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Let N be the nontangential maximal function of a function u harmonic in 
the Euclidean half-space R" x (0, cc) and let N- be the nontangential maximal 
function of its negative part. If ~(0, y) = o(y-“) as y -+ co, then 11 N I/,, < 
c?, /I N- &, , 0 < p < 1, and more. The basic inequality of the paper (Theor. 2.1) 
can be used not only to derive such global results but also may be used to 
study the behavior of u near the boundary. Similar results hold for martingales 
with continuous sample functions. In addition, Theorem 1.3 contains informa- 
tion about the zeros of U. For example, if u belongs to H’ for some 0 < p < 1, 
then every thick cone in the half-space must contain a zero of U. 

1. INTRODUCTION 

We study here to what extent a one-sided maximal function can 
control the ordinary nontangential maximal function. Our results 
have applications to HP spaces and the boundary behavior of harmonic 
functions. Similar results hold for martingales with continuous 
paths. In fact, this is the simplest setting for such problems and 
our study of the martingale case motivated the present work. We 
also obtain some results about the zeros of harmonic functions. 

Let u be harmonic in the Euclidean half-space 

R T+:‘” = {(x, y) : x E R”, y > 0}, 

and let N = N,(U) denote the nontangential maximal function of u 
defined on Rn by 

w4 = sup{1 @,Y)l : C&Y) E ra(x)>> (1.1) 

where T,(X) = {(s, y) E RT+l: / x - s 1 < ay} and a is a positive 
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real number. Let N- = N,-(U) be the nontangential maximal 
function of U- = (-U) v 0: 

N-(x) = sup@-(s, y) : (s, y) 6 r,(x)}. (1.2) 

We call N- the one-sided nontangential maximal function of u. 
Let @ be a nondecreasing continuous function on [0, co] such 

that Q(O) = 0 and 

@P(P) G YW), (1.3) 

forsome/3>y>l andallh>O. Forexample,ifO<p<l, 
then Q(X) = &’ defines such a function. 

The following theorem, proved in Section 2, describes one way 
the ordinary nontangential maximal function N is controlled by 
its one-sided version N-. 

THEOREM 1.1. If the harmonic function u satisfies 

@hY) = o(y-") 

asy + 00, then 

J 
lln 

CD(N) dx < CJ @(Iv-) dx 
R” 

and the choice of c depends only on /3, y, n, and a. 

In particular, if (1.4) holds and 0 < p < 1, then 

(l-4) 

(1.5) 

II NII, G c II A- II9 (1.6) 

and the choice of c depends only on p, n, and a. 
Throughout the paper c denotes a positive real number not 

necessarily the same number from one use to the next. 
Analogous results are true for functions u harmonic in the unit 

ball of R”. In this case the normalization (1.4) takes the simple 
form u(0) = 0. 

Note that (1.4) cannot be replaced by ~(0, y) = O(y-“). Consider 
the example 

u(X, y) = y(i X I2 + y2)-cn+1)j2. 

Here ~(0, y) = y-m but N- vanishes. Therefore, for nonconstant @, 
the left-hand side of (1.5) is positive but the right-hand side is zero. 

Also, it is not hard to show that (1.6) does not hold in general 
if p > 1. See Example 6.2. 
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The inequality (1.6) can be improved. Call N,-, defined by 

the one-sided radial maximal function of u. Using a method of 
Fefferman and Stein [ll], we can show that, for 0 < p < co, 

with the choice of c depending only on p, n, and a. Combining (1.6) 
and (1.7), we obtain the following theorem. 

THEOREM 1.2. If the harmonic function u satisjes ~(0, y) = o(y-“) 
asy+ co, then,forO <p < 1, 

and the choice of c depends only on p, n, and a. 

The corresponding @-inequality does not hold in the radial case; 
that is, if N- in Theorem 1.1 were replaced by N,,- or even by the 
two-sided radial maximal function, then the statement of Theorem 1.1 
would no longer be true. This is most easily seen for the analogous 
case of u harmonic in the unit ball. Consult [4, Remark (a), p. 1521. 

If 0 < p < co, let H* be the set of all harmonic functions 
u: R”,+l + R such that the nontangential maximal function of u 
belongs to LP. It follows from the recent work of Fefferman and 
Stein [I I] and from [4] in the case n = 1, that this is one natural 
way to define Hp. Theorem 1.2 shows that given (1.4) and 0 < p < 1, 
a sufficient condition for u to belong to HP is that its one-sided 
radial maximal function belongs to LP. The condition is obviously 
necessary and, moreover, if u does belong to HP for some 0 < p < 1, 
then (1.4) must hold; see Lemma 3 of [ll]. 

The strategy for proving Theorem 1.1 derives from [2]. First a 
distribution function inequality (Theor. 2.1) is proved. The @- 
inequality of Theorem 1.1 then follows rather easily. One auxiliary 
result is required which we state now and prove in Section 3. 

THEOREM 1.3. Let 0 < p < 1 and suppose the harmonic function u 
satis$es ~(0, y) = o( y-“) and 

s Rn [u-(x, y)] p dx = O( 1) 
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as y -+ co. Then, for some a > 0 and all t > 0, the translated cone 

Fat(O) = {(x, y) E R:+l : I x I < U(Y - t)> 

with vertex at (0, t) contains a zero of u. The choice of a depends only 
on n and p. 

