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The Riemann problem for a class of nonlinear systems of first order hyperbolic 
conservation laws is studied. The class consists of systems where the derivative of 
the flux function is a lower triangular matrix. There are no assumptions on genuine 
nonlinearity and strict hyperbolicity. Existence and uniqueness are proved except in 
a set with measure zero in the phase space and a set with measure zero in the flux 
function space where there is a one-parameter family of solutions. Travelling waves 
are used as an entropy condition and examples show that the Lax or Liu entropy 
conditions are not sufficient. An example shows that the solution does not 
necessarily depend continuously on the data. The model may be used to describe 
three-phase and tracer flow and flow in a neighborhood of a heterogeneity in 
porous media. c 1990 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we study the Riemann problem for the system of differen- 
tial equations 

~"i+~.Ltul* ...f ui).x=", i = 1 , 2, . . . . n, 

where fi is continuous and the partial derivatives of fi are defined almost 
everywhere. Assume furthermore that CIfi/aui is piecewise monotone in ui 
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with a finite number of intervals where it is monotone. In order to always 
have a solution it is also necessary to impose some restrictions on the 
behavior of fi when Iuil is large. 

The Riemann problem is a particular Cauchy problem where the initial 
condition is 

Ui(X, 0) = “U:r 1, 
for x<O, i=l 2 
for x>O, ’ 9 ..., ” (1.2) 

In problem ( 1.1) the matrix { af,/&, } i, j is 1 ower triangular. The eigenvalues 
of this matrix are the diagonal elements. The problem is therefore always 
hyperbolic, and we will call it a triangular hyperbolic system. There are no 
assumptions on possible degeneracy of the eigenvalues. Therefore the class 
to be studied is not necessarily strictly hyperbolic. Genuine nonlinearity for 
this class of problem is equivalent to 

8% 
s#O, i=l Iz. , . . . . 

I 

We will allow for loss of genuine nonlinearity in this paper. 
For n = 1, i.e., the scalar problem, existence and uniqueness were proved 

by Oleinik [22, 231. For systems, existence and uniqueness were proved by 
Lax [ 191 and Glimm [5] assuming U- and u + close, strict hyperbolicity, 
and genuine nonlinearity. Liu [20] extended this result for 2 x 2 systems 
with monotonicity assumptions instead of genuine nonlinearity and without 
assuming z._ and U, close. In order to attain existence and uniqueness Liu 
introduced an extended entropy condition. Several authors have extended 
the analysis to 2 x 2 systems which fail to be strictly hyperbolic. For 
a survey of this work, including the work of M. Gomes, H. Holden, 
E. Isaacson, B. Keylitz, H. Kranzer, D. Marchesin, B. Plohr, D. Schaeffer, 
M. Shearer, and B. Temple, see [6]. 

The Riemann problem is a particular mathematical problem where it is 
possible to find an explicit solution. In addition it is used as a building 
block in the Cauchy problem with general initial data. In fact, the Riemann 
problem is used for both existence and uniqueness theorems and as a 
numerical method. It is used in both ways in the celebrated paper by 
Glimm [S]. See [ 10, 1 l] for a particular method to solve the Cauchy 
problem by solving Riemann problems in the scalar case. Godunov [8] 
uses the Riemann problem in a numerical method. 

There are no smooth solutions of (1.1) with general initial data except 
for small t, no matter how smooth the flux function is. Therefore we are 
interested in weak solutions. There are several weak solutions of the 
problem. In this paper we use an entropy criterion with travelling waves in 
order to find the relevant solution. See Chapter 24 in [25] and Conley and 



A CLASS OF N CONSERVATION LAWS 75 

Smoller [ 11. A shock with speed s and with values up and U+ to the left 
and to the right, respectively, is deemed admissible iff there exists an 
integral curve 

u1(5)=f(u(5))-su(r)-(f(u1)-su.), (1.3) 

and 

45) --) u+ when l-+ fco. 

We call this integral curve an entropy curve in order to separate it from 
other integral curves. 

The origin for the travelling wave entropy criterion is that the solution 
is the limiting solution when a second order term vanishes. Assuming a 
solution of the form u(x, t) = u( (x - s~)/E) of the regularized equation 

the limiting solution when E vanishes satisfies the entropy criterion above. 
We have used the identity matrix as the viscosity matrix, which is usual. 
See Conley and Smoller [ 11. 

A solution satisfying the above entropy condition will also satisfy the 
Rankine-Hugoniot condition 

s(u+ -u-)=f(u+)-f(c). (1.4) 

The Hugoniot locus is defined as 

H(u-)= {u,s(u+ -u-)=f(u+)-f(u-)forsER}. 

