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We introduce a transformation theory to generate chains of linear PDEs and 
related solution sequences. Our procedure depends on representing a given linear 
PDE in terms of a special equivalent system of two coupled linear PDEs where the 
auxiliary dependent variable satisfies the next PDE of a sequence. The solution of 
a PDE with variable coefhcient depending on n + 1 constants {a,, G(~, . . . . a,+ ,} is 
obtained from any solution of a PDE of the same type with variable coefficient 
depending on n constants {ctr, al, . . . . a,,} by a simple Blcklund transformation. 
Each sequence contains two inclusive chains since the PDE with n constants is a 
special case of the PDE with n +2 constants. We generate solutions of wave 
equations with wave speeds C(x; a,, az, ._., a,), Fokker-Planck equations with drifts 
F(x; a,, az, . . . . a,), and diffusion equations with diffusivities K(x; a, a2, . . . . a,,), where 
{a,, a2, . . . . a,) are arbitrary constants, n = 1, 2, .__. New explicit general solutions 
are obtained for a class of wave equations with wave speeds depending on three 
parameters. q K: 1989 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we introduce and illustrate a transformation theory 
generating chains of linear partial differential equations (PDEs) of the form 

(1.1) 

and their solutions (p > 1 is a fixed integer). The transformation linking 
one member of a chain and its solutions to the next member of that chain 
and its corresponding solutions is of Blcklund type [ 11. Closely related to 
our work are the generalized Blcklund transformations introduced by 
Loewner [2,3]. 

Our basic idea depends on writing a given PDE (1.1) in terms of an 
“equivalent” system which consists of a pair of linear PDEs. It is chosen so 
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that an introduced auxiliary variable also satisfies an uncoupled auxiliary 
(linear) PDE of the form (1.1). By recycling this auxiliary PDE in the role 
of the given PDE we construct a third related PDE of the form (1.1). 
Iteration of this procedure produces an infinite sequence of PDEs of the 
form (1.1). 

Many physically interesting equations arise in the form ( 1.1). Examples 
include: 

(I ) Inhomogeneous waue equation 

C2(X)$$. 
(II) Fokker-Planck equation 

$+&(F(x)u)=$ 

(III) Diffusion equation 

(1.2) 

(1.3) 

(1.4) 

Our transformation theory is conveniently developed for PDEs in the 
canonical form 

aw 
-$+R(X)u=g, (1.5) 

By a simple point transformation of the form 

X=X(x), (1.6a) 

T= t, (1.6b) 

Wx> T) =&)4x, t), (1.6~) 

any equation (1.1) can be transformed to (1.5). A standard calculation 
yields explicit expressions for X(x), g(x), and R(X). 

We outline our transformation theory for equations in the “canonical” 
form (1.5). Consequences for the physically interesting cases (I)-(III) are 
obtained by inverting the appropriate point transformations (1.6). 

We construct two types of sequences for PDE (1.1). The first (and 
simplest) depends on writing the canonical PDE (1.5) as a system of two 
linear PDEs. 
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In (1.5) let R,(X) = R(X) and let dl(X) = 4(X; a) be the general solution 
of the Riccati equation 

where GI is an arbitrary constant. The system consists of two coupled linear 
PDEs for U,(X, T) = U(X, T) and an auxiliary variable U,(X, T): 

~=~-f$(X;a)U,, 
au, au2 
,,=,,+Q(x;cou2. 

(18a) 

(1.8b) 

The transformation (1.8) linking U, and U2 is of Backlund type [ 11. 
Application of the operator a/ax+ 4,(X) to Eq. (1.8a), and elimination 

of U, dependence by using (1.8b), yields 

aw, dX’+R,(X)U, =$. 

Similarly applying operator a/ax- dl(X) to Eq. (1.8b) yields 

a2u2 m + RD-) u, = 3, 

where 

dd(x; ~1) 
R,(X)=R(X;cc)= dx ~- ccc M)l’. 