In particular, if u belongs to HP for some 0 < p < 1, then 
(24 = O} n F,(O) is unbounded for some a > 0. By way of contrast, 
if p > 1 and u E HP, the zero set {U = 0} can be empty. The space 
H1 is intermediate. If u E H1, then {U = 0} is nonempty. (See 
115, p. 481 or note that / ~(0, 1 x I)] < N(ax), 0 f x E R", so 
Jr 1 ~(0, y)j yn-1 dy is finite and (3.3) cannot hold.) However, there 
does exist a u E H1 such that {U = O> n r,(O) is bounded for all 
a > 0; see Example 6.4. 

The condition ~(0, y) = o(y-“) is not enough by itself to imply 
the conclusion of Theorem 1.3. This follows directly from Example 6.4 
or from the fact that if u E ZP, then ~(0, y) = o(y-“) as y + co; 
see the remark after Example 6.4. 

We now describe the martingale analogs of Theorem 1.1 and 
the distribution function inequality (Theor. 2.1) leading to it. Let 
Y = (Y(t), 0 < t < co> be a local martingale with continuous 
sample functions such that Y(0) = 0. Let il4 = suptao j Y(t)1 and 
M- = SUP~>~ Y-(t) where Y-(t) = (-Y(t)) v 0. 

THEOREM 1.4. Suppose that @ is a nondecreasing continuous 
function on [0, co] such that Q(O) = 0 and the growth condition (1.3) 
holds with /3 > y > 1. Then 

E@(M) < &D(W) (1.8) 

and the choice of c depends only on /3 and y. 
As usual, E denotes integration over the whole space with respect 

to the probability measure P. 
In particular, for 0 < p < 1, 

II Mll, < c, II M- II0 * (1.9) 

This inequality does not hold in general for p > 1; see Example 6.3. 

THEOREM 1.5. Let /I > 1 and 0 < 6 < j3. Then, for all h > 0, 

P(M > m AC e 64 < ((1 + S>/@ + 3) wf > 3. (1.10) 
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We prove these two theorems in Section 5. Here we note that 
by letting /I -+ co in (l.lO), we get 

P(M = co, M- < SX) = 0. 

If we now let h -+ co, we obtain 

W- < a> Cm {M < 4. 
A similar calculation with the inequality of Theorem 2.1 shows 

how Carleson’s theorem on the boundary behavior of harmonic 
functions can be derived from Calderon’s theorem. We return to 
these questions near the end of Section 2. 

2. THE BASIC INEQUALITY AND ITS APPLICATIONS 

The close relationship between the one-sided nontangential 
maximal function of u and its ordinary nontangential maximal 
function is best described by a distribution function inequality. 
Here we give the inequality for the case of truncated cones. The 
nontruncated version also holds (see Sect. 6) but is not as useful 
in the applications. 

Let J’,,,(X) denote the truncated cone 

{(s,y): Ix--s1 <ay,o<y <4, 

and let Na,h and NL,~ be defined by (1.1) and (1.2) with r,,,(x) 
replacing F,(X). 

If Q is a measurable subset of R”, let mo be the measure defined 
by ma(E) = m(E n Q) w h ere E is any measurable subset of R” and 
m is Lebesgue measure. 

THEOREM~.~. LetO<a<b,O<h<h,O<6</3,~>1, 
and suppose that Q C Rn is a cube with center q and diameter 2ah. Then 

m.ANa,~ > PA N;k < 84 < ~mo(Na,,, > 4 (2-l) 

for all positive h satisfying X > u(q, h) where 

6 = 41 + W@ + 6)) + UP) + W)) (2.2) 

and the choice of c depends only on n and a. 
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The proof is given in Section 4. 
To prove Theorem 1.1 with this inequality we need the following 

lemma from [l]. 

LEMMA 2.1. Let @ be a continuous nondecreasing function on 
[0, co] with G(O) = 0. Let f and g b e nonnegative measurable functions 
on a jinite measure space (Q, .B?, CL) and /3 > 1, y > 1, E > 0 real 
numbers such that YE < 1, @@A) < @(A), and 

l-48 > BhfG 4 G dg > 4 

for all X > 0. Then 

Proof of Theorem 1 .I. Suppose that a, h, q, and Q are as in 
Theorem 2.1 and u(q, h) = 0. Let /3 > y > 1 be the constants of 
the growth condition (1.3). By induction, @(/30) < #@(A), j > 1. 
Also, ,tVy-j --t CO as j --t co. Fix j just large enough so that flj > a 
and Sc(s.s) < ,6$-j where c(a.a) denotes the number c in (2.2). Now 
let b = ,f?j and k = bh. Then, by Theorem 2.1, 

for all X > 0. Lemma 2.1 now gives 

1 
ufl 

@(Na.h) dm,(x) d 2yj j- @(A&) dm&) < 2~’ 1 @WC) dx. 
R’” R” 

By the proof of Lemma 2 in [3], 

m(N,- > A) < cm(N,- > A), A > 0, (2.3) 

where the choice of c depends only on n and the ratio a/b. Therefore, 

s @(N,-) dx = Jrn m(N,- > A) d@(A) < c 1 @(IV,-) dx, (2.4) 
un 0 ltn 

and we have 

j- 
Q 

@(Na,h) dx < c j- @Wa-) dx 
R" 

(2.5) 
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for u satisfying u(p, h) = 0 with the choice of c depending only 
on /3, y, n, and a. 

