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ABSTRACT 

We discuss the implementation of an adaptive algorithm proposed by one of us. 
The algorithm is a hybrid of the CMRES method and Richardson’s method. Richardson’s 
method (RM) depends on a set of parameters that are computed by minimizing the L, 
norm of a polynomial over the convex hull of eigenvalues. Execution of GMRES yields 
not only an approximate solution but also the approximate convex hull. RM is used to 
avoid storing and working with a large number of vectors as GMRES often requires. 
This method is also advantageous for the solution of large problems. We consider 
several test problems and compare our algorithm primarily with the conjugate-gradi- 
ent-squared algorithm, but also with GMRES and to CG (applied to the normal 
equations). For many (test) problems our algorithm takes roughly 50 percent more 
work than the conjugate-gradient-squared algorithm, although if the matrix is either 
preconditioned or indefinite, our algorithm is more efficient. However, our algorithm 
currently imposes an undesirable burden on the user, who is invited to consider a 
variety of numerical parameters to manipulate, such as the number of steps of RM, in 
order to enhance performance: the values we suggest are only empirical. 
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Gl. INTRODUCTION 

PAUL E. SAYLOR AND DENNIS C. SMOLARSKI 

The purpose of this paper is to describe an adaptive algorithm for 
Richardson’s method (RM) and discuss some of its numerical properties. 
Effective use of RM, in our approach, depends on a sequence of iteration 
parameters related to the spectrum of the matrix. An adaptive algorithm 

computes successive refinements of the spectrum by starting with a crude 
approximation and then executing RM. If the spectrum is not well approxi- 
mated, RM yields a sequence of residual errors rich in the eigenvectors whose 
corresponding eigenvalues are needed to improve the spectrum. This behav- 
ior of our adaptive algorithm is the same as for Manteuffel’s adaptive 
Chebyshev algorithm. Our algorithm, which is based on the algorithm of [22, 
Chapter 131, began as a generalization of Manteuffel’s algorithm [23]. The 
Manteuffel adaptive algorithm is restricted to real matrices for which the 
eigenvalues lie in a half plane, whereas our generalization has no such 
restrictions. We also use the GMRES algorithm to provide a starting vector for 
RM, and in this way have generalized the hybrid algorithm of [I2]. 

Professors Golub, Varga, and Young have been leaders in the develop- 
ment and analysis of many fundamental numerical methods; their contribu- 
tions to RM are an example, and we describe some of these briefly. 

Professor Golub with a colleague [l] examined the efficiency of RM, using 
a parameter ordering scheme due to Lebedev and Finogenov [l], and pointed 
out the advantages due to its simplicity. In later work, Professor Golub 
studied the application to the solution of nonlinear problems [I7]. One of his 
recent contributions to the use of RM concerns the question of accuracy in 
inner/outer iterations for which one of the iterations is RM [16]. 

Professor Varga and his colleagues in recent work [lo] have treated the 
problem of asymptotically optimal parameters for semiiterative methods. 
Their work lays the theoretical basis for obtaining RM parameters that yield a 
smallest error norm as the number of iterations increases. In our approach, 
parameters are optimal if an L, norm of a polynomial is smallest. Other 
important references in the treatment of this topic are [13, 14, 28, 29, 31, 39, 
421. Also see [19, 201. 

Professor Young’s contributions to the theory and applications of iterative 
methods began at the dawn of the electronic-computer age with his profound 
analysis of successive overrelaxation. In the same period he showed how to 
accelerate RM with Chebyshev polynomials (see Young’s paper in [27]), and 
studied the important question of ordering the acceleration parameters, 
revived in recent work of [32, 14, 401. 
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1.1. Outline of the Puper 
In the second section an overview of the adaptive algorithm is given. A 

novel hybrid RM-CMRES method has been recently presented [26], with some 
features common to our method. We comment on both methods in Section 2. 

In Section 3, the advantages of using RM are briefly discussed. As often 
happens in practical work, phenomena occur that lie outside the boundaries 
of theory. Devices and tricks, unjustifiable numerical constants, and manipu- 
lations of algorithm elements are responses of the human observer that affect 
performance in ways that cannot be smoothly analyzed. These are discussed 
in Section 4. In Section 5, the algorithm is stated that in Section 6 is applied 
to a set of problems, most of which arise from engineering applications. We 
discuss modifications of certain basic steps of the algorithm in Section 7. 

1.2. Why This Method? 
The motivation for RM is its suitability for large problems on vector and 

parallel processors, which we will call the system performance: fewer inrier 
products, fewer vector updates, somewhat fewer arithmetic operations, and 
less data traffic. This especially holds for variants of RM in which one or more 
steps are combined [35]. Large problems, as the reader is aware, occur in the 
simulation of physical problems in 3D. For example, the solution of porous- 
media problems yields systems of one million equations [25], and even these 
are too small to be practical. 

1.3. Adaptive Methods 
RM is not practical unless accelerated by a sequence of iteration parame- 

ters. Our method is one of a class of adaptive methods such as the Manteuffel 
adaptive Chebyshev method [23], h w ereas the conjugate-gradient method is 
representative of a class of methods for which computation of the necessary 
parameters is an integral part of the method, Adaptive-method parameters 
are external, whereas conjugate-gradient parameters are internal. Examples 
of conjugate-gradient-like methods in the non-Hermitian case are the bicon- 
jugate-gradient method [ 153, the conjugate-gradient-squared method (CGS) 

[38], the generalized minimum-residual method (GMRES) [34], and the stan- 
dard conjugate-gradient algorithm applied to the normal equations, A*Ax = 
A*b (CGNR). 

In our method, iteration parameters depend on the spectrum of the 
system matrix (which may be preconditioned). An adaptive algorithm com- 
putes iteration parameters by first computing an approximate spectrum by 
the power method, and only then proceeding to RM. To execute RM, an initial 
solution approximation is required, which could be taken to be the initial 
guess provided by the user. However, the computations required by the 
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power method yield vectors from which a GMRES approximation may be 
computed at almost no additional cost, and this is the initial approximation 
we use for RM. GMRES is an important method in its own right, but in our 
approach it is treated as a launching pad for RM, which is meant to perform 
most of the work in obtaining the solution. 

1.4. Conventions and Terminology 

The importance of complex linear-algebraic systems leads us to use the 
more general terms Hermitian and non-Hermitian in place of symmetric and 
nonsymmetric. The Hermitian transpose of a matrix M will be denoted by 
M *. A vector norm will always be the standard Euclidean norm, induced by 
the inner product (u,v) := Cyz,,uiiji. The quantity N is the number of 
unknowns. An algorithm is a detailed description of an implementation of a 
method. The term matvec is often used and means a matrix multiplication of 
a vector. Many least-squares problems are mentioned; the standard abbrevia- 
tion, LS, is used for least squares. 

