriented walk W = [w0,wl . . . . .  Wn] in a digraph G is a sequence of vertices 
wo, wl . . . . .  wn, where the vertices may be repeated and there are edges wiwi+l or 
Wi+lW i for each i : 0 , 1  . . . . .  n -  1. The edge wiwi+l is called a forward edge. The 
edge Wi+lWi is called a backward edge. The order of  traversal starts at w0, continues 
with wl,w2 . . . . .  w~-l, and ends at w~. The order of traversal can also be specified by 
saying that w0 is the initial vertex of W, or wn is the terminal vertex of  W. The subwalk 

of  W, induced by the vertices wi, wi+ 1 . . . . .  wj, is denoted by [wi,...,wj], or simply by 
[wi, wj]. The algebraic length al(W) of W is the difference between the number of  
forward edges and the number of backward edges. The net length n l (W)=  [al(W)l. 
The level of a vertex wi in the walk W (with respect to the vertex w0) is al([wo, wi]). 
W is called a minimal oriented walk if the net length of any subwalk of W is not 
greater than the net length of W. An oriented path P in a digraph G is an oriented 
walk without repetition of  vertices. An oriented cycle is a closed walk without repeti- 
tion of vertices except the first and the last vertex. A directed cycle is an oriented cycle 
with all the edges directed in one direction. An oriented path P =  [P0,Pl . . . . .  p,]  is 
called a forward directed path if  all the edges are forward along the order of traversal, 
a backward directed path if  all the edges are backward along the order of traversal. 
Both forward and backward directed paths are called directed paths. The net length 
of a directed path (or cycle) is also called the length. A digraph G is balanced if 
for any two vertices x and y of G the net length of any oriented path from x to y 
only depends on x and y. Obviously any tree is a balanced graph. The net length of  
a balanced digraph G is defined by 

nl(G) = max{nl(Pxy)[x, yE  V(G), Pxy is the oriented path from x to y}. 

A digraph G is said to be acyclic if it contains no directed cycles. A graph G is 
said to have a Hamiltonian path if  there exists a directed path containing all the ver- 
tices of G. In Section 2 we consider the nonmultiplicativity of  acyclic digraphs whose 
maximum directed paths have some special property. Our main result is Theorem 9 
which states that almost all acyclic digraphs which have a Hamiltonian path are non- 
multiplicative. 

2. Main results 

Theorem 1. Let W be an acyclic digraph with a Hamiltonian path w0, Wl . . . . .  wn. 
I f  wo has outdegree 1 and wn has no in-edge from the first vertex on W of  outdegree 
greater than 1, then W is nonmultiplicative. 
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Proof.  Let ws be the first vertex on W with outdegree greater than 1, let wt the last 

vertex on W such that there is an edge from ws to wt. By our assumption, 0 < s < t < n, 

t -  s/> 2, there is an edge wswt, and there is neither an edge o f  the form wiwj with 

i < s and i + 1 < j nor an edge o f  the form wswj with t < j .  

Let G be a forward directed path o f  length n + 1. Let H --P1 • P2 • P3 where P1 

has vertices plo, Pll  . . . . .  Pit, pl(t+l) = a, and edges pliPl(i+l) for i--- 0, 1 . . . . .  t; P2 has 

vertices a = P2(s+l), p2s, p2(~-l) . . . . .  P21, P20 = b, and edges P2ip2(i+l) for i = 0, 1, . . .  ,s; 

and P3 has vertices P30 -- b, p31 . . . . .  P3n, and edges P3iP3(i+l) for i = 0, 1 . . . . .  n - 1. 
Obviously G 74 W. We can also prove that H 74 W. Assume, otherwise, that H ~ W. 

Let • : H ~ W. Since the homomorphic image of  a directed path P3 of  length n must 

also be a directed path o f  length n in W, it follows that ~(P3n)-----Wn and t / i (b)=wo 

which forces ~ ( p 2 s ) = w s  since w~ is the first vertex which can have edges to wj with 

j > s + 1. In order for/)1 to be homomorphically mapped to W, the subscript o f  ~ (a )  

should be greater than t. But ~(p2s) must be w~, it follows that t is the largest choice 

for the subscript of  ~P(a). A contradiction. Therefore, H 74 W. 