There are other possible entropy criteria. Lax used the inequalities 

n,-,(U-)<S<&(U-) and &(~,)<~<~k+,(~+h 

where Jk are the ordered eigenvalues. Keytitz and Kranzer [ 141 introduced 
a generalized Lax entropy condition by allowing nonstrict inequalities. This 
entropy condition is used in many other papers on nonstrictly hyperbolic 
conservation laws; see, e.g. Keyfitz and Kranzer [ 14, 151 and Isaacson and 
Temple [13]. We will show in an example in the last section that the 
generalized Lax entropy condition in some cases gives a solution which 
differs from the solution one obtains with the travelling wave entropy 
condition. In this paper we have used the travelling wave entropy condition 
since it is the limiting solution when a second order term vanishes. See 
Conley and Smoller [l] and Keylitz and Kranzer [ 141. Liu [20] intro- 
duced another entropy criterion when he studied systems which are not 
genuinely nonlinear. This entropy condition is only well-defined for the 
connected Hugoniot locus. In triangular systems there are cases where all 
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weak solutions have shocks to disconnected branches of the Hugoniot 
locus. 

There are two main reasons to study a triangular hyperbolic system. 
First, by restricting ourselves to the analysis of triangular systems, we are 

able to solve the Riemann problem for a large class of n x n systems with 
no assumptions on genuine nonlinearity and strict hyperbolicity and for a 
very general flux function. Some new phenomena are found. We will in par- 
ticular mention that we find a one-parameter family of solution for n = 3. 
When the initial values approach the values where there is a one-parameter 
family of solutions, we get the two end points in the one-parameter family. 
Therefore the solution does not depend continuously on the initial values. 
Disconnected branches of the Hugoniot locus (see [6, 141) are accepted as 
a solution. The generalized Lax entropy condition gives another solution 
other than the travelling wave entropy condition in some cases. In 
Section 3 we give examples of these phenomena. Both Shearer [24] and 
Gomes [9] find two solutions both satisfying the travelling wave entropy 
condition. But in their cases the two solutions are qualitatively different. In 
this paper there are two qualitatively equal solutions and a one-parameter 
family of admissible solutions connecting the two end point solutions. 

Second, it is possible to approximate the solution of some physical 
problems by the solution of (1.1). We will mention three examples from 
incompressible flow in porous media. 

In three-phase flow in porous media with oil, water, and gas, it is 
reasonable to approximate the fractional flow function of gas with a func- 
tion which only depends on the gas saturation. Therefore the first equation 
in (1.1) models the flow of gas and fi is only a function of the gas 
saturation. fi, the fractional flow of water, is a function of both water and 
gas saturations. These assumptions result in a triangular system. This 
model is worked out in detail in separate papers; see Gimse [3,4] and 
Holden [ 123. 

In two-phase flow the fractional flow function may change between 
different rock types. This is modelled in a triangular hyperbolic system by 
letting the first independent variable only depend on the rock type. The 
solution of the first equation is therefore only a shock with speed zero at 
the border between the different rock types. See Gimse [3,4] and Glimm 
and Sharp [7]. 

Finally, in an oil reservoir water is often injected with tracers in order to 
keep track of the injected water. This is usually modelled by the system 

$1 +f(sL = 0 

tscr + ai(ci))t + (cif(s)L=07 i = 1, . . . . n, 

where s is water saturation and c, is the concentration of tracer i, i = 1, . . . . n. 
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Notice that the tracers do not influence the water/oil flow. This model is 
studied in Johansen and Winther [ 171. This model is a simplification of the 
polymer model described in Johansen and Winther [ 161. 

The solution of the Riemann problem U(S) = u(x/t) is made up of three 
types of elementary waves (solutions), namely 

(i) constant states, 
(ii) shock waves satisfying the entropy condition above, and 

(iii) rarefaction waves, i.e., continuous solutions satisfying the 
ordinary differential equation 

--u,r +f(u), = 0. 

In order to always get a solution we have to accept adjacent shocks with 
the same speed. This is also necessary in the scalar equation and is 
admissible according to the generalized Lax entropy condition. 

In the following section we prove existence of a solution of (1.1) and 
(1.2) for all initial values and uniqueness almost everywhere. Some charac- 
teristics of the solution are discussed in Section 3. 

2. EXISTENCE AND UNIQUENESS 

We will first state the main theorem in the paper. 

THEOREM 2.1. Assume f, is continuous and that all partial derivatives of 
f, are defined almost everywhere. Assume furthermore that (&/aui)(u,, . . . . ui) 
as a function of ui with u,, . . . . ui , fixed satisfies the following for i = 1, . . . . n : 

(i) piecewise monotone and monotone in a finite number of intervals 
and 

(ii) increases to cc or decreases to -co for u, < u, min and for 
u, ’ Ui,max for some constants u~,,,~,, and ui max. 

Then there exists a solution of the Riemann problem (1.1) and (1.2). The 
solution is unique except for functions f in a set with measure zero in the 
supremum norm and for a given f initial values up and u, in a set with 
measure zero in the (u ~ , u + ) plane. There is always uniqueness if n =C 3. 

The proof of this theorem is given at the end of this section. In fact we 
will prove a sharper theorem. In Theorem 2.3 there are weaker assumptions 
onfi for ui large/small. The assumptions on fi depend on the solution of the 
first i- 1 equations. In some applications this stronger theorem is needed 
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since the flux functions f, have a horizontal asymptote when ui -+ 00 and 
when ui + --co. In these applications we utilize that all waves have positive 
speed. 