2. OVERVIEW OF THE METHOD 

In this section, three computational problems are described, from the 
solutions of which an adaptive algorithm will be assembled in Section 4. 
Since the topic is Richardson’s method, this exposition logically beings with a 
statement of RM and a definition of optimal iteration parameters, which 
depends on the spectrum of A. The power method is presented in the second 
subsection, following the description of RM. With the computation of optimal 
RM parameters out of the way, the algorithm is ready to execute RM, using an 
initial approximation computed by GMRES. In the last subsection, we compare 
our method with the method of Nachtigal, Reichel, and Trefethen [26]. 

2.1. Richardson’s Method 
Given Ax = b, Richardson’s method (RM) [21] is, for 0 < i 6 k - 1, 

,(i) = b _ h(i), 

r(i+l) = xci) + Tirci), (3) 

where (TV : i = 0,. . . , k - l} is a cycle of iteration parameters of period k. 
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It may be shown in a straightforward way that 

r(‘) = Ri( A) r(O), 

where 

i-l 

R,o=,~l(1-7,h). 

A polynomial such as Rj for which 

Ri(0) = 1 (4) 

is called a residual polynomial. Any residual polynomial yields a set of 
r-parameters; optimality of these parameters is taken up next. 

2.2. Optimal Residual Polynomials 

From 

rck) = R,(A)r(” 

it follows that 

Ilr’k)ll G )( Rk( A) ~~llr(0)ll Q IIS-‘I]( Rk( A) (IIISII llr(“)ll (5) 

if A is diagonalizable, and 

A = S-‘AS 

is the diagonalization, where A = diag(hi) is the diagonal matrix of eigenval- 
ues. 

DEFINITION 1. An CL,-)optimul residual polynomial is one for which 
R,(A) is minimum in the sense that 

;/,I R,(A) 12w(h)ldnl = minimum, (6) 

where I is a contour enclosing the spectrum of A, L = JJdhl is a normaliza- 
tion factor, and w is a positive weight function. 
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There is of course no unique optimal polynomial, since optimality de- 
pends not only on the weight function but also on the contour. 

In practice, the measure in (6) is discrete, and the integral reduces to a 
sum 

where 

MW= Iit w(li)m(lj)> 
i=l 

ci is a point on I, and m is a measure. [Note that neither (6) nor (7) is an 
induced norm for matrix R,(h).] 

The condition (4) means that 

Rk( A) = 1+ t pihi. 
i=O 

Equation (6) reduces to a least-squares problem in the coefficients pi, 

M,IIRkll~=IIF(~1,...,~k)*-y112=minimum, (8) 

where F = ( fij> is the M X k matrix defined by 

and 

Another method and algorithm to determine the optimal residual polyno- 
mial are described in [36]. In our experiments, the method based on solving 
(8) was equally accurate. 

2.3. The Convex Hull of the Spectrum of A 
The contour r will be taken to be the boundary of the convex hull of the 

spectrum of A. Computing an approximation of the convex hull is carried out 
by the power method applied to A. 
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The method for computing eigenvalues is only outlined here. For more 
details see either [23] or [22, Chapter 131. It begins with the Krylov 
subspace, defined next. Let s0 be a seed vector. 

DEFINITION 2. The Krylov subspace generated by s,, is 

V,+,(A,s,):=span{s,,...,A”s,}. (9) 

(Usually, the dependence on A and s0 will not need to be shown, and we 
simply write V,,,.) Th e vector s0 will always be taken to be either the last 
residual obtained from the most recent execution of RM or the initial residual 
if RM has not yet executed. 

Let si = A’s,. A set of approximate coefficients, {ci), is determined by 
solving the LS problem, 

Ilcos,-j + * * . + cj_is,_i + s,II = minimum, (IO) 

which will be called the EGVL LS problem. 
Computing the roots of 

pJ A) := CO + * * . + cj_pi-l + hj = 0 (11) 

yields approximate eigenvalues A 1, . . . , A j of the matrix A 

REMARK 1. The Arnoldi method is a method for computing eigenvalue 
estimates by computing a Gram-Schmidt orthogonalization for Vj+l, then 
computing the eigenvalues of a Hessenberg matrix the elements of which 
result from the orthogonalization. The eigenvalues of this matrix are the roots 
of a polynomial with the same roots as pj. See [34] for details. 

2.4. The Generalized Minimum-Residual Method 
The eigenvalue approximations yield a contour I defined by the convex 

hull. RM could now begin with the last approximation either from the initial 
guess provided by the user (if RM has not yet executed) or from the most 
recent execution of RM, which in either case will be denoted by x(O); but a 
better choice is possible by using a linear combination of the Kylov vectors, 
chosen so as to minimize the residual, Obtaining an approximate solution by 
minimizing the residual over the Krylov subspace generated by so := b - Ax(O) 
is equivalent to the generalized minimum-residual method (GMRES) [34]. 
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The approximation X(O) together with the first m vectors of the Krylov 
subspace gives 

m-l 

dm)=dO)+ c aisi, 

i=O 

where the coefficients oi are determined by the condition that 

11 A( r - xCm)) II= minimum. (12) 

=S o-(aosl+ ... +a,_1s,), 

(12) becomes 

II so - ( (YOSI + . . . + a,_1 m s >Il= minimum, (IS) 

which will be called the GMRES LS problem. 

2.5. The Nachtigal-Reichel-Trefethen Hybrid Method 

In a recent paper, Nachtigal, Reichel, and Trefethen [26] present a hybrid 
method, which, for convenience, we call the NRT hybrid method. It is similar 
to our adaptive method,’ but with a crucial difference that we shall discuss. 
Nachtigal, Reichel, and Trefethen visualize their method and the general 
class of adaptive methods in the following striking ways (modified somewhat 
from [26, pp. 6, lo]. First, adaptive methods appear as 

adaptive method : power method + eig. est. -+ R, + GMRES 

+ R(kG) + x(O) + RM(I’OOtS Of flk), 

in which RiG) is the GMRES residual polynomial with coefficients defined by 

‘We have chosen to call our method an adaptive method to emphasize our intellectual debt 
to Manteuffel, but our method as well is a hybrid of GMRES and RM. 
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(131, and R, is the L,-optimal residual polynomial with coefficients defined 
by (8). In the NRT hybrid method most intermediate steps are omitted: 

NRT hybrid method : GhmEs -+ R(kC) + x(O) -+ RM (roots of R(kG)) . 