Now we claim that any proper subpath o f  H can be homomorphically mapped to 

W. It suffices to show that H - {plo} ---} W and H - {P3n} -"} W. In fact, the following 

mapping • is a homomorphism of  H - {plo} to W, 

~ ( P 3 i  ) = Wi 

4 (  P2i ) = Wi 

q~(a) = wt, 

for i = 0 ,  1,2 . . . . .  n, 

for i = 0 , 1  . . . . .  s, 

cp(Pli)=Wi_l  for i =  1,2 . . . . .  t; 

the following mapping ~ is a homomorphism of  H - {P3n} to W, 

for i = 0 , 1  . . . . .  t +  I, 

for i = 0 , 1 , 2  . . . .  , s -  1, 

for i = 0 , 1  . . . . .  n - 1. 

7t(pli ) = wi 

~(p2s)  = wt, 

~(P2i)  = wi+ 1 

~U(P3i ) ---- wi+ 1 

In the product G x H,  each component is an oriented path. Since nl(G) = n + 1, the 

maximum net length o f  subpaths o f  each component is at most n + 1. Each component 

o f  G x H can be homomorphically mapped to H by a natural projection. Since nl(H) = 

n + t - s t> n + 2, the homomorphic image of  each component of  G x H in H under 

this projection is a proper subpath o f  H,  which can be homomorphically mapped to W. 

Therefore, each component o f  G x H can be homomorphically mapped to W, i.e., 

G × H - +  W. [] 

Remark. ( I )  In our construction the condition n > t is critical. I f  n = t, then we cannot 

define '/I, since ~ v ( P l t  ) : Wt+l. The inequality s > 0 is also critical. Only if  there exists 
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an edge ws+lwt+l, our construction will work for the condition s = 0 .  Otherwise we 

cannot find homomorphism ~ : H  - {P3n} --~ W. 

(2) As a special case of  Theorem 1, the portion between ws and wt can be a transitive 

tournament, the portions between w0 and ws, and between wt and Wn are directed paths, 

there is no edge from {w0 . . . .  ,W~-l} to {w~ . . . . .  wn} except the edge Ws_lW~, and there 

is no edge from {w0 . . . . .  wt} to {wt+l . . . . .  wn} except the edge wtwt+l. 

(3) Dually we can have the following result. Let W be an acyclic digraph with 

a Hamiltonian path wo, wl . . . . .  Wn. I f  wn has indegree 1 and w0 has no out-edge to the 

last vertex on W of  indegree greater than 1, then W is nonmultiplicative. The proof of  

this dual theorem is very similar to the proof of  Theorem 1. Let wt be the last vertex 

on W with indegree greater than 1, let ws the first vertex on W such that there is an 

edge from ws to wt. By our assumption, 0 < s < t < n, t - s >i 2, there is an edge wswt, 

and there is neither an edge o f  the form wiwj with t < j and i ÷ 1 < j nor an edge 

o f  the form wiwt with i < s. Construct G and H as follows. G is the same as in the 

proof o f  Theorem 1. H - - P 1  "P2" P3 where P1 is a forward directed path o f  length n, 

P2 is a backward directed path o f  length n - t + 1, and P3 is a forward directed path 

o f  length n - s + 1. Then G74 W, H 7 4  W, and G × H ~  W. We should also have 

a similar note: s > 0 is critical, t < n is also critical with the exception that there exists 

an edge ws_lwt_ 1. If  there is such an edge, then our construction will work for t = n. 

In the remaining parts o f  the paper, we shall omit all the dual results. Based on 

Theorem 1 and its dual result we have the following corollary. 

Corollary 2. Let  W be an acyclic digraph with a Hamiltonian path wo, wl . . . . .  wn. 

I f  wo has outdegree 1 and wn has indegree 1, then W is nonmultiplicative (unless W is 

a directed path). 