We allow discontinuities in the derivatives off since this is necessary in 
some applications. This does not weaken the results and does not give any 
complications in the proofs. 

The system 

24, + (u2), = 0 

u, + (uv), = 0 

has been studied by Korchinski [lS]. This system does not satisfy the 
assumption on f since fi is linear in u = u2. In this system there is not 
always a weak solution in the usual sense since there are shocks where (1.4) 
is not satisfied. The solution of this problem, which is described in [18], 
may contain a delta function. This system does not satisfy the assumptions 
on the flux function in Theorem 2.1. We do not accept a delta function in 
the solution in Theorem 2.1. 

The system (1.1) with initial value (1.2) is solved inductively. The first 
equation is a scalar equation and existence and uniqueness theorems are 
well known. This is stated as a separate theorem. 

THEOREM 2.2. The scalar Riemann problem 

where f is continuous, f' is defined except at 
f' is piecewise monotone with a finite number 
is monotone, and with the initial value 

u(x,O)= u+ 
i 

f Or 
u- f or 

a finite number of points, and 
of intervals where the function 

x>o 
x <o, 

has a unique solution which may be described uniquely by a function u(s), 
where s = x/t. u(s) is piecewise continuous and there are a s,in and a s,,,,~ 
such that u(s) is constant for s < s,~,, and s > s,,,. At a discontinuity of u(s) 
there exists a unique entropy curve w(t) such that 

and 

w(S)+u(s+) when [+ *co. 
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At a discontinuity of u(s) the values on the left and right hand side of the 
discontinuity are denoted u and u + , respectively. 

The entropy curve is unique up to change in parameter r. 

Proof of this theorem with weaker assumption on f is given in [2, 111. 
See also Theorem 3.1. 

Assume that the problem (1.1) is solved for the first i< n equations. 
We will then solve the problem for the first i+ 1 equations. The (i + l)st 
equation may be written as 

0, + g(u, u), = 0 (2.1) 

and 

v(x,O)= v 
i- 

for x<O 

0, for x>O. Q-2) 

u(s), s = x/t, is a known piecewise continuous function u : R + R’, which 
is constant for s -C s,~,, and s > smax for some S,in and s,,, . Where u(s) is 
discontinuous, there exists an entropy curve 

w1(5)=f(u(5))-su(5)-(f(u(s~))-su(s,)) (2.3) 

and 

45) + ub+ 1 when <-*co. 

Similarly the solution v will be described by a function u(s) and for each 
discontinuity in u(s) there is an entropy curve y(t). 

The induction step in the proof of Theorem 2.1 is stated as a separate 
theorem. 

THEOREM 2.3. Assume that: 

(i) u(s): R -+ R’ is piecewise continuous and constant for s < s,,,~” and 
s ’ slnax and where u(s) is discontinuous there exists an entropy curve w(g), 

(ii) g is continuous, 
(iii) the partial derivatives of g are defined almost everywhere, 
(iv) g, is piecewise monotone and monotone in a finite number of inter- 

vals, and 
(v) there exist a vmin and a v,,, such that 

either g”(u, v) < smin or g&u, v) > smax for all u, when v < vmln 

and 

either g,(u, u) < s,in or g,(u, u) > s,,, for all u, when v > v,,,. 

505184’1.6 
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Then there exists a unique solution of the Riemann problem 

0, + g(u, u), = 0 

u(x,O)= uL 
i 

for x<o 

UR for x>O, 

for arbitrary vL, vR E R. 
There also exists an entropy curve for each shock in v. This entropy curve 

is unique except for g(u, v) in a set with measure zero in the supremum norm 
and for a set with measure zero in the (vL, vR) plane which depends on the 
function g(u, u). 

If the entropy curve w(t) is not unique, the solution u(x, t) is not always 
unique. 

The theorem is proved at the end of the section. Define the set 

C(o,, sO) = { uR E R; There is an admissible solution u(s) for 
x/t <s, such that u(s)=uL for s<M for some 
constant A4 and U(Q) = uR}. 

We will prove that C(u,, s) has the following properties: 

0) C(uLy ~)=iJ/m=~ [aj,bj], where a,db,<a,< ... <b, and 
aj,bjERu{-m,a}forj=l,..., m, 

(P) (ii) If UE [aj, b,] for 1 <j< m then g,(u(s), u) ds, 
(iii) g(u(s), a,) = g(u(s), b,- ,) + s(a,- bjP 1) for j= 2, . . . . m. 

In the proof we use a fixed uL value. Therefore we use the notation C(s) 
instead of C(u,, s). The set C(s) is most easily visualized by defining the 
function h,(v) : 

g(u(sh 0) if u E C(s) 

h,(v) = 

I 

g(u(s),a~)+s(u-al) if u<a, 

g(U(s), aj) + 4U -a,) if b,_,<v<a,, j=l,..., m 

gluts), U + 4~ -b,) if b, < v. 