A crucial difference between the two methods lies in the polynomials that 
yield RM iteration parameters. To state this more precisely, our method uses 
the (reciprocals of the) roots of the EGVL polynomial 

p/JA) := co f . . * + c/&P- + hk, 

whereas the NRT hybrid method uses the roots of the GMRES residual 
polynomial, 

R’,G’(h) =l-a,A+ *.. -cu~_~A~. 

(We have made a simplification for effect. Technically, we use the roots of pk 
to define a convex hull over which an L,-optimal residual polynomial is 
computed. If the quantities li in the sum in (7) were roots of pk, which 
arises if M = k, then the RM iteration parameters in our method would be the 
reCiprOCab Of the rOOtS Of pk.1 

The coefficients are defined by the LS problems (11,131. For easy 
comparison, these are stated here with special labels, 

~~R(~C)(A)~~=~~-~~AS~- .-- -Ck’k-lAkSoI(= minimum, (GMRES LS) 

where so = r(O). 
These are complementary LS problems, and so it is not surprising that 

they are related. Before getting to this relation, we need to recall some 
terminology and make a definition. The matrix Q*MQ is an orthogonal 

section of M if the columns of Q are orthonormal. The field of values of a 
matrix M is the set FOV(M) := {(Mv, v) : llvll= 1). Finally, we note that it is 
useful to make clear which space is spanned by the columns of Q and so 
make the following definition: 

DEFINITION 3. h orthogonal section of the matrix M over V is any 
orthogonal section Q*MQ of M for which V = span{q,, . . . , qk), where qi is 
the ith column of Q. 
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Now we can turn to a discussion of the relation between the two LS 
problems. We begin with a theorem summarizing certain results and obser- 
vations of Manteuffel [23]. 

THEOREM 1. The EGVL vectors, {pi(A)s,}/=,, fm an orthogonal basis 

fw vk+,. The roots of pk(h>, which are the power-method estimates of the 
eigenvalues of A, are the eigenvalues of an orthogonal section of A over V,, 
and as such lie in the field of values of A. 

Proof. The statement of the theorem and the proof follow [23, p. lo]. 
For the Krylov subspaces v defined in (9) we have that 

v,cv,c ... cvk+l. 

For 1~ i < k, assume that A’s, is not in y (since otherwise the solution of 
the linear system is in Vi). Therefore, minimization (with respect to the 
Euclidean norm) of the vector 

p,(A)s, = coso + . . . + c~_~A”-‘s~ + A’s, 

is equivalent to orthogonality of p,(A)s, to Vi. Observe that pi depends, of 
course, on both A and s,,. From this it follows that the EGVL vectors 

(pi(A)s,}~=, are an orthogonal basis for Vk+r, and the roots of &(A) = 0 are 
the eigenvahres of an orthogonal section of A over Vk. The eigenvalues of an 
orthogonal section of A lie in the field of values of A. n 

Now consider the GMRES LS case. Note that, due to the variable coeffi- 
cient ok_ 1 of Aksa in (GMnEs LS), the GMnns vector {R$G)(A)sO} is not 
orthogonal to Vi, and the roots of RIG) are not, at least on the basis of this 
reasoning, the eigenvalues of an orthogonal section of A. Nevertheless, there 
is a relation between the roots of R(kG) and the eigenvalues of A. 

THEOREM 2. 

1. (From Theorem 1.) The EGVL vectors {p,(A)s,}ik,, j&n an orthogo- 
nal basis of v,,,. The roots of pk(h> = 0 are the eigenvalues of an orthogonal 
section of A over vk. 

2. The polynomials {R(G)(A>~o)~zo do not, in general, fm an orthogo- 
?lUl basis of v,,,. However, there exists a set of EGVL vectors, to which 
RiG)(A)s, belongs, that (necessarily) f orm an orthogonal set of basis vectors 

Of vk+,. 
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3. The roots of 2 

CLkR(kC)(~-‘)=~k-LYOELk-‘- . . . _ak_l=o 

are the eigenvalues of an orthogonal section of A- ’ over AV, := 
span{Asa, . . . , Aks,}. 

4. The roots of R(,G)(A> = 0 are reciprocals of the eigenvalues of an 
orthogonal section of A- ’ over AVk s 

5. The roots of R’,G)(A) = 0 are in the set ~/Fov(A-‘):= 1~: l/p E 
FOV(A-I)). (Zf 0 E FOV(A-~), replace FOVEA-‘) by~-ov(A-‘)\{O).) 

Proof. 1: For clarity and emphasis, we have merely extracted a state- 
ment from Theorem 1. 

2: The first statement has been proved in comments preceding the 
statement of the theorem. Now consider the EGVL vectors for the Krylov 
subspace vk+ ,(A-‘, Aks,), which we will denote by 

These fonn an orthogonaI basis for 

v,+,(A,s,) =Vk+,(A-‘,Aks,). 

Moreover, 

R’kc)(A)s, = pk,A-‘(A-l)Akso, 

since each is the solution of the same LS problem. 
3: Next, observe that 

~kR~G’(~-l) = ,Lk - Ck!,/Lk-’ - ‘. ’ - ayk_l= pk,A-‘(F). 

Since this is the EGVL polynomial for A- ’ over the subspace vk+ r(A- ‘, Aks,), 
the roots of this polynomial are the eigenvalues of an orthogonal section of 
A-’ over V,(A-‘, Aks,) = AV,(A, so>. This proves 3. 

4: The roots of P~R’,~‘(~-‘) = 0 are reciprocals of the roots of R’,G’(A) = 0. 
5: The eigenvalues of an orthogonal section of A-’ lie in FOVEA- ‘). From 

3, the roots of RiG)(A> = 0 therefore lie in l/~ov(A-‘). n 

‘The expression on the left is defined only for k # 0, which is assumed. 
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REMARK 2. The crucial difference stated in Theorem 2 between our 
adaptive method and the NRT hybrid method is that the roots we use lie in 
FOV(A), and in the NRT case the roots lie in ~/Fov(A- '1. This statement 
about our algorithm also applies to the adaptive method of Manteuffel 1231 
and the hybrid method of [I3]. 

REMARK 3. The spectrum of A is contained ~/Fov(A-'1. Although the 
field of values of a matrix is a convex set, l/~ov(A-') is not, in general, 
convex. Therefore, in general, for normal as well as nonnormal matrices, 
FOV(A)#~/FOV(A-~). 

REMARK 4. If A is hermitian definite, then FOV(A) = ~/Fov(A-'). The 
converse is not true. 

