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Abstract

Dodgson’s condensation method has become a powerful tool in the automation of determinant evaluations.
In this expository paper I describe its 19th century roots and the major steps on the path that began in the
20th century when the iteration of an identity derived by Dodgson first was studied, including its role in the
discovery of the alternating sign matrix conjecture, the evaluation of an important 19th century determinant
in partition theory as well as a combinatorial proof of it. I then discuss additional developments that have
led the way to its use in modern experimental mathematics.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Charles L. Dodgson (Lewis Carroll, 1832-1898) made important mathematical discoveries
many of which were properly recognized for the first time only in the second half of the last
century. Of these it is his condensation method that arguably has had the greatest influence on
subsequent mathematical discoveries.

* This paper is an expanded version of a talk given at Concordia University on 29 July 2007 commemorating the 175th
birthday of Charles L. Dodgson.
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Originating independently from Desanot’s 1819 “law of extensible minors” which Desanot
proved forn x nmatrices whenn < 6, and proved in the general case by Jacobi in 1833, Dodgson’s
elegant condensation technique was announced in 1866 in his paper delivered to a meeting of
the Royal Society by his friend and tutor, Bartholomew Price, professor of natural philosophy at
Oxford [12,22,16,13]. The following year it appeared in three appendices to Dodgson’s book, An
Elementary Theory of Determinants [14]. In 1883, Muir published a proof of his law of extensible
minors which is a generalized form of Desanot’s law [21].

In this paper I will refer to the work of Desanot and of Muir as the Desanot/Muir law of
extensible minors (DSM). Dodgson’s method is both a special case of DSM and of Jacobi’s 1833
adjoint matrix theorem, sometimes referred to as the Desanot/Jacobi adjoint matrix theorem (DJ)
[23]. But Dodgson acknowledged neither Desanot or Jacobi by name in the published talk printed
in the proceedings of the Royal Society nor in his book. However, he had written earlier to the
Oxford mathematician and author of an 1851 book on determinants, Spottiswoode [26], and in a
letter dated 2 April 1866 Spottiswoode replied

“The Theorem upon which it [condensation] is founded is, as you are doubtless aware,
known, but the application of it is, as far as I am aware, quite original.” [2]

The theorem is DJ and Dodgson probably read it in Hotiel’s 1861 translation of Baltzer’s
1857 book, Theorie und Anwendung der Determinanten [7]. Dodgson used Jacobi’s theorem to
establish the validity of his own method. He wrote

“I now proceed to give a proof of the validity of this process [condensation], deduced from
a well-known theorem in determinants... The theorem referred to is the following: ‘if the
determinant of a block = R, the determinant of any minor of the mth degree of the adjugate
block is the product of R™~1 and the coefficient which, in R, multiplies the determinant of
the corresponding minor.” ” [2]

For a given m by m minor, the corresponding m by m minor in the adjugate block is the one in
which each entry has the same position as in the given minor. The adjugate block is a new block
each of whose entries is the determinant of the complemental minor of the corresponding entry
in the given block. For a given m by m minor, the entries of the complemental m by m minor are
those that are not in any row or column of the given minor [1].

2. Dodgson condensation

Dodgson described his method this way: for any n by n block, i.e. matrix,

“Compute the determinant of every 2 by 2 minor consisting of four adjacent terms. These
values become the terms of a second block having n — 1 rows and n — 1 columns. [In
modern usage, a minor is a determinant of a square sub-matrix formed from consecutive
rows and columns. ]

Condense the second block in the same way, dividing each term, when found, by the
corresponding term in the interior of the first block (the block that remains when the first
and last rows and columns are erased).