From the properties (P) it is easily seen that h, is a continuous function 
and h: <s where defined. 

See Fig. 2.1 for a typical C(s), h,(v), and g(u(s), u). 
We may then start with the proofs. In the following lemmas we assume 

that g and u satisfy the assumptions in Theorem 2.3. 

LEMMA 2.4. Zf u(s) = up for s <s _, then C(s- ) satisfies (P). 
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I r i r i I I v* 
b 

1 a2 a3 b3 a4 h4 a5 
b2 qCu,v) 

hs(v) w ” 

FIG. 2.1. A typical g(u, u), C(s) = U:=, [a,, b,], and h,(u), s> 0 

Proof: When U(S) is constant, the system (2.1) and (2.2) is equivalent to 
the scalar problem, The solution is then well known, If vr is smaller than 
vR, the solution is described by the convex envelope from vr to vR, and if 
vL is larger than vR, the solution is described by the concave envelope from 
vL to vR. It is easily seen that C(K) satisfies (P). 1 

LEMMA 2.5. Assume C(s,) satisfies the properties (P) and that u(s) is 
continuous for SE [s,, s,]. Then C(s,) satisfies the properties (P). 

ProoJ When U(S) is continuous, we will prove that the solution of 
(2.1)-(2.3) is a combination of constant states, smooth rarefaction waves, 
and shocks in the u variable. 

Let v0 E C(Q) be arbitrary. Assume first that g,(u(s,,), v,,) #s,. Equa- 
tion (2.1) may be rewritten as 

-su, + gu(u, v) u, + g”(u, u) 0, = 0. 

Therefore there is a constant state or rarefaction wave starting in u0 defined 
by 

u(so) = 00 (2.4) 

guus v,(s) = - 
s-g,’ (2.5) 

Obviously there is only a constant state if v, =O. These curves are well- 
defined as long as g,(u(s), v(s)) #s. 
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Assume that g,(u(s), v(s)) =s either for s = s,, or for s > s,,. In the 
degenerate case where also g,u,=O the solution is described as in the 
scalar case. If gUu, # 0, there is a shock. Since U(S) is continuous, this shock 
is exactly like a shock in the scalar equation, i.e., we may connect a value 
v, to the right to a v- value with speed 

id+), v - I- dU(S)l v + 1 S= 
VP -v+ 

If g(u(s),v)>v~+s(v-v-) for v between v- and v,, then v+>K, 
andifg(u(s),v)<v-+s(v-v-)for v betweenv- andv,, thenv->v+. 

Thus for every point v0 where h,(v,) = g(u(s,), v,), there starts a rarefac- 
tion or a combined rarefaction and shock curve in the v variable. When s 
increases from s0 to si, these curves define the set C(s). It is easily seen that 
C(s,) satisfies the properties (P). 1 

Thus we are left with the most difficult case where there is a shock in U. 
Assume U(S) is discontinuous at s0 and a single admissible shock connects 
the left and right values up and u + , respectively, i.e., there exists a 
piecewise monotone entropy curve w(t) such that 

In order to simply the notation let us use C(s-), C(s + ), h_(v), and 
h+(v) instead of C(s,- ), C(s,+ ), h,-(v), and h,+(v), respectively. 

Assume that C(s- ) satisfies (P). We will first prove that from almost 
everywhere at g(u- , v) there starts an integral curve and from almost 
everywhere at g(u + , v) there ends an integral curve. Notice that these 
integral curves are defined such that if a curve starts from a point at 
g(u _, v) and ends at a point at g(u + , v) then the integral curve is an 
entropy curve (Fig. 2.2). 

LEMMA 2.6. Consider the integral curves 

vb,,(O = dw(t3, vb,,.(t)) -sovb,c(5) - c, 5 E R, v&O) = b, 

where b and c are constants. Then 

0) O-b, <b,, then vb,,.(‘%vb,,,.(~)for all 5. 

(ii) For all values of b, v,,,(t) converges to a v_ where g(u _, v ~ ) = 
c + sOv _ or diverges to 00 or - co when 5 decreases to - CO. 

(iii) For every value of v _ where g(u, v) - sOv increases in v in a 
neighbourhood of up, there exist d and e such that for d< b<e, vb,,(<) 
converges to v ~ when 5 decreases to - co. 
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FIG. 2.2. g(u, v) and h,(u) for u(s) constant, s < 0. 

(iv) For every value of v _ where g(u, v) - sOv decreases in v in a 
neighbourhood of v_ , there exists a unique b such that v,,,(t) converges to 
V- when 5 decreases to - co. 

When l increases to cc, (ii), (iii), and (iv) are still valid but there we have 
a unique value of b when g(u, v) - sOv increases and convergence for b in an 
interval when g( u, v) - sO v decreases. 

Proof: It is trivial to prove (i) and (ii). We will only prove the lemma 
for s0 = 0 and when [ decreases to -co. 