To complete the proof of Theorem 1.1, we note that if the right- 
hand side of (1.5) is infinite or if @ is identically zero, then (1.5) 
is trivially true. Therefore, we may assume that the right-hand 
side of (1.5) is finite and, without loss of generality, that @(l) = 1. 
By the growth condition (I .3), Q(l) < Y%D(~-~) so yPi < @(/z-~), 
i 3 0. Let p satisfy /3” = y. Then, for ,&-l < h < p-‘, 

Xp < (pip = Y-i < @(p-i) 

< y@(/?-i-1) < y@(A). 

Hence, 

A” < VW, o<x<1. 

If U-(X, y) > 1 for a point (x, y) in RT+l, then the set (N- 
contains the ball in R” with center x and radius ay. But 

?n(N- > 1) < I 
CD(W) dx < co. 

R” 

(2.6) 

’ 11 

Accordingly, there is a number y0 > 0 such that if (x, y) E RF+l 
and y > y,, , then U-(X, y) < 1. By (2.6), for all y > y,, , 

I Rn [u-(x, ~11” dx < Y 1 @(u-(x, YN dx 
Rn 

\Y < 
s 

@(N-(x)) dx < co. 
R” 

By this inequality and (1.4), the conditions of Theorem 1.3 are 
satisfied. Therefore, there is a number a > 0 such that the translated 
cone Fat(O) contains a zero of u for all t > 0. The choice of a depends 
only on p, defined above, and n, and hence only on p, y, and n. 

We now show that (1.5) holds for this particular number a. This 
is enough to prove Theorem 1.1 since (1.5) holding for one value 
of a implies that it holds for all a by (2.4) and the analogous inequality, 
[3, (15)], for th e ordinary nontangential maximal function. 

Choose (qd , hi) in RT+’ so that ZJ(~~, hi) = 0, h, < *.. < hi -+ 00, 
and the corresponding cubes Qi satisfy Qr C 0.. C Qi -+ Rn as i -+ co. 
This is possible by Theorem 1.3. Applying (2.5) to Q = Qi and 
h = hi and using the monotone convergence theorem, we obtain (1.5) 
and the proof of Theorem 1.1 is complete. 
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Theorem 1.2 now follows rather easily with the aid of the following 
lemma. 

LEMMA 2.2 (Hardy-Littlewood-Fefferman-Stein). Let v be a 
nonnegative subharmonic function de$ned on a ball B C R”. If x is 
the center of B, then, for 0 < p < CO, 

For a proof in the case that v is the modulus of a harmonic function, 
see [I I]; the proof for the nonnegative subharmonic case is the same. 

Fefferman and Stein [II] use the lemma to show that the radial 
maximal function N, of a function u harmonic in RT+l dominates 
the nontangential maximal function in the Lp sense: 

II N 119 < cp II No IID , o<p<m (2.7) 

The same argument applied to the subharmonic function v = 
(-u) v 0 = u- proves (1.7). As a consequence, Theorem 1.2 follows 
from Theorem 1.1. 

We now consider the implications of the distribution function 
inequality of Theorem 2.1 for the boundary behavior of harmonic 
functions. In [5], Calderon showed that if the harmonic function u 
is nontangentially bounded at every point of a measurable set E, 
then u has a nontangential limit at almost every point of E. Later, 
Carleson [7] showed that the same conclusion holds if u is merely 
assumed to be nontangentially bounded from below. 

Here let E be the set of all points at which u is nontangentially 
bounded from below. That is, 

E = {X : Nck(x) < cc for some pair (b, k)}. 

A familiar point of density argument [6] shows that 

E =a.e. P&c -=c 6 b > 0, k > 0. (2.8) 

Using Theorem 2.1, we now show that 

(2.9 

Thus u is nontangentially bounded at almost every point of E and 
Carleson’s theorem follows from Calderon’s theorem. 
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To prove (2.9), let /3 -+ co in (2.1) or (4.1) to obtain 

mo(Na,h = ~0, N;le < 64 d c(b-l + hf--l) I Q I 

for all positive X > u(q, h). Now let X + 03 to obtain 

mo(Na,h = co, N;k < co) < c(b-’ + hk-‘) I Q I. (2.10) 

By (2.8), the left-hand side of (2.10) has the same value for all b, k 
but the right-hand side converges to zero as b, K + CO. Therefore, 

mo(Na,rb = ~0, KY,, < a) = 0 

for all Q as in Theorem 2.1. This implies (2.9), which can now be 
seen to hold for all a, b, h, and k. 

3. ZEROS OF HARMONIC FUNCTIONS 

In this section we prove Theorem 1.3 using an argument of the 
Phragmen-Lindelof type and the following lemmas. 

LEMMA 3.1. Under the conditions of Theorem 1.3, 

@,Y) = o(Y--n’*), y+ co. (3-l) 

LEMMA 3.2. Let 01 be a real number. There is a function w harmonic 
in Ry+l such that 

4%Y) = Y%(l x l/Y) (3.2) 

for some g: [0, a) +R withg(0) = 1. 

This means that ~(0, y) = yE and w(x, y) = y”g(a) for every 
(x, y) in RT+l on the boundary of the cone r,(O). 

Another fact that we shall need about harmonic functions, and 
this is well known, is that if u is everywhere positive on R”,+l, then 

liy+$f y%(O, y) > 0. (3.3) 

Before proving these lemmas, we shall show how Theorem 1.3 
follows from them. 

Proof of Theorem 1.3. Lemma 3.1 implies that 

u&J Y) = O(Y-“+), y-+ co, (3.4) 
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for some E > 0. Let w be the harmonic function of Lemma 3.2 
with 01 = --n - E. Then y”w(0, y) = y-6 and, in view of (3.3), 
w has at least one zero, say (x0 , y,,). Let a = 1 x,, l/y,, . Clearly, 
a > 0 and w(x, y) = 0 if (x, y) E aTJO> and y > 0. 

