DISCRETE

 MATHEMATICS
Multiplicativity of acyclic digraphs

Huishan Zhou
Department of Mathematics and Computer Science, Georgia State University, Atlanta, GA 30303-3083, USA

Received 13 April 1993; revised 21 February 1996

Abstract

A homomorphism of a digraph to another digraph is an edge preserving vertex mapping. A digraph W is said to be multiplicative if the set of digraphs which cannot be homomorphically mapped to W is closed under categorical product. We discuss the necessary conditions for a digraph to be multiplicative. Our main result is that almost all acyclic digraphs which have a Hamiltonian path are nonmultiplicative. We conjecture that almost all digraphs are nonmultiplicative.

1. Introduction

The notion of multiplicativity was first introduced in [4], and analyzed in detail in [18]. This notion can be traced back to the conjecture of Hedetniemi [7] which states that the chromatic number of the categorical product (product for brief) of two n-chromatic graphs is n. An equivalent statement of the conjecture is that the class of graphs which are not homomorphic to K_{n} is closed under taking the product, i.e., K_{n} is multiplicative. See [18] for details. For undirected graphs, some results can be found in $[1-5,7,12,15]$. The principal results are that K_{3} is multiplicative, and that all odd cycles are multiplicative. (The multiplicativity of K_{1} and any bipartite graph is obvious). For directed graphs, some results can be found in $[4,8,10,12,17-20,22,23]$. The main results are as follows. All transitive tournaments are multiplicative [4,12]. An oriented path are multiplicative if and only if it is hom-equivalent to a directed path (the research on this was initiated in [4,12] and was completed in [19]). A directed cycle C of length n is multiplicative if and only if n is a prime power [4,17,23]. An oriented cycle C is multiplicative if and only if C is a \mathscr{C}-cycle (research on this was initiated in [20] and was completed in [8,9]).

We only consider digraphs without loops and multiple edges in this paper. A homomorphism of a digraph G to a digraph H is a mapping $f: V(G) \rightarrow V(H)$ such that $g g^{\prime} \in$ $E(G)$ implies $f(g) f\left(g^{\prime}\right) \in E(H)$. If such a homomorphism exists, we say G is homo-
morphic to H and write $G \rightarrow H$. Otherwise we write $G \nrightarrow H$. Two digraphs, G and H, are hom-equivalent if $G \rightarrow H$ and $H \rightarrow G$. The product $G \times H$ of two digraphs G and H has the vertex set $V(G) \times V(H)$ and has the (directed) edges $(g, h)\left(g^{\prime}, h^{\prime}\right)$ if $g g^{\prime} \in E(G)$ and $h h^{\prime} \in E(H)$. A digraph D is multiplicative if for any two digraphs G and $H, G \nrightarrow D$ and $H \nrightarrow D$ implies that $G \times H \nrightarrow D$.

An oriented walk $W=\left[w_{0}, w_{1}, \ldots, w_{n}\right]$ in a digraph G is a sequence of vertices $w_{0}, w_{1}, \ldots, w_{n}$, where the vertices may be repeated and there are edges $w_{i} w_{i+1}$ or $w_{i+1} w_{i}$ for each $i=0,1, \ldots, n-1$. The edge $w_{i} w_{i+1}$ is called a forward edge. The edge $w_{i+1} w_{i}$ is called a backward edge. The order of traversal starts at w_{0}, continues with $w_{1}, w_{2}, \ldots, w_{n-1}$, and ends at w_{n}. The order of traversal can also be specified by saying that w_{0} is the initial vertex of W, or w_{n} is the terminal vertex of W. The subwalk of W, induced by the vertices $w_{i}, w_{i+1}, \ldots, w_{j}$, is denoted by $\left[w_{i}, \ldots, w_{j}\right]$, or simply by [w_{i}, w_{j}]. The algebraic length $\mathrm{al}(W)$ of W is the difference between the number of forward edges and the number of backward edges. The net length $\mathrm{nl}(W)=|\mathrm{al}(W)|$. The level of a vertex w_{i} in the walk W (with respect to the vertex w_{0}) is al($\left.\left[w_{0}, w_{i}\right]\right)$. W is called a minimal oriented walk if the net length of any subwalk of W is not greater than the net length of W. An oriented path P in a digraph G is an oriented walk without repetition of vertices. An oriented cycle is a closed walk without repetition of vertices except the first and the last vertex. A directed cycle is an oriented cycle with all the edges directed in one direction. An oriented path $P=\left[p_{0}, p_{1}, \ldots, p_{n}\right]$ is called a forward directed path if all the edges are forward along the order of traversal, a backward directed path if all the edges are backward along the order of traversal. Both forward and backward directed paths are called directed paths. The net length of a directed path (or cycle) is also called the length. A digraph G is balanced if for any two vertices x and y of G the net length of any oriented path from x to y only depends on x and y. Obviously any tree is a balanced graph. The net length of a balanced digraph G is defined by