Let g(u _, v _ ) = c and g( u _ , v) be monotone decreasing/increasing in a 
neighbourhood of up. Then according to the assumptions on g(u, v) and 
w(t), there exists a [,, such that for t < &,, g(w(t), v) is monotone 
decreasing/increasing for v E (d, e) where I._ < e. Therefore there exists a 
unique function a(<) such that g(w(<), a(<)) = c for 5 < t,, and a(5) + v, 
when 5 decreases to - co. 

Assume g(u, v) is increasing in a neighbourhood of v- . Then the point 
a(<) is attractive; v(t) is moving towards a(5) when 5 < to if v(5) is close 
to v. Therefore vh,( 4) converges to v ~ when d < vh,J to) < e. d < vb,J &J < e 
corresponds to d’ < vh,JO) <e’ for some constants d’ and e’. This proves 
(iii). 

Assume g(u, v) is decreasing in a neighborhood of v- . Then the point 
a(c) is repulsive; v(t) is always moving away from a(5). According to (ii), 
either v,,,.(t) converges to v- or diverges to co or - co. We will prove that 
v,,,.(t) always converges to v_ or diverges to the left/right of v for b in an 
open interval. Let us first prove that there is an open interval to the left. 
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For general initial value problems we have 

lim ~,,,(5) = ~b,,,.(t) 
b + b. 

for all 5, 

Assume Ub,r( 5) converges to the left of v __ . Then rb( t) < d - 6 for 5 < 5 I for 
some [i. Then also v b+E,C(<) < d - S/2 for E > 0 small and therefore also 
vb + ,,,( 5) converges to the3 left of u ~. Then the interval of convergence to 
the left of v- is open. Convergence to the right of v_ is proved similarly. 
Therefore there exists at least one point between these two open intervals 
where a,,,(l) converges to up. 

Assume u,,,,(r) and v,,,,(<) both converge to v-. It is easily seen that 
lo,,,,(<)-v,,,,(<)l increases when 5 decreases, so there must be a unique 
value of b such that u,,,(t) converges to u_ when 5 decreases to -co. 1 

Figure 2.3a shows a typical function g(u- , v) and a c value. Figure 2.3b 
shows where ub,,.(<) converges when 5 decreases to - cc with the g(u_, v) 
function in Fig. 2.3a. 

LEMMA 2.7. Let v,(l), i= 1,2, be two integral curves satisfying 

4(5) = g(w(4h vi(t)) -wi(5) - ci, 
vi(<) converges to vi,- when < decreases to -co, 

hk(vi,-)=g(u-, Vi,-) for i= 1,2, and 

Vl,- < hp. 

Then u,(t) < u*(t) for all 5. 

Proof. For simplicity we assume s0 = 0. 
vi(<) vanishes when 5 decreases to -co. Therefore 

According to the assumptions on h-(u) and since vi,- < v2,-, we have 
Cl > Cl. 

Assume the lemma is not correct. Let &, be the smallest value of 5 such 
that u,(&,)=u~(<,,). Then ui(&,--E)<Q(&,-E) for <>O small. But 

4(b) = g(w(t), h(50)) - Cl < g(w(O, uz(M) - c2 = UC) 

and therefore v~(<~ - E) > u2(&, - E). This is a contradiction and therefore 
~1(5) < ~~(0 for all t. I 

Now we can consider the case where u(s) is discontinuous, i.e., there is 
a shock in one of the equations higher up in the system of equations. 
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* 
v2 “3 “4 “5 v6 y 

FIG. 2.3a. g(u-, II) and the constant c. 

b 

FIG. 2.3b. Convergence when 5 + -cc 

LEMMA 2.8. Assume that u(s) is discontinuous for s = sO and that C(s _ ) 
satisfies (P). Then C(s+ ) satisfies (P). 

Proof: For simplicity we assume s,, = 0. 
In Lemma 2.7 we defined the integral curves 

do) = b and 4,JO = g(d5k u,,A5)) - c. 

u~,~ converges to v- or diverges to co or - CC when 5 decreases to - co. 
In Lemma 2.6 we proved that if g(u, u) is monotone decreasing in u in a 
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FIG. 2.4. h,(o) and y(b). s = 0 in figure. 

neighbourhood of u, then there is a unique value of (b, c) such that u,,,(t) 
converges to oP when 5 decreases to - co. Lemma 2.7 shows that integral 
curves which converge to points on h-(u) do not cross each other. Then 
we may define the function y(b) = c if v,,,(<) converges to up and 
k(u -) = c. It is easy to see that y(b) is well-defined and continuous. See 
Fig. 2.4. y(b) is a monotone decreasing function of b. 

In a similar way the integral curve u,,,(t) converges to some u, or 
diverges to CC or - 00 when t increases to co. Let us study the values of 
(6, c) where the curve u,,J<) converges to u, when 4 increases to co. For 
convergence to u, the situation is changed; there is a single value of (6, c) 
for which u&t) converges to a point where g(u+ , u) is monotone increas- 
ing in a neighborhood of u, and an interval with values of b for which 
II,,,(<) converges to a u + where g(u+ , u) is monotone decreasing in a 
neighbourhood of u + . See Fig. 2.5, where the different values of (b, c), 

con”ergence to 

g(u+,v) where 

q”‘S- 

FIG. 2.5. Convergence to g(u + , 0). 
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FIG. 2.6. h_(u) and h+(u). 

where va,.(s) converges to v + and g(u+ , u) is monotone increasing in a 
neighbourhood of u +, are shown. 