Now suppose that u does not satisfy the conclusion of Theorem 1.3 
for this particular a. Then there is a number t > 0 such that u 
is always positive or always negative on the closure of r,‘(O). We 
may suppose the former so the harmonic function ut defined by 
%(X, Y) = U(% Y + t> is positive on the closure of r,(O). We now 
compare u1 and w in the region R, = ((x, y) E r,(o): 1 < y < K) 
and in R, = uI,,r R, . Let M = suprc,Jg(r). By choosing /3 > 0 
large enough, we can satisfy /3ut > M 3 w on the lower part of 
the boundary of R, . Also, w < Mkpner on the upper part of aR, . 
Since w = 0 on the middle part, 

put + Mk+-’ > w 

on all of i?R, and, by the maximum principle, on all of R, . Letting 
k + co, we have put > w on R, . Therefore, pul(O, y) >, ~(0, y) = 
y-n-c for y > 1. But this contradicts (3.4) and the theorem is proved. 

In the proof of Lemma 3.1, we shall need the fact that if u is bounded 
from below on Ry+l and ~(0, y) = o(y) as y + GO, then, for all 
y > 0 and t > 0, 

40, Y + t) = j- 4x, Y>P,(x> dx (3.5) 
Rn 

where p, is the Poisson kernel 

(3.6) 

To show this, we may assume that u is nonnegative. Then, as is 
well known, 

U(.,Y> = P, * p + qJ 2 ay 

for some nonnegative measure p and nonnegative number a. (For 
example, see [15, p. 2351.) But ~(0, y) = o(y) implies that a = 0. 
Therefore, 

4.9 Y + t) = P,+t * P = Pt * (P, * CL) = Pt * f4.9 Y), 

and this implies (3.5). 
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If u > 0 everywhere on RT+l, then, by (3.5), (3.6), and Fatou’s 
lemma, 

which gives (3.3). 

Proof of Lemma 3.1. We may assume in the proof that 

sup 
I 

[u-(x, y)]” dx = K < 00; 
Y>o R’ 

otherwise replace u by uf where ~~(3, y) = U(X, y + t). Applying the 
Hardy-Littlewood-Fefferman-Stein lemma (Lemma 2.2) to the 
subharmonic function u- and the ball B C RT+l with center (x, y) 
and radius y, we obtain 

[u-(x, y)]” < cy-n-1 
II 

B [u-(s, t)]” ds dt 

w 

Gcy 
--n-l 

s s 0 
R” [u-(s, t)]” ds dt 

I 
al 

< cy-n-1 K dt 
0 

zzz q-n, 

so that U-(X, y) < cy*lP. Therefore, 

I u-(x, y) dx = 
Rn s 

R” [u-(x, y)]“[u-(x, y)ll-” dx 

< K(cy+‘)l-p 

= Cy-nu--Pm* (3.7) 

These facts imply that U-(*, y) is integrable and ut defined by 
uI(x, y) = U(X, y + t) is bounded from below on RT+l, t > 0. 
Applying (3.5) to uf , we easily see that (3.5) also holds for U. Also, 

as t + co, where the left-hand side is an integrable function of x. 
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Therefore, using Fatou’s lemma, (3.5) applied to our function u, 
and the assumption ~(0, y) = o(y-“), we have 

= Elf&f t%(O, y + t) = 0. 

Therefore, J u+(x, y) dx < J u-(x, y) dx so that, by (3.7), 

lRn 1 u(x, y)I dx < 2 1 u-(x, y) dx < cy-‘“(l--B)lp. (3.8) 
R- 

Now let B C RT+l be the ball with center (0,2y) and radius y. 
Then 

I u(O,2y)l < CY-‘+l 1 j- I +, t>l d.~ dt 
B 

3Y 
< cy-n-1 

I s 
1 u(s, t)l ds dt. 

Y R’2 

Using (3.8), we obtain 

1 ~(0, 2y)i < cy-n-1 jy3” cy-n(l-p)/~ dt = cy-“lp. 

This completes the proof of Lemma 3.1. 

Remark 3.1. In the proof of Lemma 3.1, the assumption ~(0, y) = 
o( y-“) is not used in its full strength. It can be replaced by the slightly 
weaker assumption 

liy+&f y%(O, y) < 0. (3.9) 

This is true throughout; in particular, (1.4) can be replaced by (3.9). 

Proof of Lemma 3.2. Suppose that w is harmonic in Ry+l and 
has the form 

4x> Y) = y-0 x I"/Y")~ (3.10) 

Then G(t) = w((t1i2, 0 ,..., 0), 1) and the harmonicity of w implies 
that G is infinitely differentiable on (0, co). Furthermore, Laplace’s 
equation dw = 0 implies that, for t > 0, 

4t(l + t) G”(t) + 2[n - (201 - 3)t] G’(t) + ,(a - I) G(t) = 0. (3.11) 

On the other hand, if we start with this differential equation, we 
easily see that there is a solution G on (-1, 00) such that G(0) = 1. 
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(Note that t = 0 is a regular singular point with corresponding 
indicial equation T(Y - 1) + $2~ = 0. Therefore, a s$tion G on 
(-1, 1) exists with the power series expansion 1 + &--l a,$“. Since 
every point of (0, co) is an ordinary point of the differential equation, 
G has an extension to (- 1, co) and this is the desired solution.) 