$$
\mathrm{nl}(G)=\max \left\{\mathrm{nl}\left(P_{x y}\right) \mid x, y \in V(G), P_{x y} \text { is the oriented path from } x \text { to } y\right\} .
$$

A digraph G is said to be acyclic if it contains no directed cycles. A graph G is said to have a Hamiltonian path if there exists a directed path containing all the vertices of G. In Section 2 we consider the nonmultiplicativity of acyclic digraphs whose maximum directed paths have some special property. Our main result is Theorem 9 which states that almost all acyclic digraphs which have a Hamiltonian path are nonmultiplicative.

2. Main results

Theorem 1. Let W be an acyclic digraph with a Hamiltonian path $w_{0}, w_{1}, \ldots, w_{n}$. If w_{0} has outdegree 1 and w_{n} has no in-edge from the first vertex on W of outdegree greater than 1 , then W is nonmultiplicative.

Proof. Let w_{s} be the first vertex on W with outdegree greater than 1 , let w_{t} the last vertex on W such that there is an edge from w_{s} to w_{t}. By our assumption, $0<s<t<n$, $t-s \geqslant 2$, there is an edge $w_{s} w_{t}$, and there is neither an edge of the form $w_{i} w_{j}$ with $i<s$ and $i+1<j$ nor an edge of the form $w_{s} w_{j}$ with $t<j$.

Let G be a forward directed path of length $n+1$. Let $H=P_{1} \cdot P_{2} \cdot P_{3}$ where P_{1} has vertices $p_{10}, p_{11}, \ldots, p_{1 t}, p_{1(t+1)}=a$, and edges $p_{1 i} p_{1(i+1)}$ for $i=0,1, \ldots, t ; P_{2}$ has vertices $a=p_{2(s+1)}, p_{2 s}, p_{2(s-1)}, \ldots, p_{21}, p_{20}=b$, and edges $p_{2 i} p_{2(i+1)}$ for $i=0,1, \ldots, s$; and P_{3} has vertices $p_{30}=b, p_{31}, \ldots, p_{3 n}$, and edges $p_{3 i} p_{3(i+1)}$ for $i=0,1, \ldots, n-1$.

Obviously $G \nrightarrow W$. We can also prove that $H \nrightarrow W$. Assume, otherwise, that $H \rightarrow W$. Let $\Phi: H \rightarrow W$. Since the homomorphic image of a directed path P_{3} of length n must also be a directed path of length n in W, it follows that $\Phi\left(p_{3 n}\right)=w_{n}$ and $\Phi(b)=w_{0}$ which forces $\Phi\left(p_{2 s}\right)=w_{s}$ since w_{s} is the first vertex which can have edges to w_{j} with $j>s+1$. In order for P_{1} to be homomorphically mapped to W, the subscript of $\Phi(a)$ should be greater than t. But $\Phi\left(p_{2 s}\right)$ must be w_{s}, it follows that t is the largest choice for the subscript of $\Phi(a)$. A contradiction. Therefore, $H \nrightarrow W$.

Now we claim that any proper subpath of H can be homomorphically mapped to W. It suffices to show that $H-\left\{p_{10}\right\} \rightarrow W$ and $H-\left\{p_{3 n}\right\} \rightarrow W$. In fact, the following mapping Φ is a homomorphism of $H-\left\{p_{10}\right\}$ to W,

$$
\begin{aligned}
& \Phi\left(p_{3 i}\right)=w_{i} \quad \text { for } i=0,1,2, \ldots, n, \\
& \Phi\left(p_{2 i}\right)=w_{i} \quad \text { for } i=0,1, \ldots, s, \\
& \Phi(a)=w_{t}, \\
& \Phi\left(p_{1 i}\right)=w_{i-1} \quad \text { for } i=1,2, \ldots, t
\end{aligned}
$$