Since y(b) = c is continuous, it intersects the curves where the corre- 
sponding integral curve v,,,.(t) converges to v + and g(u+ , a) is monotone 
increasing in a neighbourhood of v +. 

If y(b) = c and v,,,(t) converges to u when 5 increases to co, then 
v E C(s+) and h+(u) = c. It is trivial to see that C(s+ ) satisfies (P). 
Figure 2.6 shows typical h-(v) and h+(v). 1 

Proof of Theorem 2.3. U(S) is piecewise continuous and constant for s 
small and s large. It follows from Lemma 2.4, Lemma 2.5, and Lemma 2.8 
that C(s) satisfies (P) for SER. By the assumptions on U(S), g(u, u) and the 
properties (P) of C(s) there is a s, such that for s > s, , C(s) = R (i.e., 
h,(v) z g(u, 0)). Thus it is possible to connect the fixed vL to all values of 
uR. Since vr is arbitrary, there is a solution for all initial values. From the 
construction in Lemmas 2.42.8 it is obvious that the solution o(s) is 
unique. 

It is left to prove that the entropy curves are unique except for g(u, v) in 
a set with measure zero and for a set with measure zero in the (oL, OR) 
plane which depends on the function g(u(s), v). 

Lemma 2.6 states that the entropy curve y(t) from up to v + , when 
g(u- , a) - sv is monotone decreasing in a neighbourhood of v_ , is unique. 
Luckily there are only a finite number of values of v ~ E C(s- ) where 
g(u- , u) -SD is not monotone decreasing. This follows from (P). Therefore 
the entropy curves are unique except for a finite number of values of v _. 

Each value of vR defines a v(s) function by the construction in 
Lemma 2.4, Lemma 2.5, and Lemma 2.8. Let us stress the dependence of OR 
by using the notation U(S, vR). For a finite number of v, values 
v(s, vR) = v + for vR in an interval See Fig. 2.7 for an example. In Fig. 2.7a, 
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g(u,v) 

FIGURE 2.la 

b 
V(Sl 

FIG. 2.7b. u(s) for vR = d. 

FIG. 2.7~. u(s) for uR = c. 

g(u(O), .) and A,( .) are shown. U(S) is constant for ~20. Then ~(0, uR) =d 
for b < vR < d. Figure 2.7b shows v(s, d) and Fig. 2.7~ shows u(s, c). In both 
figures there is a jump from a to d with speed 0. If the connection from uL 
to K = c is not unique, then there is not uniqueness for vR in an interval. 
It is therefore essential that none of the finite number of values of up, 
which do not have a unique connection to uL, is connected to the finite 
number of values of v+ , where u(s, uR) = v+ for uR in an interval. It is 
easily seen that this only happens for g(u, u) in a set with measure zero. 1 

We now prove Theorem 2.1. 

Proof of Theorem 2.1. The theorem is proved by induction. For n = 1 
the theorem is the well-known result stated in Theorem 2.2. Theorem 2.3 is 
used for the induction step. 

For n = 2 there may be several entropy curves, but the solution is 
obviously still unique. For n > 2 the nonuniqueness in entropy curves may 
lead to several solutions. If (U ~, u + ) is in a set with measure zero, then also 
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the composed (K, K, u+, v + ) is in a set with measure zero. Similarly if f 
is in a set with measure zero, then also the composed function (f; f;, r) is 
in a set with measure zero. Therefore the solution is unique except for the 
flux function in a set with measure zero and for the initial value in a set 
with measure zero. [ 

3. SOME CHARACTERISTICS OF THE SOLUTION 

In this section we study some of the characteristics of the solution of 
triangular hyperbolic systems. First we show in an example that the 
generalized Lax entropy condition and the travelling wave entropy condi- 
tion give different solutions. In the example it is easy to find a solution 
which satisfies the generalized Lax entropy condition and find out that the 
solution is unique. Furthermore we demonstrate that the solution does not 
depend continuously on the data. An example shows a flux function where 
there is a one-parameter family of solutions for the initial values in a 
set with positive measure. Finally, we give an example where all weak 
solutions have a shock to a disconnected branch of the Hugoniot locus. 
Thus no solution satisfies the Liu entropy condition. 