3. VARIANTS OF RICHARDSON’S METHOD 

In this paper, we focus on the implementation of an algorithm and, in the 
numerical experiments, the arithmetic eficiency, as measured roughly by the 
number of floating-point operations. However, we have been motivated by 
the need to solve large problems on vector and parallel processors and assert 
that, for this, RM is particularly advantageous. The fundamental reason is that 
with a priori computed parameters, there is no sequence of operations to 
synchronize, allowing the method to be rewritten in a way such that 
successive matvecs execute without interruption and so smoothing the course 
of the computation. We shall explain this further, using the grand-leap 
VWhIlt OfRM. 

The grand-leap variant of RM (also called a k-step method [8]) is 

x@) = do) + Ck_l( A)r(‘), (14) 

where C, _ ,(A) may be shown to be 

l- R,(h) 
G-l(A) = A . 

The polynomial in (15) will be called the grand-leap polynomial. It also 
arises in polynomial preconditioning as a result of the property that 

C,_,(A) = A-‘, (16) 
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which may be easily derived from (15). The advantages of polynomial 
preconditioning have been discussed in the literature [2, 4, 331. 

The advantage of the grand-leap variant is also an advantage for the 
variants of the k-step iterative methods presented by Chronopoulos and Gear 
in [7-g]. 

Rather than the grand-leap variant, we implemented the leapfrog variant 
[35] in our algorithm. This variant is a formulation of (2>, (3) in which only 
r@j) is computed. The grand-leap variant is easier to discuss, but the leapfrog 
variant makes the algorithm easier to follow. 

3.1. The Advantage: Successive Matvecs 

The central observation is that C,_ i(A)r(‘) can be easily evaluated. To 
see this, assume that C, _ 1 has been factored, 

k-l 

Ck-l(h) = gk-1 n tA -d 

(This assumption will be discussed below.) Therefore, 

k-1 

C,_l(A)r’o’= gk-1 _pl (A - ajWO)~ 

and RM reduces to a succession of matvecs. 

3.1.1. Block Tridiagonal System Matrix. To understand the 
of the successive matvecs in (17), suppose A is block tridiagonal, 

A= 

S, T, 0 . . . 

T2 S, T3 * 

0 T4 S, * * 
. . . . . . 

. . . . 
. . . 

(17) 

advantage 

where Si and Ti are block submatrices. To simplify the discussion, assume 
that the shifts, i.e., the q’s, are zero. We shall consider how the operations 
required to form A’v may be organized. If v = (vi, va, . . . I’, where vi is a 
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block vector, then 
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Au = 

= 

s, T, 0 . . . 

T, S, T3 3 

0 T4 S, . . 
. . . . . . 

. . . . 
. . . 

s1v1+ TlV2 

I T2v1 + S,v, + T3v3 

T4v2 + S,v, + T5v4 (18) 

The first component of the next product, A(Av), is 

S,( S,v, + T,v,) + T,( T2v, + S,v, + T,v,). 

It is easy to see the advantage in continuing with the computation of this 
component when the block submatrices S, and T, are in efficient memory. 
As the number of products increases from A2v to Akv, efficiency increases. 
Moreover, the work can be subdivided among k processors on a parallel 
computer, which is explained clearly in [33]. (Gene Golub privately pointed 
out these advantages to us.) 

We introduce a convenient term, using the shift factors which we have 
ignored in discussing (18) until now. 

DEFINITION 4. By matrix pipelining we mean the recursive com- 
putation of (A - ok>nkI:(A - a,)~ while block elements for computing 
n:I,‘(A - oi)v are efficiently accessible. 

3.1.2. Comments on Matrix Pipelining. If the shift factors are included, 
they increase the megaflop rate on Cray supercomputers when A is block 
tridiagonal. 

On single vector processors of either a Cray-XMP or a Cray 2, the 
complicated programming of matrix pipelining is not necessary in order to 
achieve an advantage. Two or more subroutine calls of the form 

1. Compute o2 = (A - ar)vr. 
2. Compute o3 = (A - a,)~,. 
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perform more efficiently than the same number of successive steps of RM, 

i.e., (2>, (3).3 

3.2. Remarks on the Representation of Polynomials 

We shall touch on some practical issues in matrix pipelining. The system 
performance of RM does not depend on the origin of the residual polynomial, 
but only on the exploitation of matrix pipelining, independently of the 
theoretical origins of either the residual polynomial or equivalently the 
grand-leap polynomial, The residual polynomial could be an La-optimal 
polynomial as we assume in our adaptive method, a GMRES residual polyno- 
mial as in the NRT hybrid method, or one resulting from conformal mapping 
techniques [14, 391. However, matrix pipelining does depend on the repre- 

sentation of the polynomial. 

3.2.1. Factored Form and Power Form. The grand-leap polynomial 
C,_,(A) does not necessarily present itself in factored form. For example, the 
power-form representation i.e., 

Ck_l(h)=ek_lAk-l+ ... +e,, 

may result from the same representation of the residual polynomial. To 
evaluate C,_ l(A)r(“) with the advantage of matrix pipelining, we turn to 
Homer’s rule, i.e., a sequence of operations of the form 

wi+l 
= ek_l_i~ + Awi. (19) 

If the factored form is used, matrix pipelining is a sequence of operations of 
the form 

oi+r = (A - v~Z)V,. (29) 

Equation (19) 1 ies midway between the simplicity of (20) and the daunting 
complications of the complete unfolding of the single-step form of RM in (21, 
(31, which yields a sequence of operations of the form 

‘i+l = xi + Ti(b - Axi). (21) 

Of course, the factored form could be computed from the power form by 
a rootfinder (for example, computing the eigenvalues of the companion 

3We are indebted to M. Hoist, Department of Computer Science, the University of Illinois, 
Urbana, for information given here on Cray vector-processor performance. 
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matrix). The accuracy of this unstable computation is not so critical, since the 
purpose of finding the roots is to evaluate the polynomial. 

There is an important case in which Homer’s rule is preferred, and that is 
.to avoid mixed real and complex arithmetic, which arises when the matrix A 
is real. In general the roots a, of the grand-leap polynomial are complex, but 
in the case of real A, b and x(O) the solution and the coefficients Bi of Ck_r 
are real. Thus (20) requires mixed arithmetic, and (19) only real arithmetic. 