(1.10) 

(1.11) 

Thus the related PDE (1.10) for U,(X, T) has a variable coefficient that 
depends on an arbitrary constant ~1. We use the reciprocal relationship of 
U, and U, in Eqs. (1.9) and (1.10) to recycle PDE (1.10) in the role of 
(1.9). Consequently R?(X) plays the role of R,(X) and U,( X, T) plays the 
role of U,(X, T) in Eq. (1.9). A new system results with corresponding 
auxiliary variable U,(X, T) and variable coefficient R3(X). This recycling 
can be extended indefinitely to produce an infinite sequence of variable 
coefficient PDEs {R,(X), U,(X, T)}, of form (1.5). Most importantly 
R,(X) depends on n - 1 arbitrary constants: 

R,(X)= R(X; ccl, t12,...r q-1). (1.12) 
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If d,(X) is known then our construction of {R,(X), U,,(X, T)} is explicit. 
Moreover we show that if M,, + , = 0, 

R,+ AX) = R,,(X). (1.13) 

Thus two inclusive chains of variable coefficients arise, corresponding to 
even and odd n, respectively. Inversion of the point transformation (1.6) 
allows the arbitrary constants to be amenable as fitting parameters for 
given wave speeds C(x) for PDE (1.2), drifts F(x) for PDE (1.3), and 
diffusivities K(x) for (1.4). In particular from a PDE (1.2) with a constant 
wave speed one can obtain general solutions for inclusive chains of 
inhomogeneous wave equations. 

In like manner a second sequence {R,,(X), 8,,(X, T)} can be constructed. 
It arises by simply interchanging U, and U, in Eqs. (1.8). For this sequence 
I?,(X) = R,(X) but o’,(X, T) is not simply related to U,(X, T). 

Our results directly lead to inclusive chains for second-order linear 
ordinary differential equations which are reduced forms of PDEs 
(1.2)-( 1.4). 

The rest of the paper is outlined as follows: 
In Section 2 we present our procedure for the prototype PDE (1.5). In 

Sections 3 to 5 we apply our procedure to the inhomogeneous wave 
equation, the Fokker-Planck equation, and the diffusion equation. Related 
works are discussed in the final section. 

2. SEQUENCES FOR THE CANONICAL PDE (1.5) 

We construct the two sequences for the canonical PDE (1.5). 
For the first sequence we start with a variable coefficient R,(X). Let 

4,(X)=&X; c(i) be the general solution of 

4, 
z+ Ch(X)12 = -R,(X). (2.1) 

If U,(X, T) = U(X, T) satisfies PDE (1.5) with variable coefficient R,(X), 
then Eq. (1.8) with 4(X, a,)=d,(X) given by Eq. (2.1) defines a Blcklund 
transformation to determine U,(X, T), where U,(X, T) satisfies 

a2uz 
g + R,(X) U2 = !$$, (2.2a) 

R,(X) = g - Cd,(X)l’. (2.2b) 
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The sequence {R,(X), U,(X, T)} proceeds as follows: 

WI=-&- CL ,W)l”~ n = 2, 3, . ..) (2.3) 

where 

4,(X) = 4(X; aI 2 @2, “‘9 a,,) 

is the general solution of the Riccati equation 

(2.4) 

4% 
z + M7v312 = -R,(X), n = 1, 2, . . . . (2.5) 

Correspondingly U,,(X, T) is determined by the Backlund transformation 
pair: 

av-‘u,(X, T) au,-,(X, T) 
a7-1 = ax -Ll(~)~,-l(K n (2.6a) 

au,- ,(x, T) = au,(x, z-1 
dT ax +4,-,(X)U,(X, 0, 

n = 2, 3, . . . . U,(X, T) satisfies 

aw 
$+R.(X)U,=% P’ (2.7) 

(2.6b) 

n = 1, 2, 3, . . . . 
The second sequence {w,(X), 0,(X, T)} is found by exploiting the 

reciprocal nature of (1.9) and (1.10). We label the given variable coefficient 
by i?,(X). Then 

d& -1 
R?(X)= -CLww--$ n = 2, 3, . . . . (2.8) 

where 

$W4 = &Xi 4, a2, . . . . a,) 

is the general solution of the Riccati equation 

(2.9) 

difn -$y - ccK’,(m12 = Rbv, n = 1, 2, . . . . 