For genuinely nonlinear and strictly hyperbolic systems the Lax 
inequalities are satisfied for local solutions (i.e., ur and uR close). In tri- 
angular hyperbolic systems the eigenvalues equal 1’= c?~~/c?u~. Notice that 
the superscript does not indicate the order of the eigenvalue. Assume that 
there is a simple rarefaction solution in equations 1, . . . . k - 1. Then there is 
a shock with speed s in equation k. This shock influences the solution in 
equations k + 1, . . . . n. Thus A’ is larger or smaller than s on both sides 
of the shock for i = 1 , . . . . k - 1. For i = k the eigenvalues appear as in 
the scalar equation, i.e., nk( u + ) < s < lk(u _ ). According to the proof 
Lemma 2.8 it is easily seen that for i> k, ,?‘(u- ), Ai <s or Ai( 
~‘(u+)>s for U- and U+ close. This is according to the Lax entropy 
inequalities. However, if U- and U, are not close, we may have j,‘(u- ) 6 
s<A’(u+) of ~‘(u+)<s<~‘(u~). Ai(u+)6s63+‘(u_) corresponds to the 
situation where the solution is not unique. In the second part of this section 
we show this in an example. 

Let us first give an example where the generalized Lax entropy condition 
and the travelling wave entropy condition give different solutions. In the 
example n = 2. We consider one equation at a time. 

fi(Ul) = -4 
and 

u,(x, O)= 
{ 

-1 for x<O 
1 for x>O. 
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ilLi- 
x 

FIG. 3.1. u,(x, I). 

See Fig. 3.1.f,(u,, u2) are defined by 

f*(u, 3 4) = (4 + u2 + 1)‘. 

See Fig. 3.2. The initial condition is 

u,(x, 0) = -2. 

Using the argument in the proof of Theorem 2.3 it is easy to find out that 
the solution which satisfies the travelling wave entropy condition is 

uf”(x, t) = 1 “:’ 
-2 -2 

for 
for for for 

-4cxlt-c -2 
x/t 1 -2cxlt-c <x/t < -4 1 

and that the solution satisfying the generalized Lax entropy condition 
reads 

-2 for x/t < -4 
!.4f”(x, t) = x/2t for -4<x/t<O 

-2 for 0 <x/t. 

FIG. 3.2. f2(u,, uz). 



A CLASS OF N CONSERVATION LAWS 91 

&.+,-J/ ) 
FIG. 3.3. uZ(x, I), travelling wave solution. 

See Figs. 3.3 and 3.4. It is easy to check that both these solutions are 
unique and do not satisfy the other entropy condtion. The solution of the 
Riemann problem of the scalar equation is monotone. This example shows 
that the solution of triangular hyperbolic systems is not monotone in 
general. uz(x, t) = -2 is not a solution since the shock from (- 1, -2) to 
(1, - 2) with speed 0 does not satisfy the Rankine-Hugoniot condition. 

The solution of the scalar equation depends continuously on the initial 
data; see Lucier [21] and Holden, Holden, and Hoegh-Krohn [lo, 111. 
For the scalar equation the following theorem is valid. 

THEOREM 3.1. If f and g are Lipschitz continuous functions, u0 and 
I+, E BV( R), and u and v are the solutions of 

u,+f(u)=O for XER and t>O 

4x3 0) = h(X) for XER 

ut + g(o), = 0 for xc R and t>O 

4% 0) = hJ(x) for XE R, 

then for any t > 0 

II4 ., 1) - a .> t)ll L, G II%(X) - hJ(x)ll L1 

+ Ilf - gIlLip min(l~OIBv~R,, ~%IBv(R)), 

FIG. 3.4. u(x, t), generalized Lax entropy condition solution. 
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where we have defined 

In triangular hyperbolic systems the solution does not depend con- 
tinuously on the data. This is connected with the nonuniqueness of the 
solution. In the following example we approach a point where the solution 
is not unique along different curves where the solution is unique. In the 
example some of the functions have discontinuous derivatives. The only 
reason for this is that it makes the example simpler. If the discontinuities 
are smoothed out, then the solutions still have the same characteristics. 

We now consider an example with n = 3.f,(u,) and U(X, 0) are defined as 
in the previous example. The definition off2 is more complicated, namely 

&Tl(UZ) for a,< -1 
.fAu,,d= I(l-~~)g,(u,)+~(l+u,)g,(u,) for -l<u,<l 

g,(u,) for 1 <a,, 

where 

g1(u)= l”’ 
i 

for u<l 
2-u for u>l 

and 

g*(u) = -2 -u. 

See Fig. 3.5 for the definition off2. We use two different initial values in the 
Riemann problem. The initial values are 

i 

-1 
u:(x?o)= -2+E 

for x<O 
for x>O 

FIG. 3.5. fi(ul, q). 
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FIG. 3.6. u;(x, t), 

respectively 

i 

-1 
u;(x,O)= -2-E 

for x<O 
for x > 0, 

for E > 0. The exact solutions are 

-1 for x/t< -1 

zq(x, t) = 

i 

0 for -l<xJt< -6 
2+E for -6<x/t<O 

-2+& for O<xJt 

and 

-1 for x/t< -1 
24,(X, t)’ -E for -1 <x/t<0 

-2-E for O<x/t 

for 6 > 0. 6 depends on E, and 6 vanishes when E vanishes. See Figs. 3.6 and 
3.7. We see that when the right hand value approaches -2 then these two 
solutions become identical. But the entropy curves with speed 0 do not 
converge. This becomes more evident when we add the third equation 

g3bJ for z+<O 
!XU,> u3) = i(2 - u2) g3(u3) + u2 g,(u,) for 0 < u2 < 2 

g‘du,) for 2<u,, 

-E t 

llJ- 
-2-c -1 

Y - 

FIG. 3.7. u;(x, t). 
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where 

and 

g‘du) = IUI + 2. 