An oriented walk P is called a ( a -  b -  c)-shaped walk if  P = P1 • P2" P3 where P1 is 

a forward directed walk of  length a, P2 is a backward directed walk o f  length b and P3 

is a forward directed walk o f  length c. I f  G has no directed cycle, then any directed 

walk in G must also be a directed path, but any oriented walk may not necessarily be 

an oriented path. 

Theorem 3. Let  W be an acyclic digraph. Le t  Wi=[wio,  wil . . . . .  Win], ( i =  1,2 . . . . .  k), 

be all directed paths o f  W with max imum length n. For O<~s and s +  1 <  t<<,n, let 

X = { w i s l i = l , 2  . . . . .  k}  and Y = { w i t l i = l , 2  . . . . .  k}. Le t  a,b and c be such that 

n>>.b > a, b > c, t - s -  l >>.a, and t - s -  l >~c. I f  there are forward  directed 

paths o f  length a and c f r o m  X to Y and there is no (a - b - c)-shaped walk f r o m  
X to Y, then W is nonmultiplicative. 

Proof.  Let G be a forward directed path of  length n + 1. Let P1 and P2 be two forward 
directed paths o f  length n, and P be an (a - b - c)-shaped path. Let H be a digraph 
obtained from P1, P and P2 by identifying the first vertex of  P with the ( s+  1 )th vertex 
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w -  w -  v v 

Pt 

Fig. 1. 

of  P1, and the last vertex of  P with the (t + 1)th vertex of  P2. See Fig. 1 for the 

illustration o f  an example o f  H,  where n = 5, s = 1, t -- 4, both PI and P2 are forward 

directed paths o f  length 5, and P is a (2 - 3 - 1)-shaped path. 

It is obvious that G 74 W, and H 74 W. 

The digraph H is balanced. Now it is easy to see that any subgraph of  H with 

length at most n + l  can be homomorphically mapped to W. Any component o f  G x H 

is isomorphic to a subgraph of  H (by the natural projection). The subpaths o f  any 

component has net length at most n + 1 since G has length n ÷ 1. Therefore, any 

component o f  G × H can be homomorphically mapped to W. So does G x H.  [] 

Corollary 4. Let  W be an acyclic digraph with a Hamiltonian path w0,wt, . . . ,wn. 

Assume that wown E E ( W )  but there is no (1 - 2  - 1)-shaped oriented walk f r o m  wo 

to Wn. This means that fo r  each three tuple i , j , k  (O<~i < j <  k<~n), at least one edge 

among wOwk, wiwj,wjwk,  and WiWn does not exist. Then W is nonmultiplicative. 

Corollary 5. Let  W be an acyclic digraph. Let  Wi= [Wio, Wil . . . . .  Win], ( i =  1,2 . . . .  ,k), 

be all directed paths o f  W with max imum length n. Le t  s and t (s + 1 < t )  be two 

indices such that there is a directed path o f  length a ( a < ~ t -  s -  1 ,2a~<n) f rom 

X =  {wis [ i - -  1,2 . . . . .  k}  to Y =  {wit I i -- 1,2 . . . . .  k},  but there is no ( a - 2 a - a ) - s h a p e d  

oriented walk f r o m  X to Y. Then W is nonmultiplicative. 

Corollary 6. Let  wswt be the only edge added to the Hamiltonian path W = 

wowl . . .  Wn. Then W is multiplicative i f  and only i f  either n = 2 or i f  n >2 ,  then 

either s + 2 = t = n or O = s = t - 2. 

Proof (Necessity). Prove by contradiction. Assume that n > 2. I f  s + 2 < t, then there 

is no (1 - 2 -  1)-shaped oriented walk from ws to wt. Therefore, W is nonmultiplica- 

tive by applying Corollary 5. I f  t = s + 2, and if neither s = 0 nor t - - n ,  then W is 

nonmultiplicative by applying Theorem 1. 