the following mapping Ψ is a homomorphism of $H-\left\{p_{3 n}\right\}$ to W,

$$
\begin{aligned}
& \Psi\left(p_{1 i}\right)=w_{i} \quad \text { for } i=0,1, \ldots, t+1, \\
& \Psi\left(p_{2 s}\right)=w_{t}, \\
& \Psi\left(p_{2 i}\right)=w_{i+1} \quad \text { for } i=0,1,2, \ldots, s-1, \\
& \Psi\left(p_{3 i}\right)=w_{i+1} \quad \text { for } i=0,1, \ldots, n-1 .
\end{aligned}
$$

In the product $G \times H$, each component is an oriented path. Since $\operatorname{nl}(G)=n+1$, the maximum net length of subpaths of each component is at most $n+1$. Each component of $G \times H$ can be homomorphically mapped to H by a natural projection. Since $\mathrm{nl}(H)=$ $n+t-s \geqslant n+2$, the homomorphic image of each component of $G \times H$ in H under this projection is a proper subpath of H, which can be homomorphically mapped to W. Therefore, each component of $G \times H$ can be homomorphically mapped to W, i.e., $G \times H \rightarrow W$.

Remark. (1) In our construction the condition $n>t$ is critical. If $n=t$, then we cannot define Ψ, since $\Psi\left(p_{1 t}\right)=w_{t+1}$. The inequality $s>0$ is also critical. Only if there exists
an edge $w_{s+1} w_{t+1}$, our construction will work for the condition $s=0$. Otherwise we cannot find homomorphism $\Psi: H-\left\{p_{3 n}\right\} \rightarrow W$.
(2) As a special case of Theorem 1, the portion between w_{s} and w_{t} can be a transitive tournament, the portions between w_{0} and w_{s}, and between w_{t} and w_{n} are directed paths, there is no edge from $\left\{w_{0}, \ldots, w_{s-1}\right\}$ to $\left\{w_{s}, \ldots, w_{n}\right\}$ except the edge $w_{s-1} w_{s}$, and there is no edge from $\left\{w_{0}, \ldots, w_{t}\right\}$ to $\left\{w_{t+1}, \ldots, w_{n}\right\}$ except the edge $w_{t} w_{t+1}$.
(3) Dually we can have the following result. Let W be an acyclic digraph with a Hamiltonian path $w_{0}, w_{1}, \ldots, w_{n}$. If w_{n} has indegree 1 and w_{0} has no out-edge to the last vertex on W of indegree greater than 1 , then W is nonmultiplicative. The proof of this dual theorem is very similar to the proof of Theorem 1 . Let w_{t} be the last vertex on W with indegree greater than 1 , let w_{s} the first vertex on W such that there is an edge from w_{s} to w_{t}. By our assumption, $0<s<t<n, t-s \geqslant 2$, there is an edge $w_{s} w_{t}$, and there is neither an edge of the form $w_{i} w_{j}$ with $t<j$ and $i+1<j$ nor an edge of the form $w_{i} w_{t}$ with $i<s$. Construct G and H as follows. G is the same as in the proof of Theorem 1. $H=P_{1} \cdot P_{2} \cdot P_{3}$ where P_{1} is a forward directed path of length n, P_{2} is a backward directed path of length $n-t+1$, and P_{3} is a forward directed path of length $n-s+1$. Then $G \nrightarrow W, H \nrightarrow W$, and $G \times H \rightarrow W$. We should also have a similar note: $s>0$ is critical. $t<n$ is also critical with the exception that there exists an edge $w_{s-1} w_{t-1}$. If there is such an edge, then our construction will work for $t=n$.

In the remaining parts of the paper, we shall omit all the dual results. Based on Theorem 1 and its dual result we have the following corollary.

Corollary 2. Let W be an acyclic digraph with a Hamiltonian path $w_{0}, w_{1}, \ldots, w_{n}$. If w_{0} has outdegree 1 and w_{n} has indegree 1 , then W is nonmultiplicative (unless W is a directed path).