It is easy to check by differentiation that if G is a solution of (3.11) 
on (- 1, co) and G(0) = 1, then w defined by (3.10) is harmonic 
and satisfies the conclusion of Lemma 3.2. This concludes the proof. 

Remark 3.2. It is not difficult to give a constructive proof of 
this lemma. For example, if cx = --n - E with 0 < E < 1, the only 
case for which we need the lemma, and W(x, y) = (alay) p,(x), 
the derivative of the Poisson kernel defined in (3.6), then it is not 
hard to see that 

20(x, y) = j m W(x, y + t) t-c dt 
0 

is harmonic and, apart from a normalizing constant, has the desired 
form of Lemma 3.2. 

Note also that if w has the form (3.2), then awjay has the form 
(3.2) with 01 replaced by 01 - 1. 

4. PROOF OF THE BASIC INEQUALITY 

The key difference between the following preliminary result and 
Theorem 2.1 is the difference between 1 Q 1 in the right-hand side 
of (4.1) and mo(Na,h > A) in (2.1). 

LEMMA~.~. Let O<a<b, O<h<k, 0<6</3, /3>1, 
5 > 0, and suppose that Q C Rn is a cube with center q and diameter 
2ah. Then 

for all positive h satisfying u(q, h) < .$A where 

and the choice of c depends only on n and a. 

Before proving this lemma, we show how Theorem 2.1 follows 
from it. 
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Proof of Theorem 2.1. The problem may be transformed into 
an equivalent one in which Q = [0, l] x ..a x [0, 11. Then q = 
(l/L., l/2) and h = n1j2/(2a) with a, b and the ratio h/k unchanged. 

Consider the open set GA = {N,,h > A) n Qa where Qs denotes 
the interior of Q. If GA = Qs, then m,(N,,, > A) = 1 Q 1 and (2.1) 
follows from (4.1). If GA n Q” is empty, then both sides of (2.1) are 
zero. Therefore, assume from now on that G,, is a nonempty proper 
subset of Q”. Let F be the closure of {Na,h < A} n Q” and G the 
complement of F relative to R”. Note that GA = G n Q” and F 
need not contain all of the boundary of Q. Now decompose G into 
dyadic Whitney cubes Qi , Qa ,... so that G = Uj”=, Qj , their interiors 
are disjoint, and 

diameter Qi < distance (Qj ,F) < 4 diameter Qj . (4.3) 

(See [15, p. 1671.) 0 ne feature of this decomposition is that every 
Qjo intersecting the initial cube Q = [O, I] x -.- x [O, 11 satisfies 
Qjo C Q”. Let J = {j: QiO n Q f; o >. Then 

so that 

Moreover, 

(4.4) 

(4.5) 

where E, = {iVa,h > PA, Nc,~ < 64 n Qj . 
Now let 13 = 3nt40a+l) and 5 = 0(1 + 6). We may assume that 

(4.6) 

for we may always choose the number c in (2.2) to be at least as 
large as 28 so that if one or more of the inequalities in (4.6) is not 
satisfied, then E > 1 and (2.1) holds trivially. 

We now estimate 1 Ej 1 in (4.5) for all j in J for which E, is non- 
empty. Let q3 be the center of Qj , dj the diameter, and hi = dj/(2a). 
We show that if x E Ej and (s, y) E F,,,(x) with y > hi , then 
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By (4.6), this implies that 

Ej = Wa,hj > I% Nt7.k < 84 n Qj 

and u(qj , hj) < &I. Therefore, by Lemma 4.1, 

I 4 I G ~(4.1) (fi + k + i) I Qj I 

< %4.1) ( fi +; + ;) I Qj I. 

Comt ning this with (4.5) and (4.4), we obtain the desired inequality 
(2.1). 

We now prove (4.7). Let x E Ej . Then, by (4.3), there is an x,, E F 
such that 

1 x - x0 I = distance (x,F) 

< dj + distance (Qi , F) 

< 54 9 

and necessarily NJx,,) < h. Let (s, y) E I-‘&x) with y > hi . Then 
(s, y) is within distance 5d, of a point (sr , yI) in I’,,,(x,,) with y1 = y 
and ] u(sl, yr)] < h. Since b > 20~ + 1 and K > 2h, there is a 
positive integer v < 4Oa + 1 and a family of v balls Bi C I’,,,(x) 
such that the radius of B, is rj = &hj , the center is (sx , yJ) with 
yi = y, and ] $*+I - si 1 < &yj , i = l,..., v, with (s,+~ , yy+r) = (s, y). 
Applying Harnack’s inequality to the nonnegative function u + Sh 
in B, , we get 

+z , Yz) + Sh < 3”(& , r1) + 64 d 3n(h + w. 

Repeating the argument for B, ,..., B, , we obtain 

qs, y) < u(s, Y) + a < 3”‘@ + 64 

< e(1 + S)h = gx 

and the proof is complete. 

Proof of Lemma 4.1. We may assume here that 

Q = [-l/2, l/2] x *a* x [-l/2, l/2] 

so 4 = 0 and h = &“/(2u). Also, we assume that S = 0 since the 
problem remains the same if U, 6, fl, and 5, are replaced by u + Sh, 0, 
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p + 6, and t + 6. Finally, we assume that b > 2a + 1 and K > 2h, 
for if either of these inequalities does not hold, then, provided we 
let c in (4.2) be at least as large as 2a + 2, the number E in (4.2) 
satisfies E > 1 and (4.1) holds trivially. 