(Sufficiency) If  n = 2, then s = 0 and t : n and hence W is multiplicative by [4]. 
I f  n >2 ,  either s + 2  = t = n or 0 = s = t -  2, then it is multiplicative by [21]. In fact we 

have proved in general [21] that a connected acyclic local tournment is multiplicative 
if and only if it is a digraph obtained by concatenating a directed path with a transitive 
toumament. [] 
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Theorem 7. L e t  W be an acyclic digraph. L e t  W/= [w/o, Wil . . . . .  Win], (i = 1 . . . .  , k) ,  be 

all o f  the directed pa ths  o f  W with m a x i m u m  length n. A s s u m e  that there exis ts  

two indices s and  t (t - s > 2 ) ,  such that f o r  any  i ( i =  1,2 . . . . .  k ) ,  wi~wit f I E ( W ) .  

A s s u m e  fur ther  that f o r  some  il and  i2, w i t swi2( t -1 )GE(W)  and  f o r  some  i3 and  i4, 

wi3jwi4 t ~ E ( W )  with s < j  < t  - 1. Then W is nonmultiplicative. 

Proof. Let G = [go, g1 . . . . .  g,+l] be a forward directed path of length n + 1. Let H be 
a digraph obtained by attaching one edge hsht to a forward directed path [ho, hi . . . . .  hn], 

i.e., E ( H )  = {hihi+l I i = O, 1 . . . .  , n - 1 } tA {hsht}. Obviously, G 7 ~ W and H 74 W. If we 
can prove that G x H ~ W, then W is nonmultiplicative. 

In G x H,  there are two isolated vertices (go, hn) and (gn+l,ho), n -  t + s directed 
paths of length at most max{n - t ,s} ,  and t - s - 1 other components. Therefore, 

we only need to show that each component of those t -  s -  1 components can be 
homomorphically mapped to W. Each component is composed of several directed 
paths and a few edges joining these paths. Let Cm be the component containing the 
vertex (gm,ho) ( m = 0 , 1  . . . . .  t -  s -  2). The component Co has two main directed 
paths: 

Po~ : (go, ho), (g~, h~ ) . . . . .  (g~, hi) . . . . .  (g,,, h,) ,  

P02 ; ( g t - - s - -  1, ho ), . . . , ( g t - s -  l +i, hi) . . . . .  ( gn+ l , hn -t+s+ 2 ) 

with edges forward in this order, and an edge (g t - l ,hs ) (g t ,  ht). Let Bo be the subgraph 
of  Co induced by the vertices of  P01 and/02. 

For any vertex v = (gi, h i ) E  V(Co)  with j 1> i, define 

~(v)=(g~,hi). 

For any vertex v = (gt--s-- 1 + i ,  hj ) E V(Co ) (0 ~ i <~ n -- t + s + 2) with j ~< i, define 

O ( v ) = ( g t - s - l + i ,  hi). 

In other words, every vertex of Co above P01  is mapped to the corresponding vertex 
of Pol with the same first coordinate, every vertex of Co below P02 is mapped to the 
corresponding vertex of P02 with the same first coordinate. We draw the product G x H 
in the first quadrant of the xy-plane with integer grid point ( i , j )  to represent the vertex 
(gi, hj). 

Obviously, • is a homomorphic mapping of Co to Bo and we keep the vertices in 

Bo fixed. 
See Fig. 2 for the structure of Bo. 
Since there exists an edge wi3jwi4 t in W for some j , s  < j  < t - 1 ,  it follows that 

Bo ~ W by mapping (gt, ht)  to wi4t and (gt-l,hs) to wi3j (the images of the other 
vertices of Bo are also determined in a natural way). Therefore, Co---* W. 
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Fig. 2. 