An oriented walk P is called a $(a-b-c)$-shaped walk if $P=P_{1} \cdot P_{2} \cdot P_{3}$ where P_{1} is a forward directed walk of length a, P_{2} is a backward directed walk of length b and P_{3} is a forward directed walk of length c. If G has no directed cycle, then any directed walk in G must also be a directed path, but any oriented walk may not necessarily be an oriented path.

Theorem 3. Let W be an acyclic digraph. Let $W_{i}=\left[w_{i 0}, w_{i 1}, \ldots, w_{i n}\right],(i=1,2, \ldots, k)$, be all directed paths of W with maximum length n. For $0 \leqslant s$ and $s+1<t \leqslant n$, let $X=\left\{w_{i s} \mid i=1,2, \ldots, k\right\}$ and $Y=\left\{w_{i t} \mid i=1,2, \ldots, k\right\}$. Let a, b and c be such that $n \geqslant b>a, b>c, t-s-1 \geqslant a$, and $t-s-1 \geqslant c$. If there are forward directed paths of length a and c from X to Y and there is no $(a-b-c)$-shaped walk from X to Y, then W is nonmultiplicative.

Proof. Let G be a forward directed path of length $n+1$. Let P_{1} and P_{2} be two forward directed paths of length n, and P be an ($a-b-c$)-shaped path. Let H be a digraph obtained from P_{1}, P and P_{2} by identifying the first vertex of P with the $(s+1)$ th vertex

Fig. 1.
of P_{1}, and the last vertex of P with the $(t+1)$ th vertex of P_{2}. See Fig. 1 for the illustration of an example of H, where $n=5, s=1, t=4$, both P_{1} and P_{2} are forward directed paths of length 5 , and P is a $(2-3-1)$-shaped path.

It is obvious that $G \nrightarrow W$, and $H \nrightarrow W$.
The digraph H is balanced. Now it is easy to see that any subgraph of H with length at most $n+1$ can be homomorphically mapped to W. Any component of $G \times H$ is isomorphic to a subgraph of H (by the natural projection). The subpaths of any component has net length at most $n+1$ since G has length $n+1$. Therefore, any component of $G \times H$ can be homomorphically mapped to W. So does $G \times H$.

Corollary 4. Let W be an acyclic digraph with a Hamiltonian path $w_{0}, w_{1}, \ldots, w_{n}$. Assume that $w_{0} w_{n} \in E(W)$ but there is no $(1-2-1)$-shaped oriented walk from w_{0} to w_{n}. This means that for each three tuple $i, j, k(0 \leqslant i<j<k \leqslant n)$, at least one edge among $w_{0} w_{k}, w_{i} w_{j}, w_{j} w_{k}$, and $w_{i} w_{n}$ does not exist. Then W is nonmultiplicative.

Corollary 5. Let W be an acyclic digraph. Let $W_{i}=\left[w_{i 0}, w_{i 1}, \ldots, w_{i n}\right],(i=1,2, \ldots, k)$, be all directed paths of W with maximum length n. Let s and $t(s+1<t)$ be two indices such that there is a directed path of length a ($a \leqslant t-s-1,2 a \leqslant n$) from $X=\left\{w_{i s} \mid i=1,2, \ldots, k\right\}$ to $Y=\left\{w_{i t} \mid i=1,2, \ldots, k\right\}$, but there is no $(a-2 a-a)$-shaped oriented walk from X to Y. Then W is nonmultiplicative.

Corollary 6. Let $w_{s} w_{t}$ be the only edge added to the Hamiltonian path $W=$ $w_{0} w_{1} \ldots w_{n}$. Then W is multiplicative if and only if either $n=2$ or if $n>2$, then either $s+2=t=n$ or $0=s=t-2$.

Proof (Necessity). Prove by contradiction. Assume that $n>2$. If $s+2<t$, then there is no $(1-2-1)$-shaped oriented walk from w_{s} to w_{t}. Therefore, W is nonmultiplicative by applying Corollary 5. If $t=s+2$, and if neither $s=0$ nor $t=n$, then W is nonmultiplicative by applying Theorem 1 .
(Sufficiency) If $n=2$, then $s=0$ and $t=n$ and hence W is multiplicative by [4]. If $n>2$, either $s+2=t=n$ or $0=s=t-2$, then it is multiplicative by [21]. In fact we have proved in general [21] that a connected acyclic local tournment is multiplicative if and only if it is a digraph obtained by concatenating a directed path with a transitive tournament.