Let E = {Na,h > PAX, NG~ = 0} n Q. The problem is to show 
that 1 E 1 < E where E has the form (4.2) with 6 = 0. But this is 
equivalent to a problem about harmonic measure. Consider the 
harmonic measure of E with respect to RT+l at a point 2; = (x, y) 
in RT+l: 

Let z. = (4, h) = (0, n112/(2a)). Then 

Pko 9 E) 3 1 E 1 c,h(n + i~~)-(“+~)/~ = c,,, / E /, 

so it is enough to show that 

Pbo 9 E) < E 

where E is of the same form. 
We may suppose that E is nonempty. Let 

(4.8) 

w = u rb,&) 
XEE 

and note that z. E W and u is nonnegative in IV. Let 2 = (X, Y) 
be Brownian motion in Rn+l starting at x0 . Let 

7 = inf{t > 0: Z(t) E R”} 

= inf{t > 0: Y(t) = 01, 

Y = inf(t > 0: Z(t) E aW>. 

These are stopping times of 2 such that v < r and, with probability 
one, T < 03, 2(-r) E R”, and Z(v) E aIV. (A convenient reference for 
Brownian motion and stopping times is [12]. A basic reference 
for applications to harmonic functions is [9]. For other applications 
similar to this one, see [4].) 

In particular, we shall use Kakutani’s fundamental observation 
(see [9]) that 

Pko 9 E) = P(Z(T) E E). (4.9) 

Let x E E. Then N&X) > ph so that I’,,,(x) contains a point 
(s, y) satisfying U(S, y) > j3h. Let B be the ball with center (s, y) 
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and radius Y = &y and B, the ball with the same center but with 
radius $. Since B C rza+r,sh(~) C rb,Jx), the harmonic function u 
is nonnegative in B. By Harnack’s inequality, u is bounded from 
below by 373X in B, . Let 

% * = sup I +yt>>i, u,* = sup z@(t)). 
o<t<r o<t<v 

Given that Z(T) = X, the conditional probability that 2 hits B, 
before R” is bounded away from zero by a number c = c,,, . (For 
information about such conditioned Brownian motion in a half-space, 
see [lo].) If 2 hits B, before R”, then u,* > 3-“ph. Therefore, 

P(u,* > 3-94 1 Z(T)) > c 

on the set {Z(r) E E>. Let I(Z(T) E E) denote the indicator function 
of this set. Then 

Cl(Z(T) E E) < P(u,* > 3-"ph 1 z(T)) + I(z(T)E E)P(V < T 1 z(T)). 

Taking expectations of both sides, we obtain 

CP(z(T) Ct E) < P(UY * > 3-9) + P(z(T)EE,V < T) (4.10) 

Now P(q* > 3-73A) = lim+, P($ > 3-“/Q) where 

vj = inf{t > 0: distance (Z(t), 8W) < 2-j) 

and P(u; > 3-9A) is the probability that the nonnegative martingale 
{u(,?(v~ A t)), t 3 0} starting at z&J < [A ever exceeds 373h. By an 
inequality of Doob [S, p. 3531, this probability never exceeds 
u(z,)/(3-“13h) so that 

P(u,* > 3-"ph) < 3"@. (4.11) 

The other probability on the right-hand side of (4.10) satisfies 

P(Z(T)E E, v < T) < P(z(T) E 2, v < 7, Y(v) < k) + P(Y(v) = A). (4.12) 

Since P(Y(v) = K) is less than the probability .that the nonnegative 
martingale {Y(T A t), t 3 O> hits K, 

P(Y(v) = k) < Y(O)/k = h/k. (4.13) 

Let a,W = ((x, y) E aW 0 < y < K). Then 

{v < 7, Y(v) < k) = {Z(v) E sow} 
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and, by the strong Markov property, 

P(Z(T) E E, v < T, Y(V) < k) = E[I(Z(v) E a,,W)p(Z(v), E)]. (4.14) 

But if x = (x, r) E a,W, then 

E C (s E R”: 1 x - s / > by}. 

Denoting the latter set by F, , we have 

< s c,y 1 x - s I-+-l ds 
FZ 

=?I 

m 
yr-n-lrn-l dr 

by 

= c/b. 

Therefore, by (4.14), 

P(Z(,) E E, v < T, Y(u) < k) < c/b. 

Combining this with the inequalities from (4.9) to (4.13), we obtain 

I% > El d cC(3”EIP) + (c/b) + (WI 
G 4Wb) + (l/b) + W41, 

and the proof of (4.8) and the lemma is complete. 

5. MARTINGALE ANALOGS 

Let Y = {Y(t), t 3 O> be a local martingale 
sample functions and constant initial position Y(0). 
assure that if 

with continuous 
These conditions 

7, = inf{t > 0: / y(t) - Y(o)/ = n}, 

then Y’n = (Y( 711. A t), t > 01 is a uniformly bounded martingale. 
Let M be the ordinary maximal function of Y and M- the one-sided 
maximal function as defined in Section 1. 

LEMMA 5.1. If Y is nonnegative, then 

P(M > P4 < (W)~(~ > 4 

for all /3 > 1 and all positive h 3 Y(0). 



ONE-SIDED MAXIMAL FUNCTIONS 447 

Proof. We may assume that Y is uniformly bounded; otherwise, 
replace Y by y7n, defined above, for some n > /3X. Let 

p = inf{t > 0: Y(t) > A}, 

v = inf(t > 0: Y(t) > /3X}. 