Repeat this process until the block is condensed to a single term, which will be the required
value. Note that in condensing any block r in the series, the terms found must be divided
by the corresponding terms in the interior of the r — 1th block.” [2]
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MATRIX 1 MATRIX 2
2-1-1-4 2 -1 -1 -1 -1 4 3-12
-1 -2-1-6 -1 -2 2 -1 -1 -6
-1-1 2 4
2 1-3-8 -1 -2 2 -1 -1 -6 -1-5 8
-1 -1 -1 2 2 4
-1 -1 -1 2 2 4 1 1-4
2 1 1-3 -3 -8
Interior of matrix 1 is 2 -1 Interior of matrix 2 is -5
-1 2
MATRIX 3
3-12 3 -1 -1 2 -16 2
-1 -5 8 -1 -5 -5 8
11-4
-1 -5 -5 8 4 12
1 1 1 -4

Dividing the entries of the single entry form of matrix 3 by the entries in the interior of
matrix 1 produces the matrix

8 -2

4 6

Dividing each entry of this final matrix by the interior of matrix 2 (equivalently, dividing its
determinant 40 by the interior of matrix 2) gives -8, the determinant of the original 4 by 4
matrix.

Fig. 1. Dodgson’s condensation method.

Because the set of k by k connected minors can be arranged naturally as an n — k + 1 by
n — k + 1 array, the set of new minors computed at each stage can be viewed as a matrix one
dimension lower than the one formed in the previous stage. So as the algorithm proceeds, the
original matrix “condenses” until the required determinant is the single entry in a 1 by 1 matrix.
Fig. 1 illustrates his method when n = 4.

Dodgson understood that his method had a fatal defect, i.e. the determinant of any interior
matrix cannot be 0. Although some remedies like row/column exchanges (permutations) can be
effective in eliminating the defect, they may not always work. But the main advantage is now
obvious: unlike the standard Laplacian expansion, nowhere does a determinant of order greater
than two have to be computed. The algorithm implies that the determinant of a square matrix is
a rational function of all its connected minors of any two consecutive sizes. Commenting on the
“fatal defect”, Bressoud and Propp wrote,

“Although the use of division may seem like a liability, it actually provides a useful form of
error checking for hand calculations with integer matrices: when the algorithm is performed
properly...all the entries of all the intervening matrices are integers, so that when a division
fails to come out evenly, one can be sure that a mistake has been made somewhere. The
method is also useful for computer calculations, especially since it can be executed in
parallel by many processors.” [9]
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An2(2,2) An(L,1) = Ana(LD) An(2,2) - Ana(1,2) Ap a(2,1) DDI

For an n by n matrix A, let A, (i,j) denote the r by r minor consisting of r contiguous rows and
columns of A, beginning with row i, column j. Note that A;(1,1) = det A, Ay.2(2,2) is the
central minor; A,.1(1,1), An1(2,2), An1(1,2), An1(2,1) are the northwest, southeast, northeast,
and southwest minors, respectively.

Aq(1,1) An2(2,2) Ana(LD)  Ana22)  Ana(1,2)  Aga(2,1)
2-1-1-4 2-1 211 216  -1-14 1-2-1
1-2-1-6 12 d2-1 124 2:1-6 1-12
1412 4 d-12 138 12 4 213
2138

Tterating DDI: An2(2,2) Ana(LD)  Ana22)  Ana(12)  Ana2,1)
241 -1 2 21 21 11 12
12 -1 12 12 2 -1 -1 -1
4412

216 2 21 2 4 1 -6 12
124 12 3-8 2 4 3
138

1 -1 -4 -1 -1 -1 1-6 1 -4 2 -1
21 -6 2 -1 2 4 1-6 102
12 4

121 -1 12 12 21 1 -1
1412 1 -1 13 12

2 13

Computing all the 2 by 2 minors, the determinant of the first 3 by 3 minor is -16/-2 = §; that
of the second 3 by 3 minor is 12/2 = 6; that of the third 3 by 3 minor is 2/-1 = -2; and that of
the fourth 3 by 3 minor is 4/1 = -4. So the determinant of the original 4 by 4 matrix is 40/-5 =-8

Fig. 2. Dodgson’s determinantal identity.

3. Alternating sign matrices

Dodgson’s condensation method emerged from relative obscurity in 1986 — it previously had
been used in some linear algebra texts published early in the 20th century — when Robbins and
Rumsey studied the iteration of the identity that we call DDI, to which Dodgson condensation is
implicitly related [25].