3.2.2. Newton Form. A well-known approach to RM is to derive the 
residual polynomial (equivalently, C, _ 1 1, from conformal-mapping tech- 
niques applied to a simply connected compact region, usually thought of as 
containing the eigenvalues of the system matrix (or the eigenvalues of the 
preconditioned system matrix as the case may be). Reichel has presented an 
algorithm (Algorithm 4.1 in [32]) for C,_ 1 in which it is assumed to be 
represented as a Newton interpolating polynomial at a Leja-ordered set of 
points (lj}jk,i, i.e., an expression of the form 

k-l 

C&l(c) = c pjmj(l), 
j=o 

(22) 

where m, := p. and 

(23) 

Nested evaluation analogous to the way in which Homer’s rule was applied 
to the power form yields Ck _ ,(A)r (O) from a sequence of evaluations of the 
form 

If the factored form is preferred, it can be computed directly from the 
Newton form, and we outline this. From 

zmi(z) = zi+lmi(z> + m,+dz> (24) 

together with 

zmk-2( z) = - 
PO 

-m,( 2) - . . . 
pk-3 

pk-1 
- -mk-2.(Z) 

pk-1 

1 
+ Zkmk-&(Z) + --Ck-dZ) 

Pk-1 
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we see that 

631 

where 

N= 

- 

0 . . . 0 zk-2 

A_ __ . . . Pl P2 &k-2 - pk-2 
-- - 

pk-1 pk--I pk-4 pk-1 

1 

zk-l 

(25) 

Therefore, the roots of C,_ i(z) are the eigenvalues of N. 

4. PRACTICAL ALGORITHM ISSUES 

The discussion in Section 2 yields a protoalgorithm, which is a simplifka- 
tion of the algorithm from [22, Chapter 131: 

1. Given r(O), compute a Krylov subspace V,,,,,, using so := b - Ax(‘). 
2. Compute m eigenvalues. From these and any preexisting convex hull, 

compute a new approximate convex hull and a set of k RM parameters., 
3. Compute a oh.m~s approximation rem). 
4. Execute RM starting with x(O) := rcrn) and ending with x@). Set x(O) := xck). 
5. If not converging satisfactorily, recompute the Krylov subspace V,, 1 

with so := b - Ax(O) and go to step 2. 
6. If converged, halt. 
7. If converging satisfactorily, go to step 4. 

Some terminology is convenient. By pass, we mean that steps 4 and 5 
have been executed and control has returned either to step 2 or to step 4. 

We shall examine these steps from the experimental point of view and 
use the results to develop and justify an algorithm. A more complete 
discussion of experiments will be given in Section 6. 
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FIG. 1. Eigenvalues of the 16X 16 test matrix with enclosing template for the 
spectrum. Eigenvalues are 1 k 4i, 5, and 6. The remaining 12 eigenvalues are equally 
spaced along four diagonal from 2 f 4i to 6 and 3 k 4i to 7. 

4.1. The Convex Hull 
Each pass of the algorithm yields a set of eigenvalue estimates. The 

generation of a convex hull of these estimates may be illustrated with a 
simple test matrix A, a 16 X 16 tridiagonal matrix for which the eigenvalues 
are shown in Figure 1. The template placed around the eigenvalues in the 
figure shows the “boomerang” shape of the spectrum, characteristic of 
certain preconditioned elliptic difference matrices. (This example of a spec- 
trum was suggested by H. van der Vorst [41]. Also see [37].) 

In the first execution of the power method, step 2, the convex hull is 
shown as the smaller triangle in Figure 2. (For these experiments the 
number of computed eigenvalues is either m = 3 or m = 2. This choice will 
be discussed later.) 

FIG. 2. Eigenvalues of the 16 X 16 test matrix with first computed convex hull 
from the algorithm. Also, the expanded hull (expansion factor of 2.0) is shown. 
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FIG. 3. Eigenvalues of the 16 X 16 test matrix with the second computed convex 
hull from the algorithm. 

Figures 3 and 4 show that, in succeeding passes, outlying eigenvalues are 
computed from the power method and added to the previously computed 
convex hull. At this stage further passes did not resolve the rightmost 
eigenvalues accurately enough for satisfactory convergence of RM. There are 
two plausible explanations. One is that three steps of the power method are 
not sufficient to compute accurate estimates. To improve accuracy more 
Krylov vectors A3s,, A4s,, . . . could be computed, and only the last three 
used for computing a conjugate pair. The second is that the residual 
polynomial in RM is too large in magnitude at the eight edge of the spectrum. 
Techniques could be suggested for treating this phenomenon also. However, 
rather than either modify the Krylov subspace or modify the residual 
polynomial, we have taken a different approach, namely, to enlarge the 
convex hull uniformly by stretching each vertex of the hull by the same factor 

FIG. 4. Eigenvalues of the 16X 16 test matrix with the third computed convex 

hull from the algorithm. 
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along a ray from the centroid. An enlarged hull is shown on Figure 2. If the 
polynomial is optimized over a larger region, the error corresponding to 
eigenvalues along the edges is damped more effectively. 

We shall discuss examples in Sections 6.2 and 6.3 for which shrinking the 
convex hull improves performance. 

4.2. Criteria for Computing New Eigenvalue Estimates 

In the protoalgorithm, eigenvalues are updated only if the convergence of 
RM is judged to be unsatisfactory. One way to do this is to use 

“r(k)” < “Rk( A)” llr(o)11’ (26) 

with the rough estimate llRk(A)ll = llRklli, but in practice this has not been 
satisfactory. Rather than perfect this criterion, we have found that after (two 
out of three) RM cycles automatic execution of the GMRES step has resulted in 
an algorithm that has performed well. 

4.3. Polynomial Preconditioning 

Until now in this paper, the adaptive algorithm has been described as RM 
with only enough extra computation needed to compute eigenvalues, and this 
effort also yielded a GMRES approximation to provide an initial approximation 
for RM. In practice, as stated above, we found it an advantage to use GMRES 

on most passes of the algorithm. This changes the nature of the algorithm. 
What has been described as RM may now more properly be described as a 
polynomial preconditioning of GMRES. For, (14) and (16) show that execution 
of RM is equivalent to transforming the original system AX = b into the 
system C,_,(A)Ar = C,_,(A)b w h en the GMRES step is applied.4 This is not 
strictly correct, of course, since the polynomial C, _ i changes from one cycle 
to the next, which means that the preconditioner is changing each time 
GMRES is applied. Nevertheless, this holds approximately and partially ex- 
plains why in our numerical experiments we needed only two steps of 
GMRES. The polynomial from RM yields a system that is more favorable, we 
conjecture, either by generating a system matrix C,_,(A)A the Hermitian 
part of which is definite, or, if A is indefinite, by yielding a system matrix 
C,_ ,(A)A that is definite. 