Correspondingly 

8,(X, T)= U(X, T) 

(2.10) 

(2.11) 
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and 6,,(X, T) is the solution of the Backlund equation pair 

n = 2, 3, . . . . 0,(X, T) satisfies 

(2.13) 

n= 1, 2, 3, . . . . 
Before proceeding further note that one can solve explicitly all Riccati 

equations (2.5), (2.10) for n = 2, 3, . . . . Details follow. 
For the first sequence {R,(X), U,(X, T)}, Eqs. (2.5) and (2.3) determine 

(#,(X)) and hence {R,(X)}. d,(X) is the general solution of the Riccati 
equation 

44 z+ ccw-)1’= -R,(n 

and Z= 4,(X) is the general solution of 

(2.14) 

(2.15) 

n = 2, 3, . . . . Note that 

z= -be I(X) (2.16) 

is a particular solution of the Riccati equation (2.15). Hence its general 
solution i,(X) can be determined explicitly: 

#n(X) = - 4, ~ I(X) + x,(X), (2.17) 

where 

(2.18) 

(2.19) 
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and CI, is an arbitrary constant, n = 2, 3, . . . . Note that any scaling of 
T,-,(X) corresponds to a scaling of a, and that at any stage the lower 
limits of integration in (2.18) can be fixed at numbers of convenience by a 
translation of l/a,. 

Now the sequence (R,(X)} can be determined from (2.5) and 
(2.17)-(2.19): 

R2(‘u= -2C4,(W12 - R,(W, (2.20a) 

R+ I(X) = L I(X) - kMCx,(~) - 2L ,Wl, (2.20b) 

n = 2, 3, . . . . 
From (2.17) and (2.19) and the observation that (2.18) can be rewritten 

as 

x”(x)=-&2 j”r(CM+~, 
0 n 

(2.21) 

one can show that the two quadratures in (2.18), (2.19) can be reduced to 
a single quadrature from the derived relation 

r,(x) = [ 1 &) * ~n-,Gfh n = 2, 3, .,.) 
” 

(2.22) 

using our freedom to scale r,- r(X). In particular the sequence 
(~&fh LW) > is 

(2.23a) 

(2.23b) 

(2.23~) 

etc. The sequence {4,(X), R,(X)} 
(2.20b), respectively. 

Two inclusive chains for {R,(X) > naturally arise from the above proce- 

(2.23d) 

follows immediately from (2.17) and 
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dure for odd and even n, respectively. In particular it is straightforward to 
establish the following inclusive chains [ R,,, , ), {R,,) : 

R 2,ri I = R, - 2 i X?kCXZh - 242, 113 (2.24a) 
h=l 

R 2n+2=R2-2 1 ~2k+,Ix2k+,-242,cl, 
k=l 

(2.24b) 

n= 1,2, . These chains are inclusive in the sense that if c(, + , = 0, then 
xn + , (X) = 0 and hence 

R,, + 2(X) = R,(X). 

The solution sequences { U,,,(X, T) }, ( U2,, ~ ,(X, T) } for the corre- 
sponding inclusive chains of equations of form ( 1.5) can be derived from 
repeated use of Eq. (2.6), and then use of Eqs. (2.7) (2.3) and (2.17). 

This completes the discussion of the first sequence {R,(X), U,(X, 7’)) 
arising from Eqs. (2.2)-(2.6). 

Finally, in this section we consider the second sequence 
(&(A’), 8,(X, T)} defined by Eqs. (2.8)-(2.12). Here $i(X) is the general 
solution of the Riccati equation 

and 2 = J,(X) is the general solution of 

d6 -1 g-22= -[~,~,(x)]‘-*, (2.26) 

(2.25) 

n = 2, 3, . . . . To compare the first and second sequences suppose that 
i?,(X) = R,(X). Comparison of (2.14) and (2.25) shows that 

$6 = -4,. (2.27) 

By induction 

Jn= -d,, n=2,3, . . . . (2.28) 

and from (2.3) and (2.8) it immediately follows that 

R,(X) = R,(X). (2.29) 
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Next we relate the solutions (a,(X, T)} and { V,(X, T)}, where 
8,(X, T)- U,(X, T). From (2.6), (2.12), and (2.27) we get 

When p = 1 

(2.30a) 

(2.30b) 

(2.30~) 

(2.31) 

and inductively one can show that 

u Ea-Ik 
n ar-1) n = 1, 2, . . . . (2.32) 

Thus U, can be determined trivially from 8, but the converse is not true. 
An example is given in Bluman and Reid [4]. 