In Fig. 2 the same 4 by 4 matrix is “condensed” using the recurrence DDI above.

Note that A, is itself a connected minor and that condensation is used repeatedly to compute all
the connected minors of A,. The determinant of a 0 by 0 matrix is assigned the value 1, so this
equation reduces to the standard expression for computing a 2 by 2 determinant.

If we compare the computations in the two closely related methods on the same example we see
that although DDI requires more calculations, they do not increase its computational complexity,
and the recurrence DDI is a better algorithm than plain Dodgson condensation.

The study of DDI led Robbins and Rumsey to their discovery of the alternating sign matrix
conjecture (ASM). An alternating sign matrix is a generalized permutation matrix, where every
entry is 0, £1 in each row and column; the nonzero entries alternate starting and ending with 1, and
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T Gi+D!
=0 (n+ )l

n

Fig. 3. The ASM conjecture.

they sum to 1. For the general 3 by 3 matrix there are seven ASMs, six of which are permutation
matrices, and the seventh is the one below:

0 1 0
1 -1 1
0O 1 0

The general 4 by 4 matrix has 42 ASMs of which 24 are permutation matrices. Trying to answer
the natural question, how many ASMs are there? They found a sequence that they had never seen
before,

Ap=1,2,7,42,429,7436, 218348, 10850216, 911835460, . ..

Dividing the ASMs into classes suitably, and noticing many patterns in the arrangement of the
members of these classes, they were able to express the number of the set of n by n ASMs as the
conjecture given in Fig. 3.

Note the correspondence of the terms in the sequence given by A, with the conjectured terms,
e.g. when n = 4, we have (1/24)(1/5)(7)(720) = 42, the fourth term in A,,.

In 1995 Zeilberger’s proof of the ASM conjecture was accepted by the 88 referees and one

computer of his paper which he had first submitted three years earlier [8,27].

4. Plane partitions

The number of ASMs is connected to a problem about plane partitions, i.e. counting the
number of descending plane partitions [6]. A plane partition is a rectangular array of nonnegative
integers with the property that all rows and columns are non-increasing. For example, the six
plane partitions of 3 are

3 21 2 111 11 1
1 1 1
1

But if the integer whose partitions we want is very large, the number of its partitions is extremely
large. To find them we need a generating function, a power series, whose coefficients give the
number of plane partitions of the integer. A generating function also provides recursive formulas
that suit algorithms implemented on a computer.

MacMahon discovered that function in 1897, and published it in 1912 [18,19]. Seventy-
five years later Gessell and Viennot were able to simplify his proof and find an equivalent
determinant for their generating function by considering plane partitions as configurations of
nonintersecting paths in a two dimensional integral lattice [15]. Using a formula given by Krat-
tenthaler in 1990 the determinant can be evaluated [17]. General determinant evaluation for-
mulas are not new — they go back to the 18th century. A common derivation of the impor-
tant ones from the 18th and 19th centuries and a nice discussion of them can be found in
[11].

Polynomials play a central role in the study of partition identities. When one is counting, a
generating function provides a way of keeping track of the number of items being counted. For
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[m+n} _ﬁ]-q"”
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Fig. 4. Gaussian binomial (or g-binomial) coefficients for positive integers m, n.

example, in the finite binomial theorem (Z) counts the number of ways n — k x’s and k y’s can

be arranged:

x+y)'= Z (Z) x"_kyk.

k=0

We can introduce a parameter g to do this counting by setting yx = gxy. By letting xg = gx and
yq = qy, we can put all the gs together. Then the g-binomial coefficients

i,

can be defined by

@+y'=y [Z] kK, 1)
q

k=0

We see that the g-binomial coefficients are polynomials in g with integer coefficients. Since
n+1 n n
()= ()2 @

G+ =@+ x4y, A3)

and

we can rewrite (1) and substitute g*xy* for y*x to obtain a g-analog of (2), the g-binomial
coefficients,

n+1| _|n k n
Bl
q q q
These polynomials are also known as Gaussian binomial coefficients and are EXPRESSED more
generally in Fig. 4. In chapter 10 of their book, Andrews and his colleagues extend this example

in interesting ways [5].
Setting ¢ = 1 yields the ordinary binomial coefficients.