41t would be more correct to call this a partial polynomial preconditioning, since in 
the case of polynomial preconditioning the CMRES Krylov subspace would be 
V,,, + ,(C, _ ,(A)A, C, _ ,(A)r”‘), whereas we use the CMHES Krylov subspace V,,, + l(A, r(O)). 
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4.4. Remarks on Indefinite Matrices 
We shall say that A is indefinite if the convex hull of the spectrum of A 

includes the origin. It is well known that indefinite problems are difficult for 
GMRES, requiring that the approximate solution be generated from a Krylov 
subspace of large dimension. Indefinite problems are also difficult for RM, for 
the following reason: mi requires for convergence (for every matrix of a 
family of matrices with the same convex hull) that the residual polynomial be 
less than 1 in magnitude at each eigenvalue. It follows, however, from the 
maximum principle applied to R,(h) that 1 R,(A)] > 1 on the boundary, since 
R,(O) = 1. In order to converge when used alone and not with GMRES, it 
would be necessary to minimize the residual polynomial over a simply 
connected region not containing the origin, which implies that the difficult 
problem of isolating the origin by computing interior eigenvalues would have 
to be solved. A proposal for isolating the origin in the case when the 
eigenvalues are real and the matrix Hermitian is contained in [2], but it does 
not generalize to the complex case. 

4.5. Period of Richardson’s Method 
We have observed in the numerical experiments reported in Section 6 

that a period of k = 8 was effective over a range of test problems. 

5. THE ALGORITHM 

ALGORITHM (Adaptive Richardson’s method). 

Purpose. Execute RM and GMRES to solve a general linear-algebraic system. 

Input. Matrix A; right side b; initial guess r(O); period k; m, where m + 1 
is the dimension of the ~rylov subspace; and j, the number of computed 
eigenvalues. The parameter m may be set equal to j. The user must also 
provide a maximum number of passes and an error criterion to halt the 
algorithm [at steps N(c) and lo]. An initial estimate of the convex hull of 
the spectrum of A could be provided if available. An expansion factor 
for the convex hull to be used in step 5 must also be provided. 

Output. An approximate solution of Ax = b; an approximate convex hull of 
the spectrum of A. 

Restriction. The period k is even, since the leapfrog variant is imple- 
mented. The dimension m + 1 of the Krylov subspace must he large 
enough that j eigenvalues can be computed: j < m. 
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Notes. 

1. A routine must be provided to evaluate the inner product (f, g), = 

c~“=,f(~~)g(5j)~(5i>m(5i)/M,. 
2. A norm with no subscript denotes the standard Euclidcan norm of a 
complex vector, defined by 11~11~ = (u,u). The algorithm is adaptive: 
eigenvalue estimates are revised if necessary for convergence, based on 
a criterion which is tested in step 11. 

3. The symbol C, denotes an approximate convex hull of the spectrum 
of A. 

Implementation details. 

1. Only two eigenvalues are computed, except for the first pass, in 
which three are computed to obtain a convex hull with a nonvoid 
interior (if one exists). 
2. The normal equations for the two LS problems of steps 3 and 8 are 
solved using LINPACK routines CCEFA (or CCECO) and CGESL. 
3. The roots of the residual polynomial in step 3 are the eigenvalues of 
the companion matrix, and these are computed using the EISPACK 

routine cc. 
4. the convex hull in step 4 is determined using “Graham’s scan” 
algorithm [30, pp. 100 ff.]. 
5. The li in step 6 are determined as follows. Each edge between two 
successive vertices of the convex hull is subdivided into n points. The 
midpoints of these subdivisions are chosen as the &‘s. In our experi- 
ments, n was 5 and the points were so chosen that the subdivisions of a 
given edge were equal in length. Subdivisions of different edges would 
not necessarily be of equal length, however. Each m(li) was taken to be 
the length of the appropriate subsection. Note: If the convex hull is a 
line, as would occur if the eigenvalues were positive, more than five 
points will be necessary, since otherwise the degree of R, could be at 
most five. 
6. The LS problem of step 7 is solved by using a QR decomposition of 
F by means of LINPACK routines CQRDC and CQRSL. 
7. An alternate version of step 8 would be to normalize the columns of 
the matrix, and then use appropriately modified oj’s. 
8. The accuracy criterion of step 9(c) and step 10 is I]r(k’]]/ ]]r(‘)]] < 
epsilon, where epsilon is the input-error criterion provided by the user. 
The quantity IIT (k)]]/ ]]r(‘)]] will be called the relative residual. 

Algorithm statement. 

1. (Cf. [22, Chapter 131, step 1.) If there is an estimate of C,, then 
continue; else set C, equal to the null set and continue. Set 
pus := 1. Set f-(O) := b - h(O). 
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2. 
3. 

4. 
5. 

6. 

7. 

8. 

9. 

(Cf. [22], step 2.) Set si := Air(‘), for i = 0,. . . , m. 

(Cf. [22], step 3.) Solve the EGVL LS problem (10) for coefficients 
co,...,cj-1. In the case where j = m = 2 the eigenvalue normal 
equations to solve (10) are (with /3 = l/ l].~~11~> 

Compute the roots, A,,...,hj of co+ **a +cj_,hj-‘+Aj=O (to 
be used for approximate eigenvalues). 
(Cf. [22], step 4.) Determine the convex hull of C, U{A,, . . . , Aj}. 
(New step not in [22].) Expand or contract the convex hull by an 
appropriate factor. 
(Cf. [22], step 4.) D e ermine t M points {&) and compute associated 
measures m(&) to define an inner product in accord with note 1 
above. 
(Cf. [22], step 5.) Compute roots l/ro,...,l/~k_l of the optimal 
residual polynomial by solving the optimal-residual-polynomial LS 
problem as follows. Let R,(l) = 1+ Cf= ipili. Note that R,(O) = 1 

(the definition of a residual polynomial). The discrete LS problem 
is to minimize M,llRkll~ = IjF(p,, . . . , &I* - yll’, where F = (fij) 
is the M x k matrix defined by fij = 5ij[w(&)m(&)1’/2 and y =- 

(-[zo(51)m(C1)11’2,..., -[w(~M)m(~M)J’/2>*. This may be solved 
by a standard LS method such as computing the QR decomposi- 
tion of F. 
(Cf. [22], step 6.) Solve the GMRES LS problem (13) for the 
parameters ao,. . . , aj_ 1. In the case where j = m = 2 the normal 
equations to solve (13) are (with p = l/ lls,112) 

Set r(O):= xcm), where rcrn) is equal to the GMRES approximation as 
given by rcrn) = x(O) +Cr&‘aisi. If pass = 1, set r(O) := b - Ax(‘) 
and compute llr(“)ll for possible use in step 9(c) and step 10. 
(Cf. [22], step 7.) For i := 2,. . . , k by 2, DO: 

(a) (Cf. [221, step 7.1.) Set a := T~_~ + ri_i; set Y := ~~_~r~_i. 
(b) (Cf. [22], step 7.2.) Set r(‘-‘) := b - Axcie2). (This may be 

omitted if either i =2 and pass = 1 or i =2 and this step 
follows immediately after step 11.) Set t := Arcim2). 