When ~=2 one can show that 

an-lU,(K T)= a-‘&(x, T) 
az-1 - ayv-1 ’ n = 1, 2, . ..) 

and no simple relationhip exists between U, and 8,. 
If solutions of Eq. (1.5) are sought in the separated form 

(2.33) 

U(X, T) = Y(X)Pr, (2.34) 

then Y(X) satisfies the ODE 

d’Y(X) 
7+ ~~+wYI w-)=0, (2.35) 

where L = -(-w)“. Unlike the PDE case both solution sequences are 
identical and the transformations (2.6) and (2.12) are equivalent to the 
single transformation 

Y,(X; 2) = 
dyne,(X 1) 

dx -4n-,W)Yn-*(~;~), (2.36) 

n = 2, 3, . . . . 

409/144/2-I8 
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3. SEQUENCES FOR THE INHOMOGENEOUS WAVE EQUATION 

To apply our procedure to the wave equation (1.2) we use a point trans- 
formation of form (1.6) to transform it to the canonical form (1.5) with 
p = 2. Sequences (R,,(X), U,,(X, 7)) established for the canonical form 
yield corresponding sequences {C,,(x), u,,(x, t)} for (1.2) by inversion of the 
point transformation (1.6). We only consider the first sequence. 

The point transformation (1.6) which brings the wave equation to the 
canonical form (1.5) is 

Define 

Then U(X, T) satisfies 

(3.la) 

T= t, (3.lb) 

U(X, T) = [C(x)] -“2u(x, t). (3.lc) 

QX) = C(x). (3.2) 

(3.3) 

where 

R(X) = --$- [z(x)]*, (3.4) 

- 1 L&(X) 
z(X)=-%--- 

2C(X) dX . (3.5) 

Suppose that the first wave equation of a sequence has wave speed 
C,(x) = Cl(X) and that zr(X) is defined by 

-1 f&,(X) 
zl(x)=w- 

2C,(X) dX . (3.6) 

Then the first Riccati equation of the sequence (2.5) for the wave equation 
is 

4, z+ Cd1(W12= -R,(X)=~+ [Tl(X)]‘, (3.7) 
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which has the particular solution 4 ,(X; 0) - r,(X). Consequently we can 
solve the first Riccati equation of such a sequence, unlike the case for the 
canonical equation ( 1.5). 

The transformation from u,(x, t) to u,+ i(x, t) is defined implicitly by 
Eq. (2.6) with p = 2: 

au,+,w, T) au,(x T) 
aT = ax 

+ 4,(X) u,(X T), 

aux T) = au,, 1(X T) 
aT ax 

+ A(X) u, + ,(X T), 

(3.8a) 

(3.8b) 

n = 1,2, . . . . In order to simplify the integration of Eqs. (3.8) note that 

aux, T) 0,(x, T)= aT (3.9) 

satisfies the same second-order PDE as U,(X, T). Then 

U,, ,(X, T) = ““:; T)- 4,(X) B,(X, T) (3.10) 

leads to a solution 

u,+~(-T t)= CCn+,(4l”*Un+O’~ T) (3.11) 

for the wave equation with wave speed C,, ,(x), where X is given by 

x=J:&)- 
The following formulae are helpful: 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

dn(JJ = - 4” - Iv-) + x,(Jf)v (3.16) 

where x,(X) is given by (2.18) and (2.19), n=2, 3, . . . . If c1,=0, then (3.15) 
also holds for n = 1. 
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By using Eq. (3.15) we obtain 

as the transformation linking X and x for the wave equation with wave 
speed C,(x). 

If a,, + I = 0, 

e,+,(x,=J- C,(X) (3.18) 

Hence if a,+,=cr,+,=O, 

c, + 2(X) = C,(X). (3.19) 

Thus two inclusive chains result: (C,,(x), uzn(x, t)}, {C,,- i(x), 
U2n- ,(x9 0). 