5. Dodgson condensation and combinatorics

Zeilberger published a combinatorial proof of DDI. He called his theorem, “Dodgson’s Deter-
minant Evaluation Rule Proved by Two-Timing Men and Women” [29]. Several aspects of this
proof are important. It is bijective and the accompanying Maple package contains the programs
that implement the main mappings. In enumerative combinatorics bijective proofs give the number
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of configurations in integer partition identities. The proof type itself resembles closely the design
principles used to construct efficient algorithms. Generally, the difference between an algebraic
and a combinatorial approach to a proof is that the former begins by showing that both sides of
the algebraic identity are invariant. The latter begins by translating the identity into an equation
for two sums and then giving an explicit bijection to prove the equation. The bijection itself is
valuable because its properties can point the way to new results.

Zeilberger’s proof inspired Brualdi and his student, Adam Berliner, in 2006 to extend Zeil-
berger’s proof to prove what they call the Dodgson/Muir Combinatorial Identity. Recall that this
identity, proved by Muir in 1883 that he called the law of extensible minors in determinants,
includes Dodgson condensation as a special case [21]. Their theorem in Fig. 5 asserts that a
homogeneous determinantal identity for the minors of a matrix remains valid when all the index
sets are enlarged by the same disjoint index set [10].

In 1996, Zeilberger algebraically proved that a g-analog of an important determinant evaluation
concerning the enumeration of plane partitions first developed by MacMahon in section X, Chapter
1 of [20] is a direct result of DDI. There MacMahon obtains an expression in determinant
form of the inner lattice function on which Zeilberger comments, “Of course, MacMahon for
expository reasons, only presents the n = 4 case, but his method is obviously general.” (Private
communication).

Zeilberger gave as the title of his paper, “Reverend Charles to the aid of Major Percy and
Fields-Medalist Enrico” [28].

The proof itself is very short and illustrates a standard method used in combinatorial proofs that
essentially generalizes proof by induction. We check that both sides of the equation we want to
prove satisfy the same recurrence and the same boundary conditions. Since each side is uniquely
determined by the boundary values and the recurrence, the two sides are equal.

A 1997 paper with Amdeberhan (where Zeilberger used the alias Shalosh B. Ekhad) is in the
same spirit and form as the previous paper. In it they prove the determinant identity in Fig. 7
conjectured by Greg Kuperberg and Jim Propp follows immediately from DDI [3].

k
det A det A[{k+1,...n},{k+1,..n}]" = D (=D J] det A[{j, k+1....n},{G(), k+1,....n}]

oceS, J

where A is a matrix of order n, 1(0) is the number of inversions of the permutation G, Sy is
the set of all permutations of {1, 2, ..., k}. Dodgson condensation is the special case when k = 2.

Fig. 5. Dodgson/Muir determinantal identity.

et |[@ _ (a+mN(n=1)ia—b-1Hb!
b+j) o (@ a-b+n—-DI(b+n)!

where n!! = 1!2!...n!.

Fig. 6. g-Analog of MacMahon’s determinant evaluation.
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(T )
l n—i Ogl,‘]gn

where n!! is defined as in Fig. 6

_ @n4 it
T @2n+ D
q

k]

Fig. 7. Kuperberg/Propp determinantal identity.
6. Experimental mathematics and DDI

In 2001 Amdeberhan and Zeilberger used DDI to prove 15 explicit determinant evaluations
that were conjectured and then proved using computer-assisted methods. The Maple package,
Lewis, accompanying their paper automates a few of them. They write

“We believe that in many cases, (Lewis) should...be useful, by extending the ansarz to a
larger class, that for us humans looks messy, but that computers won’t mind.” [4]