(c) (New step not in [22].) If an accuracy criterion is satisfied, exit. 
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10. 

11. 

(d) (Cf. [22], step 7.3.) Set rci) := x(~-‘) + c&-z) - it. 
(e) (Cf. [22], step 7.4.) Endfor. 
(New step not in [22].) Set rck) := b - AZ(~). 
(Cf. [22], step 8.) If th ei er an accuracy criterion is satisfied or pass 

equals the maximum number allowed, exit; else set x(O) := rck), 
r(O) := rck), and pass := pass + 1. 

(New alternative to [22], step 9.) If (pass-2)mod3 equals 0, go to 
step 9; else go to step 2. Thus, new eigenvalue estimates are 
computed and GMRES is executed in two of three RM cycles. 

6. NUMERICAL EXPERIMENTS 

We shall refer to our algorithm as (the) adaptive RM (algorithm) and from 
time to time write “the (adaptive RM) algorithm” although, of course, it is 
only one adaptive algorithm out of many. 

We compare adaptive RM with CGS, GMRES(~),~ and CGNR. 
Some special comments are appropriate for CCNR. CGNR has a bad 

reputation because it transforms the original system to one for which the 
condition number is the square of the condition number of the original 
system. However, in our experiments we often see that it is the best method, 
a fact observed by others [14, 39, 261 (and privately by Manteuffel). The 
success of CGNR on many of our examples is due to small condition numbers, 
a fact that should not mislead the alert reader. 

A serious difficulty with CGNR is that it requires multiplication of a vector 
by the Hermitian transpose of the system matrix, a programming inconve- 
nience in some cases, and an impossibility in the important case of matrix-free 
computations, for example, in the solution of nonlinear problems in which 
there is no explicit representation of the Jacobian [5]. 

A comparison between algorithms is easily made by comparing the 
number of matvecs to satisfy a stopping criterion if this operation takes most 
of the work, which is reasonable to assume. In general, RM takes fewer 

5 GMRES(~) is a restarted method for which the dimension of the Krylov subspace is never 

allowed to exceed m. For the details on GMRES, see [34]. The efficiency of GMRES(~) depends in 

a complicated way on the dimension of the subspace and the nature of the matrix. Generally it 

requires fewer iterations if the dimension is larger, but the total work may increase. No attempt 

was made to experiment with these parameters. Since the dimension of the Krylov subspace 

affects storage, it cannot be too large, and some limit is necessary. We chose dimension 5 

because that number corresponds to the reasonable storage requirements of the Manteuffel 

algorithm. 
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arithmetic operations than GMRES or CGS, excluding the matvecs, but this is a 
secondary effect. In most experiments, the stopping criterion was to reduce 
the relative residual to 10m4. Experiments were run on a variety of comput- 
ers, with some variation observed among different computers. We consider 
only the arithmetic performance of an algorithm and make no attempt to 
consider system performance, such as the megaflop rate on either vector or 
parallel processors. Results are summarized in a table at the end of this 
section. Recall that the relative residual at step k is defined to be ]]rk]]/ JJr,,]]. 

6.1. Tridiagonal Normal Matrices 
Many tests were conducted on matrices for which the spectra lie within 

the boomerang-shaped region defined by the vertices 5, 1*4i, 3+4i, 7, 5. 
There was no difference in the performance of our algorithm on matrices of 
order 100 X 100 and those of order 10,000 X 10,000, which is consistent with 
the dependence, in general, of the algorithm on the distribution of the 
eigenvalues of the system matrix, rather than the order. With eight iteration 
parameters (and an expansion factor of I.5), the algorithm reached a relative 
residual of 10m4 after four passes (i.e., steps 9, 10, and 11, and steps 2-8 if 
required). The total number of matvecs was 36. 

The adaptive Chebyshev algorithm of Manteuffel [23] in the Chebycode 
implementation [3] for a 1000X 1000 matrix took 202 steps (217 matvecs). 
This method uses an ellipse to enclose an approximation to the spectrum, 
rather than the convex hull. The result suggests the convex hull is superior. 

A more interesting comparison is with either CGS or CMRES. For a 16 X 16 
matrix, CGS took 10 steps (21 matvecs), and for a 1000 X 1000 matrix, 16 steps 
(33 matvecs). For a 16 X 16 matrix, GMRES(~) took 6 cycles6 (30 matvecs), and 
for a 1000 X 1000 matrix, also 6 steps (30 matvecs). 

The best method is CGNR. For a 16X 16 matrix, CGNR took 7 steps (14 
matvecs), and for a 1000X 1000 matrix, 8 steps (16 matvecs). The rapid 
convergence of CGNR is explained by the small condition number of AHA, 
which is $ = 7’/ (1 +4i12. 

6.2. Indefinite Matrices 
Woo Sung Chi of the Department of Electrical and Computer Engineer- 

ing of the University of Illinois, Urbana provided two 132 X 132 complex 
sample matrices. The first is one whose eigenvalues lie on the real line 
segment between -3 and 5 and is derived from the discretization of a 
boundary-value problem. In this case, ccs failed. Adaptive RM achieved a 

6A cycle means the computation of a dimension-5 Krylov subspace 
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relative-residual-error tolerance of lo-” after 13 passes (using an expansion 
factor of 1.25 and an initial Krylov subspace dimension of 4, subsequently 
reduced to 3) (142 matvecs). GMRES(~) achieved the same tolerance after 52 
cycles (262 matvecs), and CGNR after 71 steps (142 matvecs). 

For the second sample matrix, also derived from a boundary-value 
problem, adaptive RM, CGS, and CGNR all failed. GMRE&) was converging 
very slowly and was stopped after 143 cycles (715 matvecs), having achieved 
a relative residual error of 0.2892. 

For our third example, we constructed a tridiagonal matrix whose eigen- 
values were contained in the square with vertices at k 2 t_ 2 i above the line 
y = i and below y = - i. For a 144 x 144 matrix, adaptive RM converged in 
216 passes (2804 matvecs), but CGS had not converged after 1000 cycles 
(2001 matvecs). GMRES(~) failed, while CGNR converged after 11 cycles (22 
matvecs). The condition number of this matrix is 8 = 12 + 2i]‘/ Ii 1’. 