3.1. Examples of Sequences {C,(x), u,(x, t)} for the Wave Equation 

The most important sequence originates from the constant speed wave 
equation where C,(x) = 1. From its known general solution u,(x, t) we can 
explicitly obtain the corresponding general solution u,(x, t) for the wave 
equation (1.2) with wave speed C,(x). For n 3 2, C,(x) can depend on n 
arbitrary constants. 

The wave equation with wave speed C,(x) = 1 has general solution 

u,(x, f) =f1C- t) +g,(x + t), (3.20) 

where f ,  and g, are arbitrary functions of their respective arguments. It 
follows that 

U,(K n =f1(X- 0 +&!,(A-+ T). (3.21) 

We consider the case tl, = 0. Equation (3.15) implies that 

d,(X)= [l +cr,A--2, (3.22) 

and inversion of Eq. (3.17) yields 

X=X 
1 - c12x’ 

(3.23) 

From Eq. (3.10) 

U,(X 7,) =f*O- T) + g,(X+ n (3.24) 
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where f2 and g, are arbitrary functions of their respective arguments. 
Equation (3.11) yields 

C,(x) = (1 - a,x)2, (3.25) 

u,(x,f)=(l--rlx)[r2(~-I)+g2(~+l)]. (3.26) 

This general solution has appeared previously in [S-7]. 
For n = 2, Eq. (3.15) yields 

CJX)=(1+U2X)2 l+${(l+zJ)3-I} 
2 1 

-2 

) (3.27) 

and following our scheme we get 

C,(x) = (1 - U3x)4’3( 1 - /&x)2’3, (3.28) 

u,(x, t) = (1 - U3X)2’3( 1 - P3x)“3 
1 

f;(x- t) +g\(X+ t) 

(3.29) 

where 

X=;([s]‘:‘-l), (3.30a) 

fi3 = Ci3 - h,. (3.30b) 

In Eq. (3.29), fX and g, are arbitrary functions of their arguments. The fact 
that a general solution is found for wave speed (3.28) appears to be new. 
The two subcases CI~ = 0 and a3 = 3cr, appear in [7]. 

At the next step 

(3.31 

where 

. (3.32 

Here X, and hence C,(x), is defined implicitly in terms of x by inversion 
of the relation 

x=joX&[ 1 +a4 j”$J 
~1 

(3.33) 
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The general solution of the wave equation with wave speed C,(.u) is 
obtained by using Eq. (3.10) with n = 3 and 

q&(X) =-x2 3r,x,(l + “rX)’ 
1 +XLX+3zr-x,+ri(l ++Y)3’ 

(3.34) 

This process can be continued indefinitely to produce two inclusive chains: 
{C2,2M 4,k-G f,>T ICZn-l(X), U2,1p1(X, t,}. 

In general the relationship between x and X for members of these chains 
will be implicit, and the integrals involved will not be elementary. An 
exceptional case occurs, however, if we put 

Then 

ak = (2k- 3)r,, k=2,3 ,..., n-l, nB3. (3.35) 

c (x)=(l --a X)2---mp4v(2~-3) (2n - 4)/(2n - 3) n n (l-B,x) 3 (3.36) 
j=n-2 

&A& t) = cG(xr’2 
i ( 

n 
j=l 

x&+-J} u-(x-f) +g(X+ t)), (3.37) 
2 

where 

x=;([*]1’c2”-3’- I), (3.38a) 

/lm=an--(2n-3)x,, n = 3, 4, ._. . (3.38b) 

The case a2 = 0 is obtained by taking appropriate limits in Eqs. (3.36)-(3.38). 
When either CI, = 0 or /I, = 0 in (3.36) we obtain the well-known represen- 
tations of Darboux [7, 81: 

and 

c,(~) = (1 -~nXy~-4w-3), (3.39) 

~,(~)=(l -C(,x)2-(2~-44)m~ -31, (3.40) 

4. SEQUENCES FOR THE FOKKER-PLANCK EQUATION 

We derive sequences of drifts {F,,(x)} for the Fokker-Planck equation. 
The transformation 

x=x, (4.la) 

T= t, (4.lb) 

UX Tl=exp iJo*F(5)dt 4-G t) (4.lc) 
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maps the Fokker-Planck equation (1.3) into the canonical form (1.5) with 
p = 1. Consequently no inverse transformations are involved. Moreover we 
can solve explicitly the first Riccati equation of any sequence. The results 
are summarized as follows: 

Let u,(x, t) be a solution of Eq. (1.3) with drift F(x) = F,(x). Then 

F,+,(x)= -F&)+Q,(xh (4.2) 

where 

(4.3) 

to within the same scale factors mentioned previously, and u, is an 
arbitrary constant, n = 1, 2, . . . . 