Theorem 7. Let W be an acyclic digraph. Let $W_{i}=\left[w_{i 0}, w_{i 1}, \ldots, w_{i n}\right],(i=1, \ldots, k)$, be all of the directed paths of W with maximum length n. Assume that there exists two indices s and $t(t-s>2)$, such that for any $i(i=1,2, \ldots, k), w_{i s} w_{i t} \notin E(W)$. Assume further that for some i_{1} and $i_{2}, w_{i_{1} s} w_{i_{2}(t-1)} \in E(W)$ and for some i_{3} and i_{4}, $w_{i_{3} j} w_{i_{4} t} \in E(W)$ with $s<j<t-1$. Then W is nonmultiplicative.

Proof. Let $G=\left[g_{0}, g_{1}, \ldots, g_{n+1}\right]$ be a forward directed path of length $n+1$. Let H be a digraph obtained by attaching one edge $h_{s} h_{t}$ to a forward directed path $\left[h_{0}, h_{1}, \ldots, h_{n}\right]$, i.e., $E(H)=\left\{h_{i} h_{i+1} \mid i=0,1, \ldots, n-1\right\} \cup\left\{h_{s} h_{t}\right\}$. Obviously, $G \nrightarrow W$ and $H \nrightarrow W$. If we can prove that $G \times H \rightarrow W$, then W is nonmultiplicative.

In $G \times H$, there are two isolated vertices $\left(g_{0}, h_{n}\right)$ and $\left(g_{n+1}, h_{0}\right), n-t+s$ directed paths of length at most $\max \{n-t, s\}$, and $t-s-1$ other components. Therefore, we only need to show that each component of those $t-s-1$ components can be homomorphically mapped to W. Each component is composed of several directed paths and a few edges joining these paths. Let C_{m} be the component containing the vertex $\left(g_{m}, h_{0}\right)(m=0,1, \ldots, t-s-2)$. The component C_{0} has two main directed paths:

$$
\begin{aligned}
& P_{01}:\left(g_{0}, h_{0}\right),\left(g_{1}, h_{1}\right), \ldots,\left(g_{i}, h_{i}\right), \ldots,\left(g_{n}, h_{n}\right), \\
& P_{02}:\left(g_{t-s-1}, h_{0}\right), \ldots,\left(g_{t-s-1+i}, h_{i}\right), \ldots,\left(g_{n+1}, h_{n-t+s+2}\right)
\end{aligned}
$$

with edges forward in this order, and an edge $\left(g_{t-1}, h_{s}\right)\left(g_{t}, h_{t}\right)$ Let B_{0} be the subgraph of C_{0} induced by the vertices of P_{01} and P_{02}.

For any vertex $v=\left(g_{i}, h_{j}\right) \in V\left(C_{0}\right)$ with $j \geqslant i$, define

$$
\Phi(v)=\left(g_{i}, h_{i}\right) .
$$

For any vertex $v=\left(g_{t-s-1+i}, h_{j}\right) \in V\left(C_{0}\right)(0 \leqslant i \leqslant n-t+s+2)$ with $j \leqslant i$, define

$$
\Phi(v)=\left(g_{t-s-1+i}, h_{i}\right) .
$$

In other words, every vertex of C_{0} above P_{01} is mapped to the corresponding vertex of P_{01} with the same first coordinate, every vertex of C_{0} below P_{02} is mapped to the corresponding vertex of P_{02} with the same first coordinate. We draw the product $G \times H$ in the first quadrant of the $x y$-plane with integer grid point (i, j) to represent the vertex (g_{i}, h_{j}).

Obviously, Φ is a homomorphic mapping of C_{0} to B_{0} and we keep the vertices in B_{0} fixed.

See Fig. 2 for the structure of B_{0}.
Since there exists an edge $w_{i_{3} j} w_{i_{4} t}$ in W for some $j, s<j<t-1$, it follows that $B_{0} \rightarrow W$ by mapping (g_{t}, h_{t}) to $w_{i 4 t}$ and (g_{t-1}, h_{s}) to $w_{i 3 j}$ (the images of the other vertices of B_{0} are also determined in a natural way). Therefore, $C_{0} \rightarrow W$.

Fig. 2.