These are stopping times of Y and, by the sample-function con- 
tinuity, Y(p) = h on the set {CL < a> and Y(V) = j3A on the set 
{V < co}. Since Y(c0) = liml,, Y(t) exists with probability one, 
Y(p) and Y(V) are defined also on the sets where p and v are infinite. 
By Doob’s optional sampling theorem (see [13, p. 98]), {Y(p), Y(v)} 
is a martingale, and, in fact, 

is also a martingale. Since each term in a martingale has the same 
expectation, 

Now let M+ = suplao Y+(t). 

THEOREM 5.1. Let /3 > 1 and S > 0. Then 

P(M+ > /% AC < w < [Cl + S>/(B + q1 pp+ > 4 

for all positive h > Y(0). 

Proof. Let u = inf{t > 0: Y(t) < -8h). If Y(0) > --6h, then 

2 = {Y(o A t) + Sh, t > O} 

is a nonnegative local martingale with initial position Y(0) + 6h < 
A + a;\. Therefore, by Lemma 5.1, 

P(M+ > ,6X, M- < 22) = P(M+ > ,&I, ts = oz) 

< P(M(Z) > PA + 64 

< [(l + S)/(P + S)] P(M(Z) > A + SA) 

< [(I + W + 811 P(M+ > A). 
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If 6 < /3, then the left-hand side of this inequality is equal to 
P(M > /3h, M- < 6h) so Theorem 1.5 follows. 

Proof of Theorem 1.4. Replace p by /3i in (1.10) and let 6 = 1 
to obtain 

P(M > PA, M- < A) < 2/FjP(M > A) 

for all X > 0. By the growth condition, @#IQ) < #(x). Choose j 
just large enough so that 2y*fl-j < 8. This can be done since y < p. 
Then, by Lemma 2.1, 

E@(M) < 2yjE@(M-). 

One-sided random boundaries for Brownian motion. Here is a simple 
application of Theorem 1.4. Let X = {X(t), t > 0} be real Brownian 
motion starting at zero. Let A = {A(t), t > 0) be another stochastic 
process on the same underlying probability space such that: (i) 
every sample path of A starts at zero and is continuous and non- 
decreasing, (ii) A(t) is measurable with respect to the a-field generated 
by {X(s), s < t}, and (iii) if 0 < p < 1, there are positive real 
numbers cP and C, such that, for all stopping times T of X, 

CD II T1’2 IIP < II A(T) G c, II T1j2 IID * (5.1) 

(Define A(T) = lim,,, A(t) on the set {T = co}.) 
It is trivial that A(t) = t1i2 satisfies these conditions. Another 

example is M(t) = supsct j X(s)l; by Theorem 7.1 of [2], this process 
satisfies (5.1) for 0 < p < co. Therefore, by Theorem 1.4, M-(t) = 
supsGt X-(s) satisfies (5.1) for 0 < p < 1 and is still another example. 

Now consider the particular stopping time 

T = 7(a, b) = inf{t : X(t) = a + bA(t)} 

where a > 0 and b > 0. 

THEOREM 5.2. Let 0 < p < 1. There is a positive real number &, 
such that 11 +I2 &, is jinite if 0 < b < &, , but is infinite if b > Is, . 
The choice of &, is independent of a. 

Novikov [14] obtains this result for the case A(t) = PI2 and 
gives a precise description of & . Our method is quite different 
and somewhat more general but does not give much information 
about & . It would be interesting to know 18, for the case A(t) = M-(t). 

Proof. Fix a > 0. Since T = T(a, b) is nondecreasing in b, the 
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existence of & = /IasP will follow if we can show that 11 G/2 lip is 
infinite for large b and finite for small b. 

Suppose that 11 Gj2 IIP is finite. Then with probability one, T is 
finite and X(T) = a + bA(T). Also, by (5.1), 11 A(T) is finite and 

Dividing by I/ A(T) , which is both finite and positive, we see that 
b must be less than a number c the choice of which depends only 
on p. Accordingly, if b is larger than this number, 11 T1j2 lip must be 
infinite. 

We now show that II T1j2 lip is finite if b is small. Let n be a positive 
integer. Then X(7 A n A t) < a + bk!(-r A n A t) so that &f+(~ A n) < 

a + bA(T A a). Therefore, by the analog of Theorem 4.1 for k!f, 

Therefore, for b suitably small, 

/I T A ?Z)‘/’ 11; < CUD/(1 - Cb”), n 2 1, 

and, by the monotone convergence theorem, /I 71/2 lip is finite. 
Now suppose that &, = /3a,p does depend on a. Then there are 

positive numbers a, , a2 , b, , b, such that a, < a2 and 

Pa,,, < h < bl < Pa,,, 

so that 11 G/2(a, , b,)lI, is finite but jl T1i2(U2 , b2)(Ip is infinite. Let 

p = inf{t : X(t) = (b,u, - u,b,)/(b, - b,)}. 

Then it is not hard to see (by drawing a picture) that 

T(U~ , 62) < p v ~(a1 , b,). 
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Therefore, 

II +Ya, 3 b,)ll; < II P1j2 II; + II W% , Ml:: 

e c II ~+(P>ll”, + II T1’2(a, 3 Ml: < a 

giving a contradiction and completing the proof. 