Correspondingly the solution u,+ ,(x, t) of Eq. (1.3) with drift 
F(x) = F,,+ 1(x) is 

. F.(x)-+,(x) uJx,t)+2 , 1 1 (4.5) 

n = 1, 2, . . . . 
Note that F,,+ Z(x) -F,(x) if a,,+ r = a, = 0. Hence the sequences 

{F2,(x)) and {F2,-Ax)) are inclusive chains of drifts. 
One can adapt our scheme to find Green’s functions for each element of 

a sequence from knowledge of the Green’s function for the Fokker-Planck 
equation with drift F,(x). 

5. SEQUENCES FOR THE DIFFUSION EQUATION 

Sequences {K,(x), a,,(~, t)} for the diffusion equation (1.4) are found as 
follows: 

The transformation 

X=1; [K(t)]-“*d<, (5.la) 

T= t, (5.lb) 

U(X, T) = [K(x)]“~u(x, t) (5.lc) 

maps the diffusion equation (1.4) to the canonical form (1.5) with p = 1. 
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k(X) = K(s). (5.2) 

i?‘u *+R(X)d$. (5.3) 

where 

R(X) = -g- [a(X)]‘, (5.4) 

1 d&Y) 
a(X)=-?----. 

4K(X) dX 
(5.5) 

Suppose that the first diffusion equation of a sequence has diffusivity 
K,(x) = Zl,(X). Let 

1 d& (Xl a*(X)=-- 
4K,(X) dX ’ 

Then the first Riccati equation of sequence (2.5) is 

with particular solution 4, (X; 0) E C-J,(X). 
Then 

n = 1, 2, . . . . We note the following: 

d,(W = - 4, ~ 1 (X) + L(X), n = 2, 3, . . . . 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 
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where x,(X) is given by (2.18) (2.19) and &(X) = K,(x). The transforma- 
tion linking X and x for the diffusion equation with diffusivity K,(x) is 

Again two inclusive chains can be obtained. 

6. RELATED WORKS 

The idea of forming sequences of solutions for related PDEs is not new. 
In his celebrated work [ 1 ] Backlund produced inclusive chains of solutions 
for the sine-Gordon equation. Each successive number of a chain depended 
on an additional constant. More recently such auto-Backlund transforma- 
tions have been used to obtain multi-soliton solutions for a variety of 
nonlinear PDEs (cf. [9, lo] for literature surveys). 

Darboux [S] used the theory of Laplace invariants [11] to generate 
sequences of linear hyperbolic PDEs (Laplace series) by a Backlund trans- 
formation. However, his method does not generate new constants. 

6.1. The Generalized Biicklund Transformations of Loewner 

The most closely related work to our own appears to be that of Loewner 
[2, 31. Loewner considered a system of two first-order PDEs equivalent to 
the inhomogeneous wave equation (1.2) to within a point transformation 
of the x-variable. His generalization of a Backlund transformation (called 
a Loewner transformation in [9]) maps a pair of such first-order PDEs to 
another pair of such first-order PDEs. These transformations involve four 
coupled first-order PDEs. In principle his method generates sequences of 
inhomogeneous wave equations of the form (1.2) containing new arbitrary 
constants at each stage. 

The objective of his method was to find the most general Loewner trans- 
formation preserving the form of PDE (1.2). By using integrability condi- 
tions and several simplifying assumptions he implicitly found particular 
classes of transformations connected to general solutions of Riccati 
equations. In particular Loewner generated second elements for sequences 
arising from the constant speed wave equation and Tricomi’s equation, 
respectively. 

For the inhomogeneous wave equation (1.2) we can solve explicitly all 
Riccati equations; Loewner’s method also involves Riccati equations but he 



582 BLUMAN AND KEID 

gives no algorithm for their explicit solution. For PDEs of the form (1.2) 
we conjecture that with much further work one should obtain our 
sequences as an explicit subcase of Loewner’s implicit procedure. 
Numerous applications which can be related to the first step of Loewner’s 
procedure are listed in Chapter 3 of [9]. 