Each component $C_{m}(m=1,2, \ldots, t-s-2)$, which contains (g_{m}, h_{0}), has two main directed paths:

$$
\begin{aligned}
& P_{m 1}:\left(g_{0}, h_{t-s-1-m}\right),\left(g_{1}, h_{t-s-m}\right), \ldots,\left(g_{k}, h_{t-s-m+k-1}\right), \ldots,\left(g_{n-t+s+1+m}, h_{n}\right), \\
& P_{m 2}:\left(g_{m}, h_{0}\right),\left(g_{m+1}, h_{1}\right), \ldots,\left(g_{m+k}, h_{k}\right), \ldots,\left(g_{n+1}, h_{n+1-m}\right),
\end{aligned}
$$

and an edge $\left(g_{m+s}, h_{s}\right)\left(g_{m+s+1}, h_{t}\right)$.
Let B_{m} be the subgraph of $C_{m}(m=1,2, \ldots, t-s-2)$ induced by the vertices of $P_{m 1}$ and $P_{m 2}$. We can define $\Phi: V\left(C_{m}\right) \rightarrow V\left(B_{m}\right)$ similarly as above, i.e., every vertex of C_{m} above $P_{m 1}$ is mapped to the corresponding vertex of $P_{m 1}$ with the same first coordinate, every vertex of C_{m} below $P_{m 2}$ is mapped to the corresponding vertex of $P_{m 2}$ with the same first coordinate. The mapping Φ is a homomorphism of C_{m} to B_{m} keeping the vertices of B_{m} fixed. See Fig. 2 for the structure of B_{m} where $m=1$.

Note that m can only have one of the values $1,2, \ldots, t-s-2$. Note also that there is an edge $w_{i_{1} s} w_{i_{2}(t-1)}$ in the digraph W. Therefore, $B_{m} \rightarrow W$ by mapping (g_{m+s}, h_{s}) to $w_{i, s}$ and $\left(g_{m+s+1}, h_{t}\right)$ to $w_{i_{2}(t-1)}$ (the images of the other vertices of B_{m} are also determined in a natural way).

The following corollary deals with a digraph W having a Hamiltonian path. It can be directly derived from the above theorem.

Corollary 8. Let W be an acyclic digraph with a Hamiltonian path $w_{0}, w_{1}, \ldots, w_{n}$. If there exist two vertices w_{s} and $w_{t}(s+2<t)$, such that $w_{s} w_{t} \notin E(W), w_{s} w_{t-1} \in E(W)$, and $w_{j} w_{t} \in E(W)$ for some $j(s<j<t-1)$, then W is nonmultiplicative.

Let \mathscr{F}_{n} be the set of digraphs of n vertices which have property \mathscr{P}_{1}. Let $\mathscr{2}_{n}$ be the set of digraphs of n vertices which have both property \mathscr{P}_{1} and \mathscr{P}_{2}. We say that almost all digraphs which have property \mathscr{P}_{1} have property \mathscr{P}_{2} if

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathscr{Q}_{n}\right|}{\left|\mathscr{F}_{n}\right|}=1 .
$$

From Corollary 8 , we have the following interesting theorem.
Theorem 9. Almost all acyclic digraphs which have a Hamiltonian path are nonmultiplicative.

Proof. Let $\mathscr{\mathscr { F }}_{n+1}$ be the set of acyclic digraphs of $n+1$ vertices which have a Hamiltonian path. Let $\mathscr{2}_{n+1}$ be the subset of digraphs of \mathscr{F}_{n+1}, which are nonmultiplicative. Consider a directed path P of length n with $V(P)=\left\{p_{0}, p_{1}, \ldots, p_{n}\right\}$ and $E(P)=\left\{p_{i} p_{i+1} \mid i=0,1, \ldots, n-1\right\}$. Any digraph in \mathscr{F}_{n+1} can be obtained from P by choosing some pairs $(i, j) \in(n+1) \times(n+1)$ with $i+1<j$ and there is an edge from p_{i} to p_{j}. We assume that the probability of having an edge $p_{i} p_{j}$ is q. Then the probability of having no edge $p_{i} p_{j}$ is $1-q$. By Corollary 8 , if there exists a pair (s, t), $(0 \leqslant s<t \leqslant n, s+2<t)$, such that there is no edge $p_{s} p_{t}$, there is an edge $p_{s} p_{t-1}$ and edge $p_{j} p_{t}$ for $s<j<t-1$, (we shall call such a directed graph an (s, t)-structure in brief afterwards), then we have a nonmultiplicative digraph.

Consider only the subfamily of (s, t)-structures for $s=0,2,4, \ldots$, and $t=s+3$, and denote by A_{s} the event that the $(s, s+3)$-structure is not present. Then events A_{0}, A_{2}, A_{4}, \ldots are independent since disjoint sets of edges are responsible for them. The probability that none of them is present is $[1-(1-q) q q]^{n / 2}$. This number tends to zero exponentially, i.e., the probability that there exists a $(s, s+3)$-structure somewhere tends to 1 , as $n \rightarrow \infty$. If there exists an ($s, s+3$)-structure, then the digraph is nonmultiplicative. Therefore, almost all acyclic digraphs which have a Hamiltonian path are nonmultiplicative.

It is not hard to prove that almost all digraphs which have a Hamiltonian path have a directed cycle. Therefore, we must investigate the property of multiplicativity for digraphs with directed cycles. It turns out to be much more difficult. By the evidence that we provided in this paper we may conclude our paper with the following conjecture.

Conjecture 10. Almost all digraphs are nonmultiplicative.

Acknowledgements

Thanks are due to Professor Andrzej Rucinski for the correction of the proof of Theorem 9. Thanks are also due to the anonymous referees for valuable comments.

References

[1] S. Burr, P. Erdős and L. Lovász, On graphs of Ramsey type, Ars Combin. 1 (1976) 167-190.
[2] D. Duffus, B. Sands and R. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory 9 (1985) 487-495.
[3] H. El-Zahar and N. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica 5 (1985) 121-126.
[4] R. Häggkvist, P. Hell, D.J. Miller and V. Neumann-Lara, On multiplicative graphs and the product conjecture, Combinatorica 8 (1988) 71-81.
[5] A. Hajnal, The chromatic number of the product of two \aleph_{1}-chromatic graphs can be countable, Combinatorica 5 (1985) 137-139.
[6] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
[7] S. Hedetniemi, Homomorphisms and graph automata, Technical Report 03105-44-T, University of Michigan, 1966.
[8] P. Hell and J. Nešetriil, On the complexity of H-colouring, J. Combin. Theory Ser. B 48 (1990) 92-110.
[9] P. Hell, H. Zhou and X. Zhu, Homomorphisms to oriented cycles, Combinatorica 13 (1993) 421-433.
[10] P. Hell, H. Zhou and X. Zhu, Multiplicativity of oriented cycles, J. Combin. Theory Ser. B 60(2) (1994) 239-253.
[11] D.J. Miller, The categorical product of graphs, Canad. J. Math. 20 (1968) 1511-1521.
[12] J. Nešetril and A. Pultr, On classes of relations and graphs determined by subobjects and factorobjects, Discrete Math. 22 (1978) 287-300.
[13] S. Poljak, manuscript, 1990.
[14] S. Poljak and V. Rödl, On the arc-chromatic number of a digraph, J. Combin. Theory Ser. B 31 (1981) 190-198.
[15] N. Sauer and X. Zhu, An approach to Hedetniemi's conjecture, J. Graph Theory 16 (1992) 423-436.
[16] E. Welzi, Symmetric graphs and interpretations, J. Combin. Theory Ser. B 37 (1984) 235-244.
[17] H. Zhou, Homomorphism properties of graph products, Ph.D. Thesis, Simon Fraser University, 1988.
[18] H. Zhou, Multiplicativity, part I - variations, multiplicative graphs and digraphs, J. Graph Theory 15 (1991) 469-488.
[19] H. Zhou, Multiplicativity, part II - non-multiplicative digraphs and characterization of oriented paths, J. Graph Theory 15 (1991) 489-509.
[20] H. Zhou, On the non-multiplicativity of oriented cycles, SIAM J. Discrete Math. 5(2) (1992) 207-218.
[21] H. Zhou and X. Zhu, Multiplicativity of acyclic local tournaments, Combinatorica, to appear.
[22] X. Zhu, Multiplicative structures, Ph.D. Thesis, The University of Calgary, 1990.
[23] X. Zhu, A simple proof of the multiplicativity of directed cycles of prime power length, Discrete Appl. Math. 36 (1992) 313-315.