See Fig. 3.8. The initial value is 

a, O)= 
-1 for x<O 
1 for x>O. 

The solution depends on the initial value for u2. 

i 

-1 
-2-E 

zq(x,r)= 0 

2 

1 

and 

1 -1 
u;(x, t)= 0 

1 

for x/t< -1 
for -1 <x/t< -6 
for -6<xft<O 
for O<x/t< 1 
for 1 < xJt 

for x/t< -1 
for - 1 < x/t < 1 
for 1 <x/t. 

See Fig. 3.9 and Fig. 3.10. When the right hand initial value for u2 equals 
-2, there is a one-parameter family of entropy curves between the two 
entropy curves we find when the initial value approaches -2 from both 
sides. The corresponding solution for u3 is changing from u: to u;. The 
sector with value 0 is increasing and finally ends up as in u;. 
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x 

FIG. 3.9. .;(x, I). 

We will then give an example with a flux function which gives a one- 
parameter of solutions for the initial values in a set with positive measure. 
The flux function and the initial data are only a minor modification of the 
previous example. 

and 
for x<O 
for x>O. 

The solution is easily found to be 

i 

-1 for x/t<0 
24:(x, I)= 1 for O<xjt<2 

2 for 2 <x/t. 

See Figs. 3.11 and 3.12. The definition off;” is 

fi(U,, 4 

i 

for u,<l 
.h*(%,u*)= (2-~,~f*(~,,~,)+(~*-l)g,(~*) for l<u,<2 

g,(4) for 2<ur, 

FIG. 3.10. u;(x, I) 

505/84/l-7 



96 HOLDEN AND HBEGH-KROHN 

where 
FIGURE 3.11 

gdu) = 
3(u+31-3 for U< -1 
2-u for 24> -1. 

See Fig. 3.13 for the definition off;“. The initial value in this equation is 

U&(X, 0) = 
i 

- l 
for x<O 

a for x>O, 

where - 3.2 < a < -0.8. The solution is then 

I 

-1 for x/t< -1 

u;,,u(x, t) = 
0 for -1 <x/t<0 

-2 for O<x/t<s(a) 

a for s(a) < x/t, 

where s(a) = (f2*(2, -2) -f;“(2, a))/( -2 -a). We see that 2 <s(a) < 3. In 
the solution of u:(x, t) there is a one-parameter of entropy curves in the 
shock with speed 0 exactly as in the previous example. There is also a 
shock in uT(x, t) with speed 2, but z&x, t) is equal to -2 on both sides. 
In the shock with speed 2 we have that df;“/c?u, is smaller than the speed 
of the shock before the shock and larger after the shock. Therefore the 

x 

FIG. 3.12. u:(x, I). 
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FIGURE 3.13 

generalized Lax entropy condition is not satisfied. Furthermore, by modify- 
ing this example one can construct a system for which the generalized Lax 
entropy condition gives nonuniqueness. 

In the third equation we chose fT(uz, u3)=f3(uZ, us) and uz(x, 0)= 
UJX, 0). The solutions are U: (x, t), U; (x, t) both with E = 0, and a one- 
parameter family of solutions connecting these two end points. We may 
perturb the initial values and still get a one-parameter family of solutions. 
The flux function may not be perturbed since it is essential that 
f?(u 1,u2)=0 for l< , u1 ~2 and u2 = -2. The example shows that there 
exist flux functions such that there is a one-parameter family of solutions 
for the initial values in a set with positive measure. 

Finally, we give an example where all weak solutions have a shock to a 
disconnected branch of the Hugoniot locus, i.e., the graph 

H(u-)= {u,s(u+ -u-)=f(u+)-f(u-),sER} 

does not connect u, and z.- . Then the shock from U- to u, is not 
admissible according to the Liu entropy condition; see [20]. Let fi(u,) and 
u,(x, 0) be as in the first example. Then 

u,(x, f)= 
-1 for x<O 
1 for x>O. 

Define f;(u,, u2) for 12 > 10 as 

f;(ulY 4 = 
u1+ 1% for lull 2 l/n 
u1+ 1% + JhQ - l/d for lull < l/n. 

See Fig. 3.14. Define 

%k O)= 
i 

-3 for x<O 
1 

for x > 0. 
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FIGURE 3.14 

The solution is then for all n values, 

4(x, t) = 
-3 for x<O 
1 for x>O. 

It is easily seen that for n sufficiently large the shock with speed zero is to 
a disconnected branch of the Hugoniot locus since the Hugoniot locus 
cannot pass the line u1 = 0. 
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