1819 P. Desanot Law of extensible minors

1833 C. Jacobi Adjoint matrix theorem

1866 C.L. Dodgson Condensation method

1883 T. Muir Generalized law of extensible
minors

1916 P.A. MacMahon Determinant evaluation method

1986 D. Robbins and H. Rumsey Alternating Sign Matrix
Conjecture (ASM);Dodgson’s
determinantal identity (DDI)

1996 D. Zeilberger Proof of the ASM

1996 D. Zeilberger Proof of a g-analog of
MacMahon’s determinant method

1997 D. Zeilberger Combinatorial proof of Dodgson’s
determinantal identity

1997 T. Amdeberhan & S.B. Ekhad Proof of a new determinantal
identity using DDI

2001 T. Amdeberhan & D. Zeilberger ~ Ansatz-based automated proofs

2003 D. Zeilberger New research methodology

2005 D. Robbins DDI applied to floating
point matrices

2006 A. Berliner & R. Brualdi Combinatorial proof of the

Dodgson/Muir
determinantal identity

Fig. 8. Time line.
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Automated theorem proving can be divided into two broad types of which the logic-based
type is better known. The ansatz-based type considers objects that belong to a well-defined
algebraic class that has canonical or normal forms. Here, for the first time, they speak of
DDI in the context of computer assisted proofs of determinant identities as a new
paradigm.

Finally, in a paper appearing in 2003, Zeilberger shows that if you are solving a problem that
involves evaluating a determinant, if you can guess the required result correctly, then DDI permits
an inductive proof of that determinant evaluation. And even the determinant evaluation itself can
be proved using DDI. He also discusses where this paper, the three previous ones, and his bijective
proof of DDI are leading. He writes

“[W]e need methodologies for creating new algorithms that will enable computers to dis-
cover, and prove, new results without knowing, beforehand, whether it will succeed, but
with a fair chance that it will.” [30]

Zeilberger’s goal is a research methodology to make the proof of determinant identities com-
pletely automatic using software that Maple or Mathematica provides.

In another extension of Dodgson condensation, Robbins, in perhaps his last paper written in
2003 and published in 2005, described a non-Archimedean approximate form of the method and
stated this conjecture which he checked in billions of cases:

“Suppose a determinant is computed with approximate n-digit floating point Dodgson con-
densation. If the condensation error for the computation is e, then, after conversion to fixed
point, the result will be correct mod p"—¢.” [24]

Recall that each application of DDI requires a division by a previously computed det C, the
central minor. When computing a given minor if the maximum of the exponents of all the divisors
of det C is e, then Robbins defines the condensation error of that minor to be e. The matrix entries
are n-digit floating point integers, i.e. each is a pair (a, ¢), where a is invertible mod p” and e
is an integer >0; a and e play the roles of the mantissa and exponent in ordinary floating point
arithmetic.

7. Conclusion

Dodgson condensation has shown itself to be an extraordinarily fruitful concept and imple-
mented as DDI, a widely applicable computer algorithm. The time line in Fig. 8 tracks its almost
200 year history.

References

[1] Francine Abeles, Determinants and linear systems: Charles L. Dodgson’s view, British J. Hist. Sci., 19 (1986)
331-335.

[2] Francine F. Abeles (Ed.), The Mathematical Pamphlets of Charles Lutwidge Dodgson and Related Pieces, Lewis
Carroll Society of North America/University Press of Virginia, New York/Charlottesville, 1994.

[3] Tewodros Amdeberhan, Shalosh B. Ekhad, A condensed condensation proof of a determinant evaluation conjectured
by Greg Kuperberg and Jim Propp, J. Combin. Theory Ser. A 78 (1997) 169-170.

[4] Tewodros Amdeberhan, Doron Zeilberger, Determinants through the looking glass, Adv. in Appl. Math. 27 (2001)
225-230.

[5] George E. Andrews, et al., Special Functions. Encyclopedia of Mathematics and Its Applications, Cambridge
University Press, Cambridge, 1999.

[6] George Andrews (Ed.), Percy Alexander MacMahon Collected Papers, vol. 1, MIT Press, Cambridge MA/London,
1978.



438 FF. Abeles / Linear Algebra and its Applications 429 (2008) 429438

[7] Heinrich Richard Baltzer, Théorie et applications des déterminants, avec I’indications des sources originales. (Trans-
lation by J. Hotiel of Theorie und Anwendung der Determinanten. Leipzig, S. Hirzel, 1857). Paris, Mallet-Batchelier,
1861.

[8] David M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Mathematical
Association of America/Cambridge University Press, Washington/New York, 1999.

[9] David M. Bressoud, James Propp, How the alternating sign matrix conjecture was solved, Notices of the AMS 46
(1999) 637-646.

[10] Richard A. Brualdi, Adam Berliner, A combinatorial roof of the Dodgson/Muir determinantal identitiy, Int. J. Inform.
Syst. Sci., preprint, 2006.

[11] Richard A. Brualdi, Hans Schneider, Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi,
Binet, Laplace, Muir, and Cayley, Linear Algebra Appl. 52/53 (1983) 769-791.

[12] P. Desanot, Complément de la Théorie des Equations du Premier Degré, contenant...Par P. Desanot, Censeur au
Collége Royal de Nancy, ...Paris, in: Thomas Muir (Ed.), The Theory of Determinants in the Historical Order of
Development, vol. 1. Reprint, New York, Dover, 1961, pp. 136-148.

[13] Charles L. Dodgson, Condensation of determinants, being a new and brief method for computing their arithmetical
values, in: Proceedings of the Royal Society XV, 1866, pp. 150-155 (1, 170-180).

[14] Charles L. Dodgson, An Elementary Treatise on Determinants with Their Application to Simultaneous Linear
Equations and Algebraical Geometry, Macmillan, London, 1867.

[15] Ira M. Gessel, Xavier G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math. 58 (1985)
300-321.

[16] Carl G.J. Jacobi, De binis quibuslibet functionibus homogeneis secundi ordinis per substitutiones lineares in alias
binas transformandis, quae solis quadratis variabilium constant; una cum variis theorematis de transformatione et
determinatione integralium multiplicium, J. fiir die Reine und Angewandte Mathematik xii (1833) 1-69.

[17] Christian Krattenthaler, Generating functions for plane partitions of a given shape, Manuscripta Math. 89 (1990)
173-202.

[18] A. Percy MacMahon, Memoir on the theory of the partitions of numbers — Part V, 6, 1328—-1363.

[19] A. Percy MacMahon, Memoir on the theory of the partitions of numbers — Part VI, 6, 1406—1434.

[20] A. Percy MacMahon, Combinatory analysis, two volumes, Reprint, New York, Chelsea, 1960.

[21] Thomas Muir, The law of extensible minors in determinants, Transactions of the Royal Society Edinburgh (1883)
1-4.

[22] Thomas Muir, The Theory of Determinants in the Historical Order of Development, vol. 1, Reprint, New York,
Dover, 1961, pp. 136-148.

[23] Adrian Rice, Eve Torrence, “Shutting up like a telescope”: Lewis Carroll’s “Curious" Condensation Method for
Evaluating Determinants, Coll. Math. J. 38 (2007) 85-95.

[24] David P. Robbins, A conjecture about Dodgson condensation, Adv. Appl. Math. 34 (2005) 654-658.

[25] David P. Robbins, Howard Rumsey Jr., Determinants and alternating sign matrices, Adv. Math. 62 (1986) 169-184.

[26] William Spottiswoode, Elementary Theorems Relating to Determinants, Macmillan, London, 1851.

[27] Doron Zeilberger, Proof of the alternating sign matrix conjecture, Electron. J. Combin. 3 (1996) R13.

[28] Doron Zeilberger, Reverend Charles to the aid of Major Percy and fields — Medalist Enrico, Amer. Math. Monthly
103 (1996) 501-502.

[29] Doron Zeilberger, Dodgson’s determinant evaluation rule proved by two-timing men and women, Electron. J.
Combin. 4 (1997) R22.

[30] Doron Zeilberger, Liebe Opa Paul, ich bin ein experimental Scientist!, Adv. Appl. Math. 31 (2003) 532-543.



	Introduction
	Dodgson condensation
	Alternating sign matrices
	Plane partitions
	Dodgson condensation and combinatorics
	Experimental mathematics and DDI
	Conclusion
	References