Each component Cm (m = 1,2 . . . . .  t - s -  2), which contains (gm, ho), has two main 
directed paths: 

Pml : (gO, h t - s - l - m  ), (/71, ht-s-m ) . . . . .  (Ok, ht-s-m+k-1 ) . . . . .  (gn-t+s+l +m, h ,  ), 

Pm2 : (Om, ho ), (gin+i, hi ) . . . .  , (Ore+k, hk ) . . . . .  (9.+1, hn+l-m ), 

and an edge (gin+s, hs)(gm+s+h hi). 
Let Brn be the subgraph of Cm (m = 1 , 2 , . . . , t - s - 2 )  induced by the vertices of Pml 

and P,,2- We can define ~ :  V(Cm) ~ V(Bm) similarly as above, i.e., every vertex of Cm 
above Pmn is mapped to the corresponding vertex of Pro] with the same first coordinate, 

every vertex of Cm below Pro2 is mapped to the corresponding vertex of Pro2 with the 
same first coordinate. The mapping • is a homomorphism of Cm to Bm keeping the 

vertices of  Bm fixed. See Fig. 2 for the structure of Bm where m = 1. 
Note that m can only have one of the values 1,2, . . . ,  t - s - 2. Note also that there 

is an edge WiisWi2(t_l) in the digraph W. Therefore, Bm ~ W by mapping (gm+s, hs) 
to wi,s and (grn+s+l,ht) to Wi2(t-1) (the images of  the other vertices of  Bm are also 
determined in a natural way). [] 
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The following corollary deals with a digraph W having a Hamiltonian path. It can 
be directly derived from the above theorem. 

Corollary 8. Let W be an acyclic digraph with a Hamiltonian path Wo, Wl . . . .  ,wn. 

I f  there exist two vertices ws and wt (s+2 < t), such that wswt ~_ E(W),  wswt- 1 E E(W),  
and wjwt E E (W)  for some j (s < j <  t - 1), then W is nonmultiplicative. 

Let ~ be the set of digraphs of n vertices which have property ~1. Let .~  be the 
set of digraphs of n vertices which have both property ~1 and ~2. We say that almost 
all digraphs which have property ~1 have property ~2 if 

~ -~  = 1. 

From Corollary 8, we have the following interesting theorem. 

Theorem 9. Almost all acyclic digraphs which have a Hamiltonian path are 

nonmultiplicative. 

Proof. Let ~+~ be the set of acyclic digraphs of n + 1 vertices which have 
a Hamiltonian path. Let -~n+l be the subset of digraphs of ~+1 ,  which are non- 
multiplicative. Consider a directed path P of length n with V (P )=  {Po, P b . . . ,  Pn} 
and E ( P ) =  {pipi+lli=-O, 1 . . . . .  n - 1}. Any digraph in ~+1  can be obtained from P 
by choosing some pairs ( i , j )  E (n + 1) x (n + 1) with i + 1 < j  and there is an edge 

from Pi tO pj. We assume that the probability of having an edge PiPj is q. Then the 
probability of having no edge PiPj is 1 - q. By Corollary 8, if there exists a pair (s, t), 
(O<~s<t<~n,s+2<t),  such that there is no edge PsPt, there is an edge psPt-1 and 
edge PjPt for s < j < t  - 1, (we shall call such a directed graph an (s,t)-structure in 
brief afterwards), then we have a nonmultiplicative digraph. 

Consider only the subfamily of (s,t)-struc~res for s = 0 , 2 , 4  . . . . .  and t = s  + 3, and 

denote by As the event that the (s,s + 3)-structure is not present. Then events Ao,A2, 
A4,... are independent since disjoint sets of edges are responsible for them. The prob- 
ability that none of them is present is [1 - (1 - q)qq]n/2. This number tends to zero 
exponentially, i.e., the probability that there exists a (s, s+3)-structure somewhere tends 
to 1, as n~cxz.  If there exists an (s,s + 3)-structure, then the digraph is nonmulti- 
plicative. Therefore, almost all acyclic digraphs which have a Hamiltonian path are 

noumultiplicative. [] 

It is not hard to prove that almost all digraphs which have a Hamiltonian path 
have a directed cycle. Therefore, we must investigate the property of multiplicativity 
for digraphs with directed cycles. It turns out to be much more difficult. By the evi- 
dence that we provided in this paper we may conclude our paper with the following 
conjecture. 

Conjecture 10. Almost all digraphs are nonmultiplicative. 
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