6. EXAMPLES, QUESTIONS, AND REMARKS 

Although the inequality (2.1) for harmonic functions is remarkably, 
similar to the corresponding inequality (1 .lO) for martingales, the 
analogy is not exact. Consider the nontruncated version of (2.1): 
If/3>1,O<S<fl,andX>O,then 

where 

m(N, > /3h, N,,- < 6h) < cm(N, > A) (6.1) 

E = 4u + W(B + 3 + U/4) (6.2) 

and the choice of c depends only on n and a. The martingale inequality 
(1.10) suggests that the optimum value of E for (6.1) might satisfy 
the inequality 

E < c((l + s>/(P + 6)). (6.3) 

Even if b > 2a, which we assume from now on, this cannot hold 
for a real number c whose choice depends only on n and a; see 
Example 6.1. Question: Does 

E < c((l + S)/(B + qy (6.4) 

with the choice of c and 0 < Y < 1 depending only on n and a? 
It is quite likely, we believe, that (6.4) does hold. Moreover, it seems 
likely that Y can be near 1 if a is chosen sufficiently large. 

EXAMPLE 6.1. Let u be the harmonic function on R+2 defined by 

4% Y> = KY + 1)” - X21/[(Y + II2 + x212. 

If -1 < x < 1, then N112(x) > u(O,2) = l/9 and N,-(x) = 0. 
Therefore, 

m(Nl12 > PA, Nl- < A) > 2 
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provided i3h < l/9. If 1 x 1 > 1, then 

I u(s, Y)I G [(Y + 1)” + m1 G 2+, (s, Y) E rl,z(x)7 

so N,/,(x) < 2x-s and rn(Ni/a > 2x-2) < 2 / x I. Now let /3 = x2/18 
and X = 2xd2 with x > 0 chosen large enough to make b > 1. 
If (6.3) is satisfied, then 

2 < mw1/2 > P, %- < 4 

< 4%2 > 3 

< c(36/(x2 + 18))2x. 

But the last expression is less than 2 for all large x so (6.3) cannot 
hold. 

EXAMPLE 6.2. Here we show that (1.6) does not hold in general 
for p > 1. Let u be defined on R+2 by 

u(x, y) = y - Yfl 
x2 fY2 x2 + (Y + 1y . 

Clearing fractions, we see that 

u(x, y) b -X”[(X” + y2)(x2 + (y + l)“)l-‘. 

Therefore, N,--(x) < (1 + x2)-l and, by (1.7), Ij N- &, is finite for 
p 3 1. However, for 0 < x < l/4, 

iv(x) >, u(x, x) 2 (2x)-1 - 1 2 (4x)-1 

so that 11 N IIP is infinite, p > 1. 

EXAMPLE 6.3. Similarly, (1.9) does not hold in general for 
p > 1. Let X be real Brownian motion starting at 0 and 7 the stopping 
time defined by 

7 = inf{t > 0 : X(t) = -l}. 

Let Y(t) = X( T A t), t 3 0. Then n/r- < 1 so that II M- IIP < 1. 
However, 

11 M 11; = ~mpXW(M > A) dA > JmpP1(l + X)-l dA, 
0 0 

and the latter integral is infinite for p >, 1. 
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EXAMPLE 6.4. Here we construct a function u in H1 that does 
not satisfy the cone property of Theorem 1.3. In particular, for all 
a > 0, the set of zeros of u in F,(O) is bounded. 

Let 0 < E < l/2 and define the harmonic function w, on R+s by 

m (y + t)2 - x2 dt 
[(y + t)" + x2]2 F ; (6.5) 

see Remark 3.2. Then w,(x, y) = y-l-x,( I x I/y) where 

The absolute value of the integrand does not exceed 

[(l + s)” + rye < (1 + s)-3-e 

so the real number M = $ (1 + s)-~s-~/~ ds + Jy (1 + s)-2 ds sat- 
isfies 1 g.(r)/ < M, 7 > 0. Moreover, by the Lebesgue dominated 
convergence theorem, 

Differentiating g, under the integral sign and bounding the derivative 
of the integrand as above, we obtain 1 gEl( < 3M, 7 > 0. Therefore, 
the family {gE: 0 < E < l/2) is equicontinuous and the convergence 
in (6.6) is uniform for 7 in compact intervals. Accordingly, for each 
positive integer j, there exists a number cj < l/2 satisfying 

g,,(r) > u/w +w, O<r<j; 

we may assume that or > c2 > **m. Now let 

where Xi = 2-i[l + Jz (1 + t)-lt-ej dt]-1. Let a > 0 and suppose k 
is a positive integer greater than a. If (x, y) E P,(O), then 7 = 

I x I/y < K and 

yl+%(X, y) = f hjy-gGj(r) 
j=l 

k-l 
> -M c Xjy’k+’ + Q&(1 + k2)-l. 

j=l 
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There is a number yk > 0 such that the right-hand side is positive 
for y > yk . Therefore, z, has no zero in r,(O) 3 r,(O) above yk . 
Hence, {V = 0} n T,(O) is bounded. Now let u(x, y) = V(X, y + 1). 
Clearly, (24 = 0} n T,(O) is also bounded, a > 0, so u does not 
satisfy the cone property of Theorem 1.3. 

We now show that u belongs to H1. By (6.5), 

so that 

Using the Fefferman-Stein inequality (2.7), we obtain 11 N (Ii < CO, 
so u belongs to Hr. 

In this example ~(0, y) = o(y-‘) as y -+ 00 since y 1 $0, y)] < 
M Cj”=, &y-cj. In general, if u E H1 on RT+‘, then ~(0, y) = o(y-“) 
as y --+ co (and as y + 0): Let f(l x I) = supV, IzI ~(0, y). 
Then f(l x I) < N(ax), x E R”, so the integral jy f(y)y”-r dy is 
finite.Therefore, 

and the last expression converges to zero as y +- co (and as y -+ 0). 
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