Our last example of an indefinite matrix is a complex matrix arising from 
the finite-element discretization of a 3D electromagnetic-field wave-propa- 
gation problem, provided by W. Mitchell and John D’Angelo (cf. [24]), for 
which there are somewhat fewer than 7000 unknowns. With the weight 
function w(z)= 1 [if !R(.z>> 0] or 5 [if g(z) < 01, the best results for 
adaptive RM were with an expansion factor of 0.9, tolerance of 10m3, initial 
Krylov-space dimension of 3, and subsequent dimensions of 2. The variation 
in the weight function horn one half plane to the other seemed to enhance 
the effect of polynomial preconditioning by (we conjecture) generating a 
preconditioned system with eigenvalues in a half plane. We conjecture that a 
hull contraction was effective due to a concentration of eigenvalues in the 
interior; errors corresponding to eigenvalues on the boundary of the hull 
were then damped by the GMRES method. Figure 5 shows the convex hull 
generated by the algorithm (using the weight function mentioned). (Different 
weight functions resulted in slightly different computed convex hulls, each of 
which resembles the hull displayed in Figure 5.) 

For the adaptive RM, convergence was achieved in 246 passes with 2456 
matvecs. CGS convergence was erratic and was stopped at 5000 steps (10,002 
matvecs). GMRES(~) was stopped at 4464 cycles (22,320 matvecs), while CGNR 

achieved convergence in 452 steps (907 matvecs). These experiments were 
run on a Cray-XMP. 

6.3. Preconditioned Elliptic Daserence Matrices 
We used a partial-difference test matrix described by H. Elman in [ll] 

(see [12, p. 8501 with y = 50; also see [37]). There are two cases according as 
to whether the ILU or MILU preconditioning is used. 
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_X 

FIG. 5. Computed convex hull of the Mitchell-D’Angelo test matrix. Extremum 

eigenvaluesare -24.9-20.8i, 71.3+2.961, 78.5+68.5&58.7+87.2i,and27.7+66.li. 

If ILU was used, and the matrix was 6400X6400, convergence for 
adaptive RM was reached in 3 passes (34 matvecs) with an explanation factor 
of 0.9, and a desired tolerance of 10e4. CGS took 26 steps (53 matvecs). 
GMRES(~) converged in 6 cycles (30 matvecs). For smaller test matrices, ccs 
converged with fewer matvecs than our algorithm. 

If we used the MILU preconditioner, then for the same order matrix, 
convergence of adaptive RM was reached in 3 passes (36 matvecs) with an 
expansion factor of 1.0. Here CGS took 25 steps (51 matvecs), and GMRES(~) 
took 4 cycles (20 matvecs). 

For MILU preconditioning, CGS performance was smooth as the number of 
unknowns varied. However, for ILU preconditioning, CGS convergence was 
erratic (on a Pyramid minicomputer at the University of Illinois). 

Comparisons with CGNR were reported in [ll, pp. 150-1521. (The matrix 
size was not 6400 X 6400, but the results remain valid.) For these problems 
CGNR was not efficient. 

6.4. Summary of Experiments 
The numerical experiments are summarized in Table 1. In the table: 

1. “Fail” indicates that the method was stopped prematurely due to 
divergence of the relative residual. In the case of CGS, failure means an 
attempted division by zero. 
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TABLE 1 

SUMMARY OF DIFFERENT TEST MATRICES AND THE NUMBER OF MATVECS NEEDED 

TO ACHIEVE THE DESIRED TOLERANCE 

Matrix Ad. RM CGS CMRES (5) CGNR 

Boom. 16 36 21 30 14 
Boom. 1000 36 33” 30 16 
Chi no. 1 142 Fail 262 142 

Chi no. 2 Fail Fail > 700 Fail 
Square 2804 > 2001 Fail 22 
Mit.-D’Ang. 2456 > 10,002 > 22,320 907 
Elm. ILU 6400 34 53 30 
Elm. MILU 6400 36 51 20 - 

“A representative number of matvecs. The same code on a different machine 
led to more than 200 matvecs with no convergence. See text for further notes. 

2, “_-)’ indicates that the method was not tried on that test matrix. 
3. “ > n” indicates that the method was converging either slowly 

very erratically and was halted at n matvecs. 
or 

7. OPTIONAL FORMULATIONS 

In this section we shall outline a variant of the power method and a 
variant of the minimum residual step. 

7.1. Eigenvalues from the Shi$ed Matrix 
Let d be the center of the convex hull, and if, upon starting the algorithm 

no convex hull exists, let d = 0. In place of basing the power method on A, it 
may be an advantage to base it on A - d, to avoid biasing the large (in 
magnitude) eigenvalues of A. The Krylov subspace is unchanged, but the 
basis used for the computations is new: 

V WL+1= span{ r(O), . . , (A - d) mr(o)) = span{ r(O), . . . , A”r(‘)} . 

Let s. = (A - d)‘r(‘). The eigenvalue LS problem is the same as before 
(Section 2.3) with the distinction, of course, that eigenvalues of A - d are 
being approximated rather than eigenvalues of A. (The suggestion to use 
A - d is due to John Castor [6].) 
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7.2. The Minimum-Residual Computation 
A different Krylov subspace alters the formula for the GMRES approxima- 

tion. The initial guess x(O) will be used in combination with the first m 
vectors. We shall describe this as well as a technique suggested by J. Grcar 
[18]. We believe it has potential, and therefore include it along with the 
modification necessary to employ the Krylov subspace generated by A - d. 

Grcar’s suggestion is that x(“‘) be of the form 

m-l 

+) = &,x(O) + c (Yisi. 

i=O 

The relation Asi _ 1 = si + d.si _ 1, i > 1, means that 

m - 1 

A(” - .(“‘)) = b - 8,Ax(‘)- 6,d.s, - c ~3,+~d.s,, 
i=O 

where 6, = do, 6, = (Ye, and for i>l, Si=cqd+cxi_-l. 
The GMRES LS problem 

)( A( x - x(‘~)) (1 = minimum 

yields, in the case j = m = 2, the normal equations 

= 
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8. SUMMARY 

We have presented an adaptive algorithm for the solution of linear-alge- 
braic equations, which is a hybrid combination of GMRES and RM. An 

advantage of RM is that it allows matrix pipelining, and so GMRES, an 

important method also, receives short shrift. Other approaches to computing 
with RM have been recently presented, and we compare the mathematical 
basis for our approach with one of these. However, the advantages of matrix 
pipelining are independent of the method to obtain RM parameters. Numeri- 
cal experiments compared the algorithm with CGS, GMRES, and CGNR, but the 
issue of matrix pipelining was outside the scope of these experiments. We 
should stress that our algorithm includes several user controlled features that 
affect performance, which means it is not automatic in the way that either 
cos or CGNR is. 
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