6.2. Works Related to the ODE Form of the Theory 

The ODE form of our theory arising from the separated form of 
solutions (2.34) has many connections with existing works. Most of these 
works correspond to specific choices of the constants in the Blcklund 
transformation (2.36). Two exceptions are the works of Wadati et al. [ 121 
and Mielnik [13]. In both cases these authors, starting from a specific 
ODE, find a related ODE whose variable coefficient depends on an 
arbitrary constant. 

6.2.1. Factorization Method 

The operators d/dX) b(X) of our procedure are analogous to the raising 
and lowering operators appearing in the factorization method of Infeld and 
Hull [14]. However, only particular variable coefficient differential equa- 
tions of the form (2.35) can be treated by their method. In contrast we can 
start with any variable coefficient ODE of the form (2.35) and generate 
chains of variable coefficient ODES whose n th variable coefftcient depends 
on n constants. 

6.2.2. The Associated Sturm-Liouville Systems of Crum 

A close relationship exists between our work for ODES and the 
associated Sturm-Liouville systems of Crum. Crum [ 151 explicitly 
obtained complete orthonormal sets of eigenfunctions and eigenvalues for 
related Sturm-Liouville systems of the form 

d*Y 
-$yT+ [~-Q,(X)1 y=o, O<X<l, (6.1) 

where for n = 1, 

y’(0) = crY(O), r(l)=/3y(l), (6.2) 

c1 and B given constants. For n > 1 the eigenfunctions resulting from Crum’s 
procedure satisfy 

Y(O)= Y(l)=O. (6.3 1 
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Given the spectrum for n = 1, 

l,<&<I,< .‘.) 

Crum’s spectrum at step n is 

(6.4) 

An<An+,<%,+2< ... <l*“-,+k< ... (6.5) 

with correponding eigenfunctions { Yy’(X; 1, _, + ,)}, k = 1,2, . . . . 
Each step of Crum’s procedure can be obtained from our procedure. To 

begin Crum’s procedure (step 1) we express 

2 - e,cw = (2 - 4) + (J-1 - Ql(J-1). (6.6) 

Setting 

R,(X) = 1, - Ql(W (6.7) 

and choosing the particular solution 

(6.8) 

of Eq. (2.14) one obtains by Eq. (2.36) with n = 2 the second ODE of 
Crum’s sequence. In particular the function 

(6.9) 

k = 1,2, . . . . determines a solution of 

&y(2) 
&+ C&f+, - Q2(X)] Up' = 0, k = 1, 2, . . . . (6.10) 

where Q2(X) is defined by 

Q,(x)-1, = -$$+ ChW)l’. (6.11) 

From (6.9), (6.2), and (6.8) it immediately follows that 

Yi2)(0) = Yy’( 1) = 0, k = 1, 2, . . . (6.12) 

Consequently we have constructed the eigenfunctions for Crum’s spectrum 
at step 1. Further steps in Crum’s procedure follow similarly. His sequences 
do not contain arbitrary constants but correspond to a special choice of 
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particular solution of the Riccati equation at each step. In Bluman and 
Reid [4] we show how our generalization can be used to solve eigenvalue 
problems not solvable by Crum’s procedure. 

6.2.3. The Work qf’ Deft and SupersJ)mmetric Quantum Mechanics 

Deift [16] has shown that a large range of problems of mathematical 
physics can be regarded as the application of a commutation formula 
involving bounded operators in a Hilbert space. In particular his results 
when applied to ODES correspond to an operator formalization of the 
work of Crum [ 1.51. 

Recently there have been a number of papers (see [ 17, 181 and the 
references cited therein) concerning an application of supersymmetry to 
quantum mechanics. To a particular one-dimensional quantum system one 
is able to associate a supersymmetric partner Hamiltonian. Again the 
underlying transformation is that discovered long ago by Crum [ 151 and 
put in an operator context by Deift. 

6.3. Other Works 

More details of work presented in this paper appear in Bluman and Reid 
[4]. Closely connected work appears in Varley and Seymour [ 191. 
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