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Let v =¢(G) and e = ¢(G) denote the order and size of a simple graph G, respec-
tively. Let ¥={G,},,, be a family of simple graphs of magnitude r>1 and
constant 4> 0, ie., e(G,)=(A+0o(1)) v(G,)", i » ov. For any such family %, whose
members are bipartite and of girth at least 2k + 2, and every integer 1,2 <<k — 1,
we construct a family &, of graphs of the same magnitude r, of constant greater than
4, and all of whose members contain each of the cycles C,, Cs, ..., C,,, but none of
the cycles C,,,,, .., Cy. We also prove that for every family of 2k-cycle-free
extremal graphs (i.e., graphs having the greatest size among all 2k-cycle-free graphs
of the same order), all but finitely many such graphs must be either non-bipartite
or have girth at most 2k — 2. In particular, we show that the best known lower
bound on the size of 2k-cycle-free extremal graphs for k=3,5, namely
(2- %+ 4 5(1)) v'*+ V% can be improved to ((k— 1)k~ %= % 4L o(1))p+ D%,
© 1994 Academic Press, Inc.

1. INTRODUCTION

All graphs we consider are simple. Let & be a family of graphs, and let
G be a graph which contains no subgraph isomorphic to a graph from #.
Then G is called #-free. We consider the following problem from extremal
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graph theory: Find the greatest number of edges ex(v, #) of any graph
on v vertices which is Z-free. In this context F is called the family of
Jforbidden graphs.

Let & be a fixed but arbitrary integer, £ >2, and let C,, denote the
2k-cycle. By the even circuit theorem (see [2,4,6]) we have an upper
bound for ex(v, {Cy }):

ex(v, {Cy })=0(v' " V5),
A general lower bound for ex(v, {Cy }) is also available. In fact [11, 12],
ex(v, {Co }) Zex(v, {Cs, Cyy oy Copyy })=(v! 72T,
For 3 <k <8, this bound can be improved [10] to
ex(v, {Cy ) Zex(v, {Cs, Cqy ey Cop 1)) = Q0" 1 30y

and for certain values of & the bound can be improved still further
(see [14]). Most notably, ex(v, {C,}) ~$0*? [3,5,7, 8] and ex(v, {Cy}) =
Q') for k=3 and 5 [1,9,13], but similar results have not been
proved for any other values of k.

Let # be a family of graphs, and let G be an #-free graph of
order v=v(G) and size e=e(G) for which e=ex(v, #) We call such
graphs G extremal (or F-extremal when we wish to emphasize %)
Let # ={H;},., be an arbitrary family of #-free graphs such that
{v,=v(H,)};5, is an increasing sequence of integers. We denote by r()
the least number r such that e(H,;) = O(v}), should such an r exist, and we
call it the magnitude of #. For a family 5 of magnitude r, let A(#) denote
the greatest 2 such that e(H,;)=(4+o(1)) v}, i — o0, should such a / exist,
and call it the constant of #. Let 4 ={G,},. | be any family of #-extremal
graphs with magnitude (%) and constant A(%), and v,=v(G;), i = 1. Then
ex(v;, )= (A(%)+0o(1)) v}®). Note that for fixed #, all families of
extremal graphs have the same magnitude and constant, so we may denote
them by r, and A;. Let us call # magnitude extremal (or F-magnitude
extremal ) if r(#)=r . In practice, investigation of the constant is limited
to magnitude extremal graphs.

As an example, let # = {(,}. A family # of magnitude extremal graphs
consists of bipartite point-line incidence graphs of projective planes of
order ¢ (thick generalized triangles). For this family we have () =3 and
AMH#)=2"2 But since A, =1 (see any of [3, 5, 7, 8]) the graphs of J# are
not extremal.

For the remainder of this note we restrict ourselves to the case
F = {C,,}. We also write r, and 4,, should they exist, in place of the more
cumbersome r ., and 4,.,,. Note that in this case 1 <r, <1+ l/k.
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We now mention an interesting phenomenon concerning certain families
of {C,, }-magnitude extremal graphs. Namely, in every case in which 7, is
known (viz. r,=3, r;=4%, rs= %) there exists a family of {C,,}-magnitude
extremal graphs whose members are bipartite graphs of high girth g, (viz.
g,=6, g:=8, gs=12) [1,9, 13]. We think this is quite remarkable since
the only requirement of such graphs is that they do not contain 2k-cycles,
and it would seem (if not for the aforementioned examples which illustrate
otherwise) that the magnitude could always be increased by selectively
adding edges to form smaller cycles. In this note we show that while
{C,, }-magnitude extremality can be achieved with families of bipartite
graphs of high girth, ordinary extremality cannot! In particular, we give a
general and simple constructive procedure for producing from any family
of high girth bipartite {C,, }-magnitude extremal graphs a family of {Cy}-
magnitude extremal graphs with greater constant. More precisely, we prove
the following.

THEOREM. Let k=3 and let 4 be a family of 2k-cycle-free graphs with
magnitude r>1 and constant 2>0, the members of which are bipartite
graphs of girth at least 2k + 2. Then, for any t, 2<t<k— 1, there exists
a family 9 of 2k-cycle-free graphs with magnitude r and constant
72 1(2/(t+ 1)y A> 4, all of whose members are bipartite and contain each of
the cycles C4, Cg, ..., Cy,, and none of the cycles C,,, 4, ..., Cy. Conse-
quently, any family of {C. }-extremal graphs must consist (with finitely
many exceptions) either of graphs that are non-bipartite or have girth at
most 2k — 2.

2. THE CONSTRUCTION

Let G be an arbitrary bipartite graph, the partitions of which we denote
by P (points) and L (lines) for convenience. For any fixed integer > 2,
construct the bipartite graph G = G(z) as follows: Let P!, P, .., P' denote
¢t disjoint copies of the (labeled) points of P, ie, P'={p'|peP},
i=1,2,..,t. The vertex and edge sets are now defined by V(G)=
LUP'UP*U ... uP and E(G)={{p 1} {p, 1} €EG),i=12,..,1}

We will need the following two lemmas.

LEMMA 1. Let A>1 be the maximum degree among all points of
bipartite graph G. Then G contains each of C,, Cs, ..., C,,, as subgraphs,
where m=min{t, 4}.

Proof. Let pe P have degree 4 and let the neighbors of p be /,, /5, ...,
ly,e L. Then /, p'l, p?lL, p* - -1, p'l, is clearly a 2i-cycle, 2<i<m.
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Let {G,},., be a family of bipartite graphs with magnitude r>1 and
constant 4> 0. Without loss of generality we may assume |L| > | P| for each
G;. Then, for any ¢>2, family {G,},., has magnitude 7=r but the
constant 4 need not exist. In fact, the existence of 1 depends on the
behavior of the sequence {y,}, where y; is defined to be the ratio of the
number |P| of points in G, to the number v = (G;) of vertices. Note that
O<p,<i If u;— p, i — oo, then, as we shall show in Lemma 2, 7 exists; in
fact Z=¢[1+ (t+—1)u]~" A In any case, we can always find a subsequence
of {u,} which converges to some pu, 0<u<3, and hence a subfamily
{G.} of {G,},., for which 7 exists and is described as above. Therefore,
without loss of generality, we may assume that u,— u for the original
family {G,}.

Lemma 2. {G,} has magnitude ¥ = r and constant I=t[1+(1— Lyul"A
= 12/(t+ 1)) A Moreover, A> 4 if 2<t<(r—1)""

Proof. Clearly, graph G, has parameters f=v+(r—1)|P| and
é=te. Then &0 " =te[v+ (t—DP|] " =tev [l +(—Dyu,]"" -
t[14+(—1)u] "A:=4Since 14+ (1—1) u< L(r+1), then 1> 1(2/(t+ 1)) A
The last statement of the lemma follows from the fact that the function
f(t)=1(2/(t+ 1)) is increasing on the interval [1, (r—1)"'].

Proof of the Theorem. Let k>3 and let % be a family of graphs as in
the theorem statement. Thus G € ¢ is bipartite and has girth at least 2k + 2.
For fixed 1, 2<t<k—1, form the family = {G|4(G)>1}. (Note that
A>=2efv~2i0"" "> oo as v oo, so that 4= ¢ for v sufficiently large.) By
Lemma 1, G contains each of the cycles C,, Cs, ..., C,,. Suppose G contains
a 2s-cycle for some s, (£ + 1) <s<k, which we describe by its sequence of
consecutive vertices

a]blaZbZ"' asbx’ (1)
where a,e P'u -.- UP', b,e L, 1 €i<s. We consider the closed walk in G,

nlay) byn(az) by ... n(a,) by, (2)

which is the image of (1) under the map n: V(G)— V(G) defined by
n(p')y=p for all p'e P', 1 <i<t, and #(/)=1 for all /e L. Note that while
the b, are certainly distinct, this need not be the case for the n(a,).
Sequence (2) defines an eulerian multigraph in which every edge has
multiplicity at most two and each line b, has degree exactly two. Delete
from this multigraph all edges of multiplicity two (all two-cycles). Then, in
the resulting simple graph, each connected component is eulerian. But if
there exists such a component which is not an isolated vertex, then G
contains a cycle of length at most 2s, a contradiction. Thus, every
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component is an isolated vertex; i.e., every edge in the multigraph has
multiplicity two. This implies that all 5(a;) are equal, so (1) has the form

p'byp’by---pb,

for some p e P, an impossibility as G has only ¢ copies of P and r<s— 1.
We conclude that G is free of all cycles C,, . 5, ..., Ca. Finally, by Lemma 2,
% has the same magnitude as % with constant as in the statement of the
theorem. It remains only to show that 1> A. But since r<1+ 1/k, this
follows immediately from Lemma 2.

COROLLARY. 4;3>2/3*3 i,>4/5%°

Proof. Apply our construction to the known families of magnitude
extremal graphs [1,9, 13] which have magnitudes % and ¢ and constants

2743 and 2~ %°, respectively.

3. CONCLUDING REMARKS

It would seem that the constructive procedure described in Section 2
could be applied to graphs with a forbidden family different from {C,,}.
While this is probably the case, the situation might be a bit subtle. For
example, consider # = {K, 3}, where K, is the complete bipartite graph
on 3+ 3 vertices. It is easy to see that if G is a {K,;}-free bipartite
graph which just happens to have no K, ; subgraphs, then G(2) will be
{K, ;}-free and with larger constant. This result shows that any family of
{K, ,}-extremal graphs must consist either of non-bipartite graphs or
graphs which contain a copy of K, ;. The point is that, as can easily be
shown from a result of Brown [3], every family of {K, ;}-magnitude
extremal graphs must consist of graphs which contain a K, , subgraph, so
that, in this case, there are no graphs to which our construction applies.

Note added in proof. Recently the authors proved that ex(v, {C;, C4, oy Coyy })=
Q' T2k =3+2) where =0 if k is odd and e =1 if £ is even. To our knowledge this is the
best known asymptotic lower bound for all k, k& =2, k #5. (The result will appear elsewhere